Способ получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом

Изобретение относится к порошковой металлургии, а именно к способам изготовления постоянных магнитов из магнитотвердых материалов на основе сплавов редкоземельных металлов с железом и азотом, и может быть использовано в электротехнической, автомобильной, приборостроительной и других областях промышленности. Изготовление постоянных магнитов проводят азотацией монокристаллической заготовки, полученной из сплава редкоземельных металлов с железом. При этом скорость выращивания монокристалла находится в интервале от 0,1 до 2 мм/с, а степень разориентации текстуры 3,6-30,7. Изобретение позволяет улучшить магнитные характеристики магнитов за счет повышения плотности и уменьшения степени разориентации частиц магнитного материала. 3 з.п. ф-лы, 1 табл., 2 ил.

 

Изобретение относится к порошковой металлургии, а именно к способам изготовления постоянных магнитов из магнитотвердых материалов на основе сплавов редкоземельных металлов с железом с азотом и может быть использовано в электротехнической, приборостроительной и других областях промышленности.

В настоящее время известны четыре основных типа магнитотвердых материалов на основе соединений редкоземельных металлов: SmCo5, Sm2Co17, Nd2Fe14B и Sm2Fe17N3. Особенностью магнитотвердых материалов на основе соединения Sm2Fe17N3 является их низкая температурная стойкость, обусловленная протеканием реакции разложения (Sm2Fe17N3→2SmN+Fe4N+13Fe) при температурах выше 450°С [Попович, А.А. Особенности азотирования магнитотвердого материала Sm2Fe17 / А.А. Попович, Н.Г Разумов, Т.А. Попович // Научно-технические ведомости Санкт-Петербургского государственного политехнического ун-та. - 2013. - №3 (178) - С. 206-215.]. Это делает невозможным использование для данных материалов стандартной технологии изготовления редкоземельных магнитов, а именно получение мелкодисперсного порошка магнитного материала, его формование в магнитном поле и спекание в вакууме при температурах 1100-1200°С. Поэтому практически единственным способом получения постоянных магнитов из порошков магнитных материалов Sm2Fe17N3 является их формование с добавлением полимерной или металлической связки.

Недостатком такого способа является низкая остаточная индукция Br получаемых магнитов, поскольку плотность формованной заготовки всегда значительно меньше теоретической. Так, на образцах магнитов Sm2Fe17N3, полученных по данной технологии даже в лабораторных условиях, она не превысила 0,96 Тл, в то время как на порошках данного материала Br составляет 1,54 Тл. [Kobayashi, K. Magnetic properties of the single magnetic domain particles of Sm2Fe17Nx compounds / K. Kobayashi, T. Iriyama Т., T. Yamaguchi // J. Alloys Comp. - 1993. - V. 193. - P. 235].

Известен способ, при котором заготовку магнита из порошка сплава РЗМ-Fe, не содержащего азота, формуют в магнитном поле, после чего азотируют [Пат. DE 4117104 A1, H01F 1/053, С22С 38/00 Способ получения азотсодержащих постоянных магнитов, в частности Sm-Fe-N/ Reppel, Georg-Werner; патентообладатель Vacuumschmelze GmbH. - DE 19914117104; заявл. 25.05.1991]. Достоинством данного способа является возможность доспекания заготовки на первой стадии азотирования при температурах несколько выше, чем температура разложения материала Sm2Fe17N3, что позволяет повысить плотность формованной заготовки и соответственно ее магнитные параметры.

Основным недостатком данного способа является тот факт, что все соединения РЗМ-Fe (в том числе и Sm2Fe17) не обладают одноосной магнитной анизотропией, а только одноплоскостной. В результате при последующем внедрении азота оси легкого намагничивания образующихся частиц Sm2Fe17N3 располагаются хотя и в одной плоскости, но в разных направлениях. Расположение элементарных ячеек магнитного материала в заготовке, формованной в магнитном поле, до (Sm2Fe17) и после (Sm2Fe17N3) азотирования показано на фигуре 1.

В результате остаточная индукция магнитов, полученных данным методом, зависит от среднего угла разориентации осей легкого намагничивания частиц магнитного материала Sm2Fe17N3 и составляет (при среднем значении угла отклонения оси легкого намагничивания от необходимого направления текстуры около 45°) около 70% от теоретически возможной, что не позволяет получать магниты из материала Sm2Fe17N3 с остаточной индукцией выше 1,06 Тл. Данный недостаток указанного способа получения магнитов отмечается и самими авторами изобретения в его описании.

Наиболее близким к предлагаемому способу получения магнитов является способ получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом (RU 2601149, опубл. 27.10.2016), включает выплавку сплава в индукционной печи, получение слитка из сплава редкоземельных металлов с железом, гомогенизацию полученных слитков в вакууме до растворения магнитомягкой фазы γ-Fe, и последующие азотирование, изготовление порошка магнитного материала, смешивание его с порошком цинка, компактирование и намагничивание, согласно предложенному изобретению компактирование смеси порошков магнитного материала и цинка осуществляют посредством холодного газодинамического напыления их в струе азота, нагретого до температуры газа от 170°С до 240°С, при давлении от 4 атм до 7 атм. Порошок цинка смешивают с порошком магнитного материала в соотношении от 3% до 12% мас. цинка.

Основным недостатком данного способа является то, что сплавы не обладают одноосной магнитной анизотропией, а только одноплоскостной, способ не позволяет получать магниты из материала Sm2Fe17N3 с остаточной индукцией выше 1,06 Тл.

Технический результат заявляемого изобретения направлен на повышение магнитных характеристик магнитов и в первую очередь их остаточной индукции Br.

Поставленная техническая задача решается тем, что в способе получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом, включающем получение заготовки из сплава редкоземельных металлов с железом и их последующее азотирование, изготовление заготовки, согласно предложенному изобретению осуществляют посредством выращивания монокристалла со скоростью до 2 мм/с.

Техническим результатом, достижение которого обеспечивается совокупностью существенных признаков формулы изобретения, является повышение магнитных характеристик магнитов остаточной индукция Br до 1,18 Тл и коэрцитивной силы до 1430 кА/м за счет повышения их плотности и уменьшения степени разориентации осей легкого намагничивания частиц магнитного материала Sm2Fe17N3.

Заявленный технический результат достигается следующим.

Способ получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом включает выплавку сплава в индукционной печи, получение слитка из сплава редкоземельных металлов с железом и последующее азотирование, отличающийся тем, что полученные слитки гомогенизируют в вакууме до растворения магнитомягкой фазы γ-Fe, после чего из полученной литой заготовки выращивают монокристаллы методом вертикальной зонной плавки в установке с подвижным индуктором в атмосфере инертного газа со скоростью от 0,1 до 2 мм/с.

Слитки гомогенизируют в вакууме при температуре 1000°С в течение 36 часов.

Азотирование проводят в атмосфере азота с чистотой 99,99% при температуре 450°С и давлении 1,5 атмосфер в течение 96 часов. В качестве инертного газа используют аргон.

Изобретение поясняется чертежами, где на фиг. 1 показано расположение элементарных ячеек магнитного материала в заготовке, формованной в магнитном поле, до (Sm2Fe17) и после (Sm2Fe17N3) азотирования, на фиг. 2 показано расположение элементарных ячеек магнитного материала в монокристаллической заготовке до (Sm2Fe17) и после (Sm2Fe17N3) азотирования.

Главным преимуществом данного способа получения заготовки является наличие в ней кристаллографической анизотропии, свойственной всем монокристаллическим материалам (фиг. 2).

Как видно из фигуры 2, в монокристалле элементарные ячейки материала, например Sm2Fe17, ориентируются по всем кристаллографическим осям в одинаковых направлениях, в отличие от формованной в магнитном поле заготовки, в которых ориентации происходит только по одной плоскости легкого намагничивания.

Проводят выплавку сплава в индукционной печи. После чего получают слитки из сплава редкоземельных металлов с железом. Полученные слитки гомогенизируют в вакууме до растворения магнитомягкой фазы γ-Fe.

Гомогенизацию полученных слитков проводят при температуре 1000°С в течение 36 часов.

Из полученной литой заготовки выращивают монокристаллы методом вертикальной зонной плавки в установке с подвижным индуктором в атмосфере инертного газа со скоростью от 0,1 до 2 мм/с.

При увеличении скорости выращивания монокристаллов выше 2 мм/с наблюдается рост степени разориентации текстуры из-за неконтролируемой кристаллизации материала и, как следствие, падение остаточной индукции получаемых магнитов.

Некоторый рост коэрцитивной силы по намагниченности jHc, происходящий при уменьшении скорости выращивания монокристаллов менее 0,1 мм/с, объясняется проходящим параллельно процессом частичного растворения магнитомягкой фазы γ-Fe, некоторое количество которой всегда содержится в сплавах редкоземельных металлов и железа.

В принципе, чем меньше скорость выращивания монокристаллов, тем будет ниже степень разориентации текстуры магнитов, получаемых по предлагаемому способу, но, с другой стороны, тем продолжительней будет процесс выращивания и, соответственно, выше себестоимость изготовления магнитов.

Кроме того, при большой длительности процесса увеличится и содержание примесей, попадающих в магнитный материал из аргона и технологической оснастки, что начинает отрицательно сказываться на магнитных параметрах изготавливаемых магнитов.

Последующее азотирование проводят в атмосфере азота с чистотой 99,99% при температуре 450°С и давлении 1,5 атмосфер в течение 96 часов.

В результате при последующем азотировании заготовки и внедрении в кристаллическую решетку соединения Sm2Fe17 азота частицы образующегося магнитного материала Sm2Fe17N3 направлены осями легкого намагничивания в одном направлении.

При этом средний угол разориентации осей легкого намагничивания близок к нулю и определяется только качеством выращенного монокристалла.

А с учетом того, что плотность выращенного монокристалла практически равна теоретической плотности материала, из которого он получен, то постоянные магниты, полученные по предлагаемому способу, могут иметь остаточную индукцию Br на уровне теоретического максимума 1,54 Тл.

Пример

Материал Sm2Fe17 был изготовлен выплавкой в индукционной печи в атмосфере аргона и разлит в керамические формы с внутренним диаметром 3 мм и высотой 25 мм. Далее полученные слитки гомогенизировали в вакууме при температуре 1000°С в течение 36 часов для растворения содержащейся в нем магнитомягкой фазы γ-Fe.

Выращивание монокристаллов Sm2Fe17 из литых заготовок проводили на установке «Кристаллизатор-203» в атмосфере аргона (с чистотой 99,99%) методом вертикальной зонной плавки с подвижным индуктором. Скорость выращивания изменяли от 0,1 до 2 мм/с. При более высоких скоростях выращивания визуально фиксировался рост дополнительных кристаллов с произвольной ориентацией. Степень разориентации текстуры магнитного материала (а) определяли методом обратных полюсных фигур на дифрактометре ДРОН-2 с программным комплексом FREAK.

Азотирование выращенных монокристаллов проводили в атмосфере азота (с чистотой 99,99%) при температуре 450°С и давлении 1,5 атм в течение 96 часов. На полученных образцах магнитов на гистерезисграфе «Permograph С-300» были определены основные магнитные характеристики.

Результаты всех измерений приведены в таблице 1, там же приведены результаты, полученные на образцах, изготовленных по известному способу-прототипу.

Как видно из таблицы 1, использование предлагаемого способа получения постоянных магнитов позволяет повысить их остаточную индукцию почти на 10%.

Так, при скорости выращивания монокристалла 0,05 мм/с продолжительность (трудоемкость) операции получения монокристалла увеличивается в 2 раза при падении магнитных параметров на 1-1,5% несмотря на некоторое снижение степени разориентации текстуры.

Таким образом, регулируя скорость выращивания монокристалла, можно регулировать магнитные параметры магнитов и себестоимость их изготовления.

1. Способ получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом, включающий выплавку сплава в индукционной печи, получение слитка из сплава редкоземельных металлов с железом, гомогенизацию полученных слитков в вакууме до растворения магнитомягкой фазы γ-Fe и последующее азотирование, отличающийся тем, что из полученной литой заготовки выращивают монокристаллы методом вертикальной зонной плавки в установке с подвижным индуктором в атмосфере инертного газа со скоростью от 0,1 до 2 мм/с и со степенью разориентации текстуры 3,6-30,7.

2. Способ по п. 1, отличающийся тем, что слитки гомогенизируют в вакууме при температуре 1000°С в течение 36 часов.

3. Способ по п. 1, отличающийся тем, что азотирование проводят в атмосфере азота с чистотой 99,99% при температуре 450°С и давлении 1,5 атмосфер в течение 96 часов.

4. Способ по п. 1, отличающийся тем, что в качестве инертного газа используют аргон.



 

Похожие патенты:

Изобретение относится к области коллоидной химии и может быть использовано для получения магнитных жидкостей, применяемых в медицине для доставки лекарственных препаратов в требуемые органы живых организмов.

Изобретение относится к получению керамических перовскитоподобных манганитов и может быть использовано в электротехнике, магнитной и спиновой электронике. Поликристаллический материал на основе лантан-стронциевого манганита имеет состав La0,810Sr0,190Mn1-x(Zn0,5Ge0,5)xO3, где x принимает значения от 0,148 до 0,152.

Изобретение относится к области черной металлургии. Для обеспечения высокой магнитной проницаемости стали и равномерности магнитных свойств осуществляют выплавку стали, содержащей медь от 0,4 до 0,6 мас.%, разливку, горячую прокатку, травление, двукратную холодную прокатку с промежуточным обезуглероживающим отжигом, нанесение на полосу магнезиального покрытия, высокотемпературный и выпрямляющий отжиги.

Изобретение относится к области металлургии, а именно к листу нетекстурированной электротехнической стали толщиной 0,10-0,50 мм, используемому в качестве материала для сердечника приводного двигателя и электрогенератора.

Изобретение может быть использовано в системах магнитной записи информации, органической электронике, медицине, при создании ионообменных материалов, компонентов электронной техники, солнечных батарей, дисплеев, перезаряжаемых батарей, сенсоров и биосенсоров.

Изобретение относится к созданию анизотропных гексаферритов для миллиметрового диапазона. Техническим результатом является получение гексаферритового материала с полями анизотропии На~7-13 кЭ.

Изобретение относится к области нанотехнологий и может быть использовано в обогащении полезных ископаемых для извлечения ценных минералов, а также их очистки от магнитных примесей, регенерации магнитных суспензий при гравитационном обогащении.

Изобретение относится к области металлургии, а именно к электротехнической листовой стали (11), имеющей улучшающую электроизоляцию покрытие (14). Покрытие образовано из оксида титана или оксида тантала.

Изобретение может быть использовано при создании магнитоактивных катализаторов. Способ получения раствора магнитоактивного соединения включает конденсацию из раствора сульфата железа (II), содержащего лигносульфонаты, и раствора окислителя при их смешении.

Изобретение может быть использовано при создании магниточувствительных диодных структур, магнитных переключателей и сенсоров магнитных полей на основе ферромагнитного композита.

Изобретение относится к раствору для образования изоляционного покрытия на листе текстурированной электротехнической стали и к листу текстурированной электротехнической стали, имеющему изоляционное покрытие. Раствор для образования изоляционного покрытия на листе текстурированной электротехнической стали содержит водный раствор, полученный смешиванием фосфатного раствора и коллоидного диоксида кремния, причем коллоидный диоксид кремния представляет собой либо частицы коллоидного диоксида кремния, поверхностно модифицированные алюминатом, либо раствор коллоидного диоксида кремния, содержащий алюминат. Водный раствор не содержит хрома. Лист текстурированной электротехнической стали в соответствии с аспектом настоящего изобретения обладает превосходными магнитными свойствами благодаря высокому растягивающему напряжению, а также превосходной электрической изоляцией, термостойкостью, химической стойкостью и химической безопасностью, поскольку лист текстурированной электротехнической стали имеет плотное изоляционное покрытие, которое образовано при использовании раствора для образования изоляционного покрытия. 2 н. и 5 з.п. ф-лы, 9 ил., 3 табл.

Изобретение относится к электротехнике, к трансформаторостроению и может найти применение при изготовлении обмоток трансформаторов и реакторов. Технический результат состоит в расширении функциональных возможностей при относительной простоте изготовления. Обмотка индукционного устройства содержит n последовательно соединенных катушек, каждая из которых содержит m параллельных проводников, расположенных в осевом направлении. По меньшей мере, один из m параллельных проводников закреплен на наружном торце катушки. Введены гильзы из электропроводящего материала, размещенные на внутреннем диаметре каждой четной катушки, а также на наружных переходах между четной и нечетной катушками, обеспечивая соединение соответствующих катушек между собой. В способе изготовления обмотки индукционного устройства осуществляют намотку n катушек m параллельными проводниками, поступающими с намоточных барабанов, и выполняют последовательное соединение катушек. Перед намоткой катушек формируют переходы между нечетной и четной катушками, наматывают нечетную (первую) катушку в одном направлении, отрезают концы (m-m1) проводников, a m1 проводниками выполняют один виток, располагая его на торце первой катушки, отрезают m1 проводников, наматывают следующую четную катушку в противоположном направлении. Затем процедуру намотки повторяют аналогичным образом, включая предпоследнюю катушку. Последнюю катушку выполнять аналогично первой. Затем выполняют наружные переходы при помощи гильз из электропроводящего материала, где n - любое целое число, больше двух; m - любое целое число, больше единицы, m1 - любое целое число, 1≤m1<m. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области получения постоянных магнитов и может быть использовано при производстве высокоэнергетических постоянных магнитов на основе редкоземельных (РЗМ) сплавов и, в частности, на основе неодима, железа и бора (сплав Nd-Fe-B). Способ получения высококоэрцитивных магнитов из сплавов на основе Nd-Fe-B включает дробление базового сплава, смешивание сплава и добавки для коррекции состава сплава, прессование смеси порошков в магнитном поле, спекание заготовки и охлаждение, при этом добавкой для коррекции состава сплава являются гидриды лигатуры РЗМ-Fe, а спекание магнита производят в вакууме или при остаточном давлении в течение 1-2 ч. Изобретение позволяет увеличить коэрцитивную силу и остаточную индукцию получаемых магнитов. 1 з.п. ф-лы, 2 ил.

Изобретение касается способа изготовления магнитной керамики. Способ включает следующие этапы: компактирование в пресс-форме порошковой композиции, содержащей смесь железа и BN, выдавливание компактированной массы из пресс-формы, размещение в кальцийкарбонатном контейнере с графитовым нагревателем, обработка при 2-8 ГПа и 1000-2000°С. Изобретение позволяет получить магнитомягкое керамическое изделие, обладающее превосходными магнитными, электрическими и механическими свойствами. 2 н. и 11 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к химической композиции, чувствительной к температуре и пригодной для получения датчиков для тестирования условий хранения продуктов, которые требуют постоянного хранения при низкой температуре. Описана намагничиваемая химическая композиция, содержащая по меньшей мере один полярный растворитель, выбранный из группы, содержащей спирт с количеством атомов углерода от C8 до С14, политетрагидрофуран, или их смесь; ферромагнитный компонент, содержащий множество намагничиваемых частиц Стабильного Однодоменного (СОД) типа, выбранных из группы, содержащей магнетит, замещенный магнетит и/или феррит в количестве от 5 до 15% от объема растворителя, и имеющих диаметр от около 20 до 50 нм; и полимерный компонент, включающий в себя поливинилбутираль (ПВБ) или сополимер поливинилбутираль-виниловый спирт-винилацетат в процентном отношении от 3 до 15% от объема растворителя, причем упомянутый полимерный компонент имеет форму сети или сетки и ограничивает множество ячеек или зон, в каждой из которых размещена одна из упомянутых частиц, погруженная в упомянутый полярный растворитель. Также описаны способ получения композиции, микрокапсула, чернила и способ проверки или анализа продукта. Технический результат: получена новая чувствительная композиция, чувствительная к изменениям температуры. 5 н. и 11 з.п. ф-лы, 10 ил.

Изобретение может быть использовано в электротехнике, машиностроении и химической промышленности. Способ получения магнитной жидкости на органической основе, не смешивающейся с водой, включает введение магнитной жидкости на водной основе, содержащей магнитные наночастицы Fе3O4, в жидкость на органической основе, не смешивающуюся с водой. Перемешивают и отстаивают водно-органическую смесь до появления четкой границы раздела между водной и органической составляющими. При помощи магнитного поля перемещают магнитные наночастицы Fе3O4 в органическую основу. Выдерживают гетерогенную систему до разделения магнитной жидкости на органической основе, не смешивающейся с водой, и водной основы. Удаляют водную основу и проводят сушку магнитной жидкости, содержащей магнитные наночастицы Fе3O4, на органической основе с помощью осушающих реагентов. Изобретение позволяет получить магнитную жидкость с улучшенными эксплуатационными характеристиками высокопроизводительным, простым и экономичным способом. 1 ил.

Изобретение относится к электротехнической листовой стали с изоляционным покрытием с превосходными штампуемостью и адгезионными свойствами. Электротехническая листовая сталь с изоляционным покрытием содержит электротехническую листовую сталь и изоляционное покрытие, сформированное на электротехнической листовой стали. Изоляционное покрытие содержит Si и Fe. Масса Si в изоляционном покрытии в пересчете на SiO2 составляет от 50 до 99% от общей массы покрытия. Мольное отношение (Fe/Si) содержания Fe к содержанию Si в изоляционном покрытии составляет от 0,01 до 0,6. Изоляционное покрытие может содержать органическую смолу и/или смазку, причем в изоляционном покрытии отношение (С (органическая смола + смазка)/(Fe2O3 + SiO2)) массы в покрытии органической смолы и/или смазки в пересчете на С к сумме массы в покрытии Fe в пересчете на Fe2O3 и массы в покрытии Si в пересчете на SiO2 составляет от 0,05 до 0,8. 1 з.п. ф-лы, 1 ил., 5 табл.

Изобретение относится к области теплообменной техники, а именно к способу обработки магнитореологической жидкости-теплоносителя для холодильных и кондиционерных систем. Магнитореологический теплоноситель включает микрочастицы карбонильного железа, поверхность которых обработана поверхностно активным веществом, и жидкость, выбранную из ряда одноатомных и многоатомных спиртов, воды, их смесей и кремнийорганических жидкостей. Указанный теплоноситель подвергают совместному воздействию постоянным магнитным полем напряженностью от 2 до 700 Э и переменным магнитным полем напряженностью от 0,2 до 40 Э при частоте от 0,2 до 50 Гц в диапазоне воздействия постоянным магнитным полем от 2 до 60 Э и переменным магнитным полем напряженностью от 20 до 800 Э при частоте от 30 до 120 Гц в диапазоне воздействия постоянным магнитным полем от 20 до 700 Э. Изобретение обеспечивает повышение эффективности теплопередачи путем регулирования теплопроводности теплоносителя. 1 ил., 4 табл., 4 пр.

Изобретение относится к радиоэлектронной технике и касается создания гексаферритовых магнитомягких материалов для индуктивных элементов дециметрового и сантиметрового частотного диапазонов. Гексаферритовый материал содержит следующее соотношение компонентов, вес.%: BaO - 18,21÷18,23; CoO - 5,95÷7,45; TiO2 - 0,10÷1,60; Fe2O3 - остальное. Изобретение позволяет получить магнитомягкий гексаферритовый материал с магнитной проницаемостью μн=10±2. 2 табл.

Изобретение относится к электротехнике. Техническим результатом является уменьшение индуктивности рассеяния, снижение сопротивления провода, увеличение импульсного тока, улучшение теплоотвода от внутренних витков обмотки, повышение механической прочности конструкции трансформатора. Трансформатор содержит магнитопровод, две первичные, две или четыре вторичные обмотки, токопроводящие жесткие пластинчатые перемычки, жесткие токовыводящие шины. Вторичные обмотки выполнены в виде спирали Архимеда из проводника ленточного типа, намотаны встречно друг к другу. Магнитопровод выполнен с поперечным сечением ступенчатой формы, близкой к эллипсу или кругу, на его участках, соответствующих стержням. Обе первичные обмотки установлены бескаркасной намоткой проводника с натяжением на каждый участок магнитопровода, соответствующий стержню, оказывая стягивающее усилие на магнитопровод. На каждую первичную обмотку установлена одна вторичная обмотка или две вторичные обмотки бескаркасной намоткой проводника с натяжением, максимально покрывая первичную обмотку. Обмотки выполнены из алюминиевого проводника с керамической изоляцией. Магнитопровод с обмотками расположен между токовыводящими шинами. Первичные обмотки одними концами соединены последовательно. Концы вторичных обмоток соединены с токовыводящими шинами, стягивая шины друг к другу с возможностью возникновения механического контакта. Внешние концы вторичных обмоток жестко соединены с первой токовыводящей шиной, а их нутренние концы жестко соединены токопроводящими пластинчатыми перемычками со второй токовыводящей шиной. Каждая пластинчатая перемычка соединена с проводником ленточного типа по длинному краю с возможностью примыкания к короткому краю - началу обмотки, и расположена параллельно плоскости кривой намотки витков и соединена со второй токовыводящей шиной. 10 з.п. ф-лы, 5 ил.
Наверх