Дискретный свч фазовращатель

Изобретение относится к области СВЧ радиотехники, в частности к проходным дискретным полупроводниковым фазовращателям. Дискретный СВЧ фазовращатель проходного типа, согласованный с волновым сопротивлением ρ0 основной линии передачи, выполнен на основе соединения отрезков линий передачи и управляющих элементов, преимущественно диодов. Вход и выход фазосдвигающей цепи фазовращателя соединены через управляющий элемент. Фазосдвигающая цепь фазовращателя содержит фильтр нижних частот в виде последовательного соединения трех (в случае дискрета, большего 90°) или двух (в случае дискрета, меньшего или равного 90°) отрезков линии передачи, к местам (точкам) соединения которых подключены шлейфы (шлейф), причем их свободные концы (концы центральных проводников) соединены по СВЧ с корпусом (экраном) через управляющие элементы, геометрические параметры упомянутых отрезков и шлейфов (шлейфа) выбраны из условия обеспечения четвертьволновой электрической длины каждой линии передачи от входа (выхода) фазосдвигающей цепи до ближайшей точки соединения с корпусом (экраном), а волновые сопротивления этих отрезков превышают ρ0. Технический результат - снижение паразитных потерь пропускания. 3 з.п. ф-лы, 3 ил.

 

Изобретение относится к электронной технике СВЧ, в частности к проходным дискретным полупроводниковым фазовращателям, и может быть использовано в фазовых модуляторах, фазокомпенсаторах, фазированных антенных решетках и других радиотехнических устройствах для управления фазой электромагнитных колебаний.

Одной из основных характеристик проходных фазовращателей, определяющих сферу их применения, являются паразитные потери пропускания.

Известны схемы двухканальных фазовращателей, работа которых основана на поочередном включении посредством переключательных элементов (p-i-n диодов, полевых транзисторов, микроэлектромеханических переключателей) по команде управления в линию передачи сигнала двух фазосдвигающих цепей (ФСЦ), разница электрических длин которых обеспечивает необходимый фазовый дискрет за счет конечной скорости распространения электромагнитной волны в линии (см. Хижа Г.С. и др. СВЧ фазовращатели и переключатели: особенности создания на p-i-n диодах в интегральном исполнении. М.: Радио и связь, 1984, с. 168). Однако в состав традиционных схем входят переключатели каналов, содержащие минимум по два переключательных элемента, что приводит к неизбежному увеличению потерь, поскольку паразитные потери пропускания обусловлены в основном потерями в этих элементах.

Наиболее близким к заявляемому фазовращателю является фазовращатель петлевого типа (см. Чижов А.И. Метод кратных импедансов в исследовании СВЧ цепей. М.: Радиотехника, 2014, с. 147-147). Топология такого устройства представлена на фиг. 1. ФСЦ известного фазовращателя представляет собой участок линии передачи 2 длиной с волновым сопротивлением ρ0, совпадающим с волновым сопротивлением линии 1, в которую включен фазовращатель, а к середине этого участка через диод D2 подключен короткозамкнутый отрезок линии 3. Вход и выход ФЦС соединены через последовательно включенный диод D1. Вход (выход) ФЦС фактически совпадает с местом (точкой) «Т» присоединения к ней управляющего элемента (диода).

При закрытых диодах СВЧ сигнал проходит без отражений по участку 2 линии 1. При этом диоды D1 и D2 имеют большое по сравнению с ρ0 сопротивление и не оказывают влияния на прохождение сигнала. В режиме открытых диодов СВЧ сигнал проходит через диод D1, а участок (отрезок) 2 можно представить в виде подключенного к линии 1 шлейфа длиной 0,5 и волновым сопротивлением 0,5ρ0. Данный шлейф с отрезком линии передачи 3 имеет электрическую длину ~λ/4 (представляет собой четвертьволновый резонатор) и практически не оказывает влияния на фазу СВЧ сигнала (λ - длина волны в линии передачи).

По сравнению с двухканальным фазовращателем число переключательных (управляющих) элементов в фазовращателе петлевого типа удается уменьшить до двух, однако его потери пропускания остаются значительными, что можно подтвердить численной оценкой их величины.

При оценке паразитных потерь пропускания известного фазовращателя в режиме открытых диодов можно считать, что потери в линиях передачи пренебрежимо малы, диоды в открытом состоянии представляют собой активное сопротивление RS=2 Ом и ρ0=50 Ом. Потери в диоде D1 зависят только от соотношения RS и ρ0 и составляют ~0,17 дБ. Потери в диоде D2 зависят также от соотношения длин и волновых сопротивлений отрезков 2 и 3.

Для дискрета 180° электрическая длина отрезка 2 составит ~λ/2, а длина отрезка 3 - ноль. Эквивалентное сопротивление, параллельно подключенное к линии 1, шлейфа длиной λ/4 с волновым сопротивлением 0,5ρ0, нагруженного на RS, составит ρ02/4RS. Соответственно, потери сигнала в этом сопротивлении (т.е. в диоде D2) составят ~0,64 дБ. Суммарные потери в диодах D1 и D2 составят ~0,81 дБ.

Для дискрета 90° (в режиме открытых диодов) электрическая длина участка (отрезка) 2 составит λ/4. Если допустить, что волновое сопротивление отрезка 3 равно 0,5 ρ0, то электрические длины сложенного вдвое отрезка 2 и отрезка 3 одинаковы. Используя известное выражение для входного импеданса длинной линии, нагруженной на сопротивление, отрезки линии 2,3 и диод D2 можно заменить подключенным параллельно линии 1 эквивалентным сопротивлением, величиной ρ02/2RS. Соответственно потери в диоде D2 составят ~0,33 дБ, а в целом потери фазовращателя в диодах D1 и D2 для дискрета 90° составят ~0,5 дБ.

Техническим эффектом, на достижение которого направлено предлагаемое решение, является снижение паразитных потерь пропускания.

Этот эффект достигается тем, что в дискретном СВЧ фазовращателе проходного типа, согласованном с волновым сопротивлением ρ0 основной линии передачи, выполненном на основе соединения отрезков линии передачи и управляющих элементов, преимущественно диодов, вход и выход фазосдвигающей цепи которого соединены через управляющий элемент, фазосдвигающая цепь фазовращателя содержит фильтр нижних частот в виде последовательного соединения трех (в случае дискрета более 90°) или двух (в случае дискрета, меньшего или равного 90°) отрезков линии передачи, к местам (точкам) соединения которых подключены шлейфы (шлейф), причем их свободные концы (концы центральных проводников) соединены по СВЧ с корпусом (экраном) через управляющие элементы, геометрические параметры упомянутых отрезков и шлейфов (шлейфа) выбраны из условия обеспечения четвертьволновой электрической длины каждой линии передачи от входа (выхода) фазосдвигающей цепи до ближайшей точки соединения с корпусом (экраном), а волновые сопротивления этих отрезков превышают ρ0.

Между как входом, так и выходом фазовращающей цепи и примыкающими к ним высокоомными отрезками могут быть последовательно включены отрезки линии передачи с волновым сопротивлением ρ0.

В случае дискрета, меньшего или равного 90°, между управляющим элементом и корпусом (экраном) последовательно по СВЧ может быть включен отрезок линии передачи.

К месту (точке) соединения каждого из упомянутых выше шлейфов с соответствующим управляющим элементом может быть подключен разомкнутый отрезок линии передачи.

Важной особенностью предложенного фазовращателя является использование в его фазосдвигающей цепи ФНЧ, представляющего собой последовательно-параллельное соединение отрезков линии передачи. Такие фильтры при изменении в достаточно широких пределах длин и соответствующих волновых сопротивлений этих отрезков могут сохранять свои характеристики, в т.ч. электрическую длину, определяющую сдвиг фазы. Данное свойство обеспечивает возможность снижения потерь фазовращателя за счет реализации необходимых значений длин и волновых сопротивлений составляющих ФНЧ элементов.

Изобретение поясняется чертежами.

На фиг. 2а представлено схематическое изображение предлагаемого фазовращателя с дискретом меньше или равным 90°, где:

1 - основная линия передачи;

2, 2' - отрезки линии передачи;

3 - шлейф;

D1 и D2 - управляющие элементы (диоды).

Фазовращатель, представленный на фиг. 2а, включен в основную линию передачи 1 с волновым сопротивлением ρ0, вход и выход его ФСЦ соединены через диод D1. ФСЦ включает ФНЧ, выполненный в виде двух примерно одинаковых последовательно соединенных отрезков линии передачи 2 и 2' с волновым сопротивлением ρ1 больше ρ0, к месту (точке) соединения которых подключен шлейф 3 с волновым сопротивлением ρ2, и его свободный конец (конец центрального проводника) соединен с корпусом через диод D2. Электрическая длина линии передачи от входа (выхода) ФСЦ до соединения с корпусом через отрезки 2(2'), 3 и диод D2 приблизительно равна λ/4 (λ - длина волны в отрезке линии передачи).

Такой фазовращатель работает следующим образом.

При выключенных диодах СВЧ сигнал проходит по ФСЦ, в которой отрезки линии 2(2') носят индуктивный характер, а отрезок 3 имеет емкостный характер. Методика расчетов параметров образованного этими отрезками и шлейфом ФНЧ известна. Диоды D1 и D2 представляют собой большое сопротивление и не влияют на коэффициент передачи. При включении управляющего сигнала диоды будут иметь сопротивление RS. В этом случае СВЧ сигнал проходит через диод D1. ФСЦ можно представить в виде короткозамкнутого через Rs отрезка линии передачи с электрической длиной, равной приблизительно λ/4, подсоединенного к линии передачи 1, который представляет большое сопротивление по сравнению с ρ0 и не влияет на прохождение СВЧ сигнала.

Рассматриваемая схема эффективна, если ФНЧ в ФСЦ имеет фазовый сдвиг, близкий или превосходящий величину заданного дискрета фазовращателя. Изменяя ρ1 и ρ2 отрезков, а также соотношения их длин, можно реализовать фазовращатель с фазовым сдвигом до 90°.

Для увеличения полосы пропускания фазовращателя целесообразно включить в состав ФСЦ на входе и выходе отрезки линий передачи 4 с волновым сопротивлением ρ0, при этом суммарная электрическая длина отрезков 2(2'), 3, 4 должна быть приблизительно равна λ/4. Такой фазовращатель представлен на фиг. 2б.

В некоторых случаях для разрядов с малыми дискретами целесообразно между диодами D2 и корпусом (экраном) установить отрезок проводника (или линии передачи) 5 в связи с ограниченными технологическими возможностями реализации сопротивлений более 100 Ом, как указано на фиг. 2в. Длина этого отрезка зависит от величины дискрета фазовращателя, но и в этом случае суммарная электрическая длина отрезков 2(2'), 3, 4, 5 должна быть приблизительно равна λ/4.

При реализации фазовращателя может оказаться, что расчетная суммарная электрическая длина отрезков 2(2') и 3 при максимальных волновых сопротивлениях может превзойти λ/4. В этом случае к месту (точке) соединения отрезка 3 и диода D2 можно присоединить дополнительную емкость в виде отрезка линии передачи, при которой реализуется необходимая характеристика ФНЧ (см. фиг. 2г).

На фиг. 3а представлена схема фазовращателя для дискретов более 90°, где:

1 - основная линия передачи;

2, 5, 2' - отрезки линии передачи в составе ФНЧ;

3, 3' - шлейфы;

D1, D2, D3 - управляющие элементы (диоды).

ФНЧ в составе такого фазовращателя выполнен в виде трех последовательно соединенных отрезков линии передачи 2, 5, 2' с волновым сопротивлением более ρ0, к местам (точкам) соединения которых подключены шлейфы 3 и 3', соединенные свободными концами с корпусом (экраном) через управляющие элементы D2 и D3. Электрическая длина линии передачи, включающая отрезки 2 и 3 (2' и 3') на фиг. 3а и 2, 3, 4 (2', 3', 4') на фиг. 3б, 3в приблизительно равна четверти длины волны в этой линии передачи. Отрезки 4, 4' и 6, 6' аналогичны конструктивно и по назначению отрезкам 4 и 6 на фиг. 2б и 2г соответственно. Очевидно, что схема на фиг. 3а должна быть приблизительно симметричной, а отрезки 2 и 2' и шлейфы 3 и 3' по размерам попарно приблизительно равны между собой.

Для оценки потерь пропускания предлагаемого фазовращателя для дискрета 90° в случае открытых диодов D1 и D2 по схеме на фиг. 2а удобно выбрать ρ1=2ρ2. В этом случае отрезки 2(2') и 3 можно представить в виде шлейфа с электрической длиной ~λ/4 и волновым сопротивлением ρ2. Следует отметить, что в реальной конструкции длина отрезка 2(2') существенно меньше длины отрезка 3. Эквивалентное сопротивление этого шлейфа, подключенного к линии 1 и нагруженного на сопротивление RS, составляет ρ22/RS. Для значения ρ0=50 Ом, RS=2 Ом, ρ2=80 Ом потери в диоде D1 составляют ~0,17 дБ, потери в диоде D2~0,06 дБ, общие потери фазовращателя в диодах D1 и D2 составляют ~0,23 дБ, что существенно меньше, чем у фазовращателя-прототипа для дискрета 90°.

Можно также оценить потери пропускания фазовращателя для дискрета 180° в случае открытых диодов D1, D2 и D3 (фиг. 3а) при тех же условиях, что для дискрета 90°, указанных выше. Потери в диодах D2 и D3 составляют ~0,06 дБ в каждом, в диоде D1~0,17 дБ. Таким образом, общие потери фазовращателя в диодах D1, D2 и D3 составляют 0,29 дБ, что существенно ниже, чем у фазовращателя-прототипа для дискрета 180°.

Как следует из приведенных выше расчетов, выполнение отрезков передающей линии и шлейфов, образующих ФНЧ, с максимально возможным, заведомо превышающим ρ0, волновым сопротивлением и геометрическими параметрами, обеспечивающими четвертьволновую электрическую длину каждой линии передачи от входа (выхода) ФСЦ до ближайшей точки соединения с корпусом (экраном), являются необходимым условием максимального снижения потерь пропускания предлагаемого фазовращателя.

Пример реализации.

Разработан и изготовлен фазовращатель с дискретом 90°, предназначенный для работы в S-диапазоне частоты. Устройство выполнено на поликоровой подложке толщиной 0,5 мм, установленной на металлическом основании. Ширина отрезков линии передачи ~0,5 мм, высокоомных отрезков и шлейфа ~0,12 мм. В качестве переключательных элементов использованы диоды MA4L001-134 фирмы М/А-СОМ. Паразитные потери в центре полосы пропускания составляют ~0,3 дБ при токе управления 10 mA, потери при закрытых диодах составляют ~0,15 дБ.

1. Дискретный СВЧ фазовращатель проходного типа, согласованный с волновым сопротивлением ρ0 основной линии передачи, выполненный на основе соединения отрезков линий передачи и управляющих элементов, преимущественно диодов, вход и выход фазосдвигающей цепи которого соединены через управляющий элемент, отличающийся тем, что фазосдвигающая цепь фазовращателя содержит фильтр нижних частот в виде последовательного соединения трех (в случае дискрета, большего 90°) или двух (в случае дискрета, меньшего или равного 90°) отрезков линии передачи, к местам (точкам) соединения которых подключены шлейфы (шлейф), причем их свободные концы (концы центральных проводников) соединены по СВЧ с корпусом (экраном) через управляющие элементы, геометрические параметры упомянутых отрезков и шлейфов (шлейфа) выбраны из условия обеспечения четвертьволновой электрической длины каждой линии передачи от входа (выхода) фазосдвигающей цепи до ближайшей точки соединения с корпусом (экраном), а волновые сопротивления этих отрезков превышают ρ0.

2. Фазовращатель по п. 1, отличающийся тем, что между как входом, так и выходом фазосдвигающей цепи и примыкающими к ним высокоомными отрезками последовательно включены отрезки линии передачи с волновым сопротивлением ρ0.

3. Фазовращатель по п. 1, отличающийся тем, что, в случае дискрета, меньшего или равного 90°, между управляющим элементом и корпусом (экраном) последовательно по СВЧ включен отрезок линии передачи.

4. Фазовращатель по п. 1, отличающийся тем, что к месту (точке) соединения каждого из упомянутых выше шлейфов с соответствующим управляющим элементом подключен разомкнутый отрезок линии передачи.



 

Похожие патенты:

Изобретение относится к радиотехнике, в частности к технике СВЧ и антенной технике. Устройство возбуждения волны Ε01 в круглом волноводе содержит делитель мощности с N выходами, N элементов связи с круглым волноводом, равномерно расположенных в поперечном сечении на цилиндрической поверхности волновода, которые соединены с N выходами делителя мощности, вход которого является входом устройства возбуждения.

Изобретение относится к технике СВЧ и может быть использовано в спутниковой связи с поляризационным уплотнением сигналов как на земных станциях спутниковой связи, так и на спутниках связи.

Изобретение относится к электронной технике СВЧ, в частности к фазовращателям. Секция дискретного фазовращателя с цифровым управлением содержит входной направленный ответвитель со слабой связью, вход которого является входом устройства, выходной направленный ответвитель со слабой связью, выход которого является выходом устройства, ослабитель с цифровым управлением, выход которого соединен со связанным входом вторичной линии выходного направленного ответвителя, первый и второй отрезки передающих линий, третью и четвертую замкнутые на конце четвертьволновые связанные передающие линии.

Изобретение относится к радиотехнике, к частотной селекции и фильтрации радиосигналов, может быть использовано в радиолокации и в системах связи. Устройство содержит параллельно включенные полосно-пропускающие фильтры, согласованные с длительностью этой последовательности, установочные фазовращатели и сумматор.

Изобретение относится к радиотехнике СВЧ и может быть использовано в радиопередающих устройствах спутниковых систем связи и спутниковых радионавигационных систем, а также в других устройствах СВЧ для выделения сигналов в двух поддиапазонах преимущественно дециметрового и сантиметрового диапазонов длин волн.

Изобретение относится к технике СВЧ, в частности к переключателям СВЧ мощности, и может быть использовано для переключения СВЧ сигналов между каналами приема (передачи) в СВЧ приемниках (передатчиках).

Изобретение относится к области радиотехники СВЧ, в частности к фазовращателям. Дискретный фазовращатель СВЧ содержит одинаковые первый и второй отрезки линии передачи, одни концы которых соединены с входом и выходом фазовращателя соответственно, а другие соединены между собой, вход и выход фазовращателя дополнительно соединены с одними концами одинаковых третьего и четвертого отрезков линии передачи, между другими концами которых включен первый коммутирующий диод, при этом волновое сопротивление третьего и четвертого отрезков линии в два раза выше сопротивления входа и выхода.

Изобретение относится к области радиотехники СВЧ, в частности к фазовращателям. Перестраиваемый фазовращатель СВЧ содержит первый отрезок линии передачи, концы которого соединены со входом и выходом перестраиваемого фазовращателя, к середине которого подключен через перемычку разомкнутый отрезок линии передачи, к которому могут быть подключены посредством перемычек дополнительные разомкнутые отрезки линии.

Изобретение относится к технике СВЧ и может быть использовано в антенно-фидерных устройствах в качестве эквивалента антенны и оконечной согласованной нагрузки в коаксиальных и полосковых СВЧ трактах с высоким уровнем мощностей.

Изобретение относится к электронной технике, а именно к аттенюаторам. Дискретный аттенюатор СВЧ содержит входной и выходной трехдецибельные направленные ответвители, две согласованные нагрузки, подключенные к балластным выходам входного и выходного направленных ответвителей, ослабитель с цифровым управлением и отрезок полосковой линии.

Изобретение относится к области полупроводниковых изделий и может быть использовано при создании нового поколения СВЧ элементной базы и интегральных схем на основе гетероструктур широкозонных полупроводников. Технический результат: повышение надежности устройства и плотности носителей, эффективность подавления токового коллапса, повышение скорости переключения и уровня выходной мощности, ослабление процесса деградации в гетероструктуре. Технический результат достигается тем, что ограничитель мощности содержит электроды, емкостные элементы. Ограничитель мощности является псевдоморфным, изготовленным на базе гетероструктуры AlGaN/InGaN, а емкостной элемент представляет собой конденсатор. Кроме того, ограничитель мощности включает подложку из изолирующего карбида кремния, на которой последовательно размещены: буферный слой из GaN, сглаживающий буферный слой из GaN, слой из нелегированного GaN i-типа проводимости, сверхрешетка из AlXGa1-XN/GaN, буферный слой из GaN, сильнолегированный слой n-типа проводимости из AlXGa1-XN, спейсер из твердого раствора AlXGa1-XN, сглаживающий слой из GaN, канал из твердого раствора InXGa1-XN, и в интерфейсе InXGa1-XN/AlGaN гетероструктуры образован двумерный электронный газ (ДЭГ) высокой плотности, который служит нижней обкладкой конденсатора. Поверх твердого раствора InXGa1-XN размещен химически устойчивый сглаживающий слой из GaN, поверх которого нанесен слой диэлектрика из двуокиси гафния. Поверх диэлектрика размещены металлические электроды полосковой формы, которые образуют верхнюю обкладку конденсатора. При этом емкостной элемент устройства выполнен с минимальным количеством глубоких электронных ловушек (DX), а канал выполнен упруго-напряженным псевдоморфным с концентрацией InGa 15-25%. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области изготовления полупроводниковых изделий. Коммутирующее устройство является псевдоморфным, изготовленным на базе гетероструктуры AlGaN/InGaN, а емкостный элемент представляет собой конденсатор. Кроме того, коммутирующее устройство включает подложку из сапфира, на которой последовательно размещены: буферный слой из AlN, буферный слой из GaN, слой из нелегированного GaN i-типа проводимости, сверхрешетка из AlXGa1-XN/GaN, буферный слой из GaN, сильнолегированный слой n-типа проводимости из AlXGa1-XN, спейсер из твердого раствора AlXGa1-XN, сглаживающий слой из GaN, канал из твердого раствора InXGa1-XN, и в интерфейсе InXGa1-XN/AlGaN гетероструктуры образован двумерный электронный газ (ДЭГ) высокой плотности, который служит нижней обкладкой конденсатора. Поверх твердого раствора InXGa1-XN размещен химически устойчивый сглаживающий слой из GaN, поверх которого нанесен слой диэлектрика из двуокиси гафния. Поверх диэлектрика размещены металлические электроды полосковой формы, которые образуют верхнюю обкладку конденсатора. При этом емкостный элемент устройства выполнен с минимальным количеством глубоких электронных ловушек (DX), а канал выполнен упруго-напряженным псевдоморфным с концентрацией InGa 15-25%. Изобретение обеспечивает повышение надежности устройства, эффективности подавления токового коллапса, повышение скорости переключения и уровня выходной мощности, а также ослабление процесса деградации в гетероструктуре. 3 з.п. ф-лы, 3 ил.

Изобретение относится к технике высоких и сверхвысоких частот и предназначено для создания частотно-селективных устройств. Полосковый резонатор содержит две диэлектрические подложки, подвешенные между экранами корпуса, на обе поверхности которых нанесены полосковые металлические проводники, электромагнитно связанные между собой. Между подложками расположена тонкая металлическая пленка, закороченная со всех сторон по периметру на корпус, толщина которой меньше скин-слоя в металле на рабочей частоте резонатора. Техническим результатом изобретения является разрежение спектра собственных частот полоскового резонатора и увеличение протяженности полосы заграждения фильтров на его основе. 3 ил.

Изобретение относится к радиоэлектронике и измерительной технике и может быть использовано для заданного ослабления СВЧ сигнала большой мощности в широкой полосе рабочих частот. СВЧ аттенюатор содержит N последовательно включенных друг за другом каскадов, выполненных на планарных пленочных резисторах, общая площадь которых обеспечивает рассеивание заданной мощности входного высокочастотного сигнала, а значения коэффициентов передачи каждого каскада обеспечивают равномерное распределение рассеиваемой мощности в них. Все каскады выполнены в виде Т-образной структуры и расположены на общей диэлектрической подложке, при этом во всех Т-образных структурах площадь каждого пленочного резистора пропорциональна рассеиваемой на нем мощности и ширина крайних пленочных резисторов больше ширины среднего пленочного резистора, а крайние пленочные резисторы смежных Т-образных структур объединены в один общий пленочный резистор, площадь и сопротивление которого равны сумме площадей и сумме сопротивлений соответственно объединенных пленочных резисторов. Технический результат в предлагаемом СВЧ аттенюаторе заключается в упрощении конструкции за счет того, что все пленочные резисторы расположены на одной диэлектрической подложке и не применяются согласующие элементы, а также сохранении высокого уровня мощности входного высокочастотного сигнала за счет выбора площади каждого пленочного резистора пропорционально рассеиваемой на нем мощности. 5 ил., 3 табл.

Использование: для создания схем дифференциальных аттенюаторов для работы в СВЧ диапазоне. Сущность изобретения заключается в том, что интегральный аттенюатор содержит генератор дифференциального сигнала, звенья, состоящие из параллельно включенных управляемых МОП транзисторов n- и p-типа, блок управления и нагрузку, кроме того, неинвертирующая пара звеньев, состоящих из МОП транзисторов n- и p-типа, соединена с генератором дифференциального сигнала и нагрузкой напрямую, а инвертирующая пара звеньев, состоящих из МОП транзисторов n- и p-типа соединена с генератором дифференциального сигнала и нагрузкой перекрестно; где регулировка сопротивлений МОП транзисторов, входящих в звенья, осуществляется блоком управления, при этом сопротивление одной пары звеньев МОП транзисторов возрастает, а другой падает. Технический результат: обеспечение возможности расширения функциональных возможностей аттенюаторов, выполненных по КМОП технологии, снижения потерь при прямом прохождении сигнала, увеличения динамического диапазона, расширения полосы рабочих частот, уменьшения фазовых искажений при переключении уровня аттенюации. 2 ил., 1 табл.

Изобретение относится к интегральной оптике. Способ пространственного разделения оптических мод ортогональных поляризаций в планарной волноводной структуре, заключающийся в том, что излучение лазера вводят в четырехслойную планарную направляющую структуру, состоящую из подложки, покровной среды, волноводного высокопреломляющего магнитооптического слоя, намагниченного до насыщения в плоскости границы раздела, в направлении, поперечном распространению света, волноводного нанокомпозитного слоя с расположенным на его поверхности решеточным элементом связи для ввода излучения. Настройка на заданную длину волны, заданные углы ввода и разделение волноводных мод ортогональных поляризаций осуществляется путём подбора отношений толщин диэлектрических нанослоёв двух типов в нанокомпозитном слое. Технический результат заключается в повышении эффективности поляризационного разделения света в планарных направляющих структурах интегральной оптики. 3 з.п. ф-лы, 3 ил.

Изобретение относится к СВЧ-радиотехнике, в частности к фильтрам. Микрополосковый широкополосный фильтр содержит диэлектрическую подложку, на одну сторону которой нанесено заземляемое основание, а на вторую - полосковые проводники, электромагнитно связанные между собой. Узкие и широкие прямоугольные полосковые проводники соединены друг с другом в форме нерегулярного меандра, его крайние узкие проводники со стороны свободных концов заземлены на основание, причем входной и выходной порты фильтра подключены кондуктивно к крайним широким проводникам меандра через отрезки микрополосковых линий со скачком волнового сопротивления. Технические результаты – расширение полосы заграждения, повышение крутизны низкочастотного склона частотной характеристики, расширение рабочей полосы пропускания. 2 ил.

Изобретение относится к радиотехнике. СВЧ-мультиплексор содержит устройство общего вывода СВЧ-сигнала, суммирующий резонатор, параллельно расположенные полосно-пропускающие фильтры. Суммирующий резонатор представляет собой закороченный на концах отрезок передающей линии, а каждый из полосно-пропускающих фильтров выполнен в виде цепочки связанных резонаторов. Резонаторы каждой цепочки полосно-пропускающего фильтра расположены с образованием двух ярусов. Устройства раздельного ввода СВЧ-сигналов и устройство вывода СВЧ-сигнала выполнены в виде волноводов, отделенных от соответствующих входных резонаторов цепочек полосно-пропускающих фильтров и суммирующего резонатора, поперечной диафрагмой с щелями связи. Волновод каждого из устройств раздельного ввода СВЧ-сигналов снабжен резонансным элементом в виде стержня из диэлектрического материала, размещенным на поперечной диафрагме волновода, и регулировочными элементами перестройки частоты и связи, размещенными в стенке волновода. Резонансный элемент ориентирован вдоль направления распространения СВЧ-сигнала и выполнен с возможностью настройки на граничные частоты полосы пропускания мультиплексора. Технические результаты - уменьшение массы и габаритов, повышение уровня мощности выходного СВЧ-сигнала. 13 з. п. ф-лы, 12 ил.

Изобретение относится к области антенной техники, в частности к селекторам радиоволн. Частотно-поляризационный селектор содержит первый ортомодовый преобразователь, представляющий собой крестовой разветвитель, в плечах которого установлены емкостные фильтры нижних частот. На выходе первого ортомодового преобразователя установлен поляризатор Q-диапазона, реализованный на круглом волноводе с пазом с двумя ортогональными выходами. Фильтры соединяются со вторым ортомодовым преобразователем посредством четырех п-образных волноводных секций равной длины, один выход второго ортомодового преобразователя короткозамкнут, ко второму выходу через трансформатор с круглого на квадратное сечение присоединен септум-поляризатор с двумя ортогональными выходами. В первом ортомодовом преобразователе, в узле четырехкратного разветвления, внесены множественные изменения сечения круглого волновода, а также резонансная диафрагма, введенная в область перехода на волновод меньшего диаметра. В плечах ортомодового преобразователя устанавливаются широкополосные емкостные фильтры нижних частот с переменной толщиной диафрагм. В Q-диапазоне частот поляризатор реализован на круглом волноводе с регулируемым пазом. Технический результат - возможность реализации широкополосного частотно-поляризационного селектора в высоких диапазонах частот и разнесенных между собой Ka- и Q-диапазонов частот более чем на октаву. 1 з.п. ф-лы, 6 ил.

Изобретение относится к радиотехнике и может быть использовано в технике СВЧ, в частности, в технике спутникового телевидения для приема волн с круговой поляризацией поля. Поляризатор состоит из отрезка круглого волновода и расположенной в нем фазосдвигающей секции, выполненной в виде решетки из плоских прямоугольных проводников, расположенных на тонкой прямоугольной диэлектрической пластине. При этом один плоский прямоугольный проводник выполнен в виде широкого прямоугольного проводника, расположенного симметрично в центральной части диэлектрической пластины, а на краях диэлектрической пластины расположены симметрично по меньшей мере по одному узкому прямоугольному проводнику. Причем волноводный поляризатор выполнен с возможностью совмещения емкостной проводимости узких прямоугольных проводников с эквивалентной емкостной проводимостью краев диэлектрической пластины. Технический результат заключается в обеспечении высокого уровня развязки по поляризации в рабочем диапазоне частот, приемлемого продольного габарита, простоты конструкции и технологичности. 3 ил.
Наверх