Способ извлечения благородных металлов из растворов

Способ осаждения благородных металлов может быть использован в технологиях переработки сырья драгоценных металлов, в частности после стадии цианистого выщелачивания золота и серебра из руд и концентратов. Показатели осаждения благородных металлов улучшаются за счет сочетания процессов электроэкстракции и цементации. При этом потенциал катода на стадии электроэкстракции должен быть отрицательнее - 0,6 В относительно н.в.э., чтобы обеспечить химическую устойчивость осаждающего материала и в то же время гарантировать катодное осаждение благородных металлов. Техническим результатом является то, что скорость осаждения в результате увеличивается в 2-3 раза, степень извлечения на 4-5%, а содержание в конечном продукте в 3-4 раза по сравнению с известными методами. 1 з.п. ф-лы, 2 табл., 1 пр.

 

Изобретение относится к металлургии благородных металлов, в частности к способам извлечения золота и серебра из цианистых растворов.

Наибольшее применение на практике для извлечения благородных металлов (золота) из цианистых растворов нашел метод цементации, включающий контактирование золотосодержащего раствора с металлическим цинком или алюминием /1. Масленицкий И.Н., Чугаев Л.Г. Металлургия благородных металлов. - М.: Металлургия, 1987. - 366 с./. Способ позволяет эффективно извлекать золото из бедных растворов, режимы хорошо отработаны. Вместе с тем, данный способ требует дополнительных операций подготовки растворов и сопровождается высоким расходом цементирующего металла.

Меньшее распространение для извлечения золота из относительно бедных растворов получила сорбция (2. Барченков В.В. Технология гидрометаллургической переработки золотосодержащих флотоконцентратов с применением активных углей. Издательство: Поиск, 2004. Барченков).

Известны электролитические методы извлечения металлов из бедных технологических растворов и сточных вод. Данные методы основаны на применении пластинчатых металлических, и чаще, объемных катодов из стальной ваты, углеродных волокон, гранулированных структур и пакетов металлических сеток и сводятся к просачиванию обрабатываемых растворов через электролизные ванны, либо только через катодные блоки (3. Меретуков М.А., Орлов A.M. Металлургия благородных металлов. Зарубежный опыт. - М.: Металлургия, 1990. - 416; 4. Трехмерные электроды в процессах извлечения металлов из промышленных стоков: Обзорная информация ЦНИИЭИ ЦМ. - М., 1987, с. 21-34; 5. А.с. СССР №№1134621, 619551; 6. Патенты РФ №№2086707, 2103417, 2178017, 2286404, 2324770, 2404927; заявка 20004631, патент US 4276147). Разработано множество конструктивных вариантов реализации данного способа, условия электроэкстракции оптимизированы применительно к свойствам растворов. Основным преимуществом электрохимического извлечения благородных металлов является сниженные затраты на вспомогательные материалы. В качестве недостатка следует отметить невысокую скорость и недостаточную степень извлечения благородных металлов.

Известен способ извлечения благородных металлов из водных растворов, выбранный прототипом и включающий пропускание водных растворов, содержащих ионы благородных металлов, через углеродную ткань с нанесенным на нее слоем проводящего полимера - поли-3,4-этилендиокситиофена или полианилина, способного к химическому восстановлению ионов благородных металлов, который электрически поддерживают в активном состоянии. Восстановление благородных металлов ведут при контакте электросорбционного углеродного материала с водным раствором в проточном режиме со скоростью подачи раствора 10-20 мл в мин на 1 см2 электросорбционного углеродного материала, измеряют концентрацию извлекаемого металла в растворе и повторяют процесс восстановления благородных металлов многократно (7. Патент РФ 2404927).

По сути и по факту данный метод представляет собой способ электрохимически управляемой электросорбции ионов электроположительных металлов, в частности благородных металлов (золота, палладия, серебра), сочетающий в себе преимущества извлечения металлов в материал фильтра-сорбента, а не только осаждения на поверхности электродов, как это имеет место в случае электролитического выделения металлов. По утверждениям авторов способ прототипа обеспечивает повышение емкости сорбирующего материала, эффективность извлечения и металлическое состояние извлекаемых металлов, что упрощает последующее выделение (получение) металлов.

Недостатком прототипа является недостаточные скорость и полнота осаждения, а также невысокое содержание благородных металлов в конечном продукте.

Настоящее изобретение направлено на увеличение скорости и полноты осаждения золота, а также повышение содержания благородных металлов в конечном продукте.

Технический результат заключается в сочетании электрохимического и химического осаждения металлов, проводимого последовательно на одном осаждающем материале.

Указанная задача достигается при использовании способа извлечения благородных металлов из растворов, включающего пропускание растворов через осаждающий материал, способный к химическому восстановлению ионов благородных металлов, который электрически поддерживают в активном состоянии, отличающегося тем, что в качестве осаждающего материала используют порошок или гранулы металла, способного восстанавливать (цементировать) ионы благородных металлов, причем осаждение ведут в проточном режиме в две стадии, на первой из которых проводят электрохимическое осаждение, при этом к осаждающему металлу прикладывают отрицательный потенциал, достаточный для обеспечения химической устойчивости осаждающего металла по отношению к исходному раствору и, одновременно, достаточный для катодного восстановления благородных металлов, а на второй стадии с использованием осаждающего материала - продукта первой стадии без прикладывания потенциала ведут химическое восстановление (цементацию) ионов благородных металлов. В частном случае, в качестве осаждающего металла используют цинк или (и) алюминий, а катодное осаждение благородных металлов ведут в проточном режиме при потенциале отрицательнее - 0,6 В относительно н.в.э., при этом скорость подачи раствора составляет 30-50 мл в мин на 1 см2 геометрической площади катода.

Доказательствами определяющего влияния отличительных признаков предлагаемого способа на достижение технического результата служит совокупность теоретических основ и результатов специальных исследований.

В предлагаемом способе сочетаются два известных метода извлечения благородных металлов из растворов - электроэкстракция и цементация - в указанной последовательности. При этом на обеих стадиях осаждение ведут с использованием одного осаждающего материала. На первой стадии исходный раствор контактирует с объемным катодом электролизера, представляющего собой слой дисперсного электроотрицательного металла, контактирующего с токоподводом. В частности, для указанных целей могут быть использованы щелочно-земельные металлы, марганец, железо и др. По технологическим и экономическим причинам для рассматриваемых целей на практике используют цинк и алюминий. Целевым процессом на первой стадии является восстановление золота и серебра:

В щелочном цианистом растворе возможно химическое окисление цементирующего металла (цинка):

Непродуктивное окисление цинка предотвращается катодной поляризацией объемного катода, т.е. приданием ему такого потенциала, при котором реакция (2) исключена, но восстановление золота и серебра возможно (реакция 1). Аналогичные условия реализуются при использовании алюминия. Исследованиями установлено, что для обеспечения указанных ограничений потенциал катода должен быть отрицательнее - 0,6 В относительно н.в.э.

В целом на первой стадии большая часть благородных металлов восстанавливается за счет протекания электрического тока, при этом осаждающий металл не расходуется, эффективная рабочая площадь объемного катода не сокращается.

Важной особенностью первой стадии является электрохимическое восстановление растворенного в исходном растворе кислорода:

По ходу осаждения на первой стадии объемный катод (масса осаждающего металла) обогащается благородными металлами. Осадок благородных металлов имеет тонкодисперсный характер, сохраняет контакт с осаждающим металлом и токоподводом, поэтому эффективная площадь катода возрастает. В этих условиях скорость осаждения определяется двумя факторами: скоростью подачи исходного раствора в расчете на единицу геометрической площади катода и оптимальной степенью извлечения благородных металлов на первой стадии. Стремление извлечь металлы с максимальной степенью вступает в противоречие с длительностью процесса. Опыты показывают, что при снижении содержания благородных металлов в перерабатываемом растворе до 1-2 мг/л, эффективность электрохимического осаждения снижается, длительность данной стадии многократно увеличивается, кроме того, получают развитие непродуктивные побочные процессы, в частности выделение водорода. С целью увеличения скорости процесса в целом на первой стадии рационально извлекать благородные до указанного уровня. Установлено, что совокупность указанных выше показателей достигается при удельной скорости подачи раствора 30-50 мл в мин на 1 см2 геометрической площади катода. При большей скорости подачи степень извлечения благородных металлов в целом, включая вторую стадию, уменьшается.

На второй стадии раствор, обедненный по золоту на первой стадии, пропускают через осаждающий материал, полученный в ходе первой стадии и представляющий собой цинковый (алюминиевый) порошок, обогащенный золотом и серебром. При этом осаждающий материал не контактирует с токоподводом, в этих условиях цинк и алюминий проявляют цементирующие свойства:

Термодинамические особенности и объемный характер подобного взаимодействия обеспечивает дополнительное, более глубокое осаждение благородных металлов. Характерно, что скорость осаждения на этой стадии даже из весьма бедных растворов превосходит скорость электроэкстракции. Поэтому лимитирующей стадией процесса в целом является электроэкстракция. В ходе второй стадии цементирующий металл переходит в раствор, а получаемый осадок обогащается благородными металлами. Цементацию ведут до тех пор, пока в осаждающем материале остается активный цинк. Анализы показывают, что остаточное содержание цинка в конечном продукте не превышает 10-20%, при этом содержание благородных металлов достигает 40-60%.

При использовании в качестве осаждающих других металлов с более положительным стандартным потенциалом, чем цинк, на первой стадии золото будет осаждаться. В частности, известны методы (3) электролитического осаждения золота из цианистых растворов на железную стружку или сетку. При этом большая часть золота осыпается на дно ванны, но периодически объемный катод из железной проволоки необратимо обогащается золотом и приходится такой продукт выводить из ванны и подвергать дополнительной химической переработке. Важно, что цементационное осаждение золота из цианистых растворов без контакта с токоподводом не происходит и остаточное содержание в маточном растворе неудовлетворительно высокое.

Таким образом, совокупность отличительных признаков предлагаемого способа:

- двухстадийность способа в указанной выше последовательности - электроэкстракция и цементация;

- рекомендуемые параметры потенциала и скорости подачи раствора;

- использование в качестве осаждающих металлов цинка и алюминия обеспечивают повышение скорости осаждения благородных металлов, повышение скорости осаждения и содержания благородных металлов в конечном продукте в сравнении с показателями прототипа.

Дополнительным положительным отличием предлагаемого способа в сравнении с цементацией является упрощение технологии. В соответствии с теорией и практикой цементации золота из цианистых растворов в присутствии кислорода большая часть цинка окисляется по реакции

Для предотвращения данной непродуктивной реакции перед осаждением золота из цианистого раствора весьма глубоко удаляют кислород вакуумированием. Данная стадия существенно усложняет и удорожает цементацию. Как было отмечено выше, в соответствии с реакцией (3) на первой стадии предлагаемого способа при указанном значении потенциала (отрицательнее - 0,6 В) кислород полностью нейтрализуется под действием электрического тока, тем самым стадия обескислороживания становится ненужной.

Примером реализации предлагаемого способа служат результаты следующих опытов.

Цианистый раствор, полученный при выщелачивании гравитационных концентратов, содержал 45 мг/л золота, 23 мг/л серебра, 6,5 г/л CN-, pH 11,4. Осаждение проводили в экспериментальной установке, объемом 1 дм3, позволяющей реализовать электроэкстракцию и цементацию. Анод и катод электролизера разделены полупроницаемой мембраной. В качестве осаждающего металла использовали цинковый и алюминиевый порошки крупностью 100 мкм. Раствор с заданной скоростью с помощью дозирующего насоса подавали в катодную камеру электролизера. По ходу электролиза контролировали потенциал объемного катода. Выходящий с электроэкстракции обедненный по золоту и серебру раствор далее самотеком попадал в зону цементации. В качестве цементирующего материала использовали полупродукт, полученный целевым образом и представляющий собой цинковый (или алюминиевый) порошок, предварительно обогащенный золотом и серебром. Из растворов после первой стадии (электроэкстракции) и окончательных растворов после цементации отбирали пробы и анализировали на содержание золота и серебра. Отдельно анализировали конечный продукт на содержание благородных металлов. С использованием полученных данных рассчитывали скорость процесса, сквозную степень извлечения и содержание благородных металлов в конечном продукте.

В первой серии опытов сравнили эффективность извлечения прототипа и предлагаемого метода с использованием разных осаждающих металлов при одинаковой скорости подачи исходного раствора, при потенциале катода -0,7 В (табл. 1).

Во второй серии опытов варьировали значениями потенциала катода и скоростью подачи исходного раствора. При этом, в качестве осаждающего металла использовали цинковый порошок.

Сопоставительный анализ известных технических решений, в т.ч. способа, выбранного в качестве прототипа, и предлагаемого изобретения позволяет сделать вывод, что именно совокупность заявленных признаков обеспечивает достижение усматриваемого технического результата. Реализация предложенного технического решения за счет сочетания электроэкстракции и цементации в рекомендованных режимах позволяет увеличить скорость осаждения благородных металлов из цианистых растворов по сравнению со способом прототипа в 2-3 раза, степень извлечения золота и серебра из раствора на 4-5% и содержание в конечном продукте 3-4 раза. В рекомендуемом диапазоне параметров снижаются затраты на подготовку растворов к осаждению благородных металлов.

1. Способ извлечения благородных металлов осаждением из растворов, включающий пропускание растворов через осаждающий материал, способный к восстановлению ионов благородных металлов, отличающийся тем, что осаждение благородных металлов ведут в две стадии, при этом в качестве осаждающего материала на первой стадии используют порошок или гранулы металла, способного химически восстанавливать ионы благородных металлов, причем осаждение ведут в проточном режиме c прикладыванием потенциала к осаждаемому материалу при скорости подачи раствора 30-50 мл в мин на 1 см2 геометрической площади катода при потенциале отрицательнее - 0,6 В относительно н.в.э., а на второй стадии осаждения в качестве осаждающего материала используют продукт первой стадии без прикладывания потенциала с химическим восстановлением ионов благородных металлов.

2. Способ по п. 1, отличающийся тем, что в качестве осаждающего металла используют цинк или (и) алюминий.



 

Похожие патенты:

Группа изобретений относится к медицине, а именно к промышленному приготовлению антисептических средств медицинского назначения. Предложено антисептическое средство, включающее в себя наночастицы закаленного серебра в количестве от 0,01 до 0,05 мас %, основу, представленную вязкотекучим веществом и воду количеством не выше 5 мас.

Изобретение относится к цветной металлургии. Установка содержит электролитическую камеру, анодные и катодные токоподводы, анодную корзину для загрузки серебросодержащего сплава, узел колебаний и размещенную внутри термостата емкость для электролита с перистальтическим насосом для циркуляции электролита.

Изобретение относится к порошковой металлургии. Мелкодисперсный порошок серебра получают электролизом раствора азотнокислого серебра с концентрацией серебра 15-60 г/дм3 и свободной азотной кислоты 5-20 г/дм3 при постоянном токе плотностью 1,5-2,0 А/дм2.

Изобретение относится к металлургии благородных металлов и может быть использовано на предприятиях вторичной металлургии по переработке радиоэлектронного лома и при извлечении золота или серебра из отходов радиоэлектронной промышленности.
Изобретение может быть использовано при переработке вторичного сырья, включающего отработанные катализаторы, содержащие металлы платиновой группы и рений, и концентраты.
Изобретение относится к металлургической отрасли, в частности к способу выделения серебра из медного серебросодержащего сплава в процессе электролитического получения меди.
Изобретение относится к металлургии благородных металлов, в частности к аффинажу золота. Способ переработки сплава лигатурного золота, содержащего не более 13% серебра и не менее 85% золота, включает электролиз с растворимыми анодами из исходного сплава с использованием в качестве электролита солянокислого раствора золотохлористоводородной кислоты (HAuCl4) с избыточной кислотностью по НСl 70-150 г/л.

Способ извлечения благородных металлов из упорного сырья включает стадию электрообработки пульпы измельченного сырья в хлоридном растворе и последующую стадию извлечения товарных металлов, в котором обе стадии проводят в реакторе с использованием по меньшей мере одного бездиафрагменного электролизера.
Изобретение относится к металлургии благородных металлов и может быть использовано для получения цветных, благородных металлов и их сплавов, получаемых при утилизации электронных приборов и деталей, а также для переработки бракованных изделий.
Изобретение относится к гидрометаллургии благородных металлов, в частности к способу электрохимического извлечения серебра из серебросодержащих токопроводящих отходов, и может быть использовано при переработке различных видов полиметаллического сырья (лом радиоэлектронной и вычислительной техники, отходы электронной, электрохимической и ювелирной промышленности, концентраты технологических переделов).
Изобретение относится к способу переработки медно-ванадиевой пульпы процесса очистки тетрахлорида титана. Способ включает отгонку тетрахлорида титана из медно-ванадиевой пульпы с получением кубового остатка .

Изобретение относится к области гидрометаллургии при использовании для извлечения металлов в горно-металлургической и химической промышленности, а также в сельском хозяйстве и при очистке стоков.
Изобретение относится к способу переработки медно-ванадиевых отходов процесса очистки тетрахлорида титана. Твердые медно-ванадивые отходы выщелачивают водой с получением медно-ванадиевой пульпы, в которую подают гипохлорит кальция или осветленную пульпу газоочистных сооружений титано-магниевого производства с концентрацией активного хлора, равной 15-90 г/дм3, при соотношении гипохлорита кальция к медно-ванадиевой пульпе, равном (1,5-2,0):1.

Изобретение относится к области гидрометаллургии благородных металлов и может быть использовано для извлечения серебра из щелочных цианистых растворов цементацией.

Изобретение относится к способу извлечения никеля из его растворов цементацией. Способ включает цементацию никеля путем пропускания раствора соли никеля через порошок восстановленного железа.
Изобретение относится к металлургии цветных металлов, в частности к извлечению меди из бедных растворов. Способ включает осаждение меди контактированием раствора с медистым клинкером.
Изобретение относится к способу получения золота из мелкодисперсных частиц золотосодержащей породы. .

Изобретение относится к области гидрометаллургии молибдена и может быть использовано для извлечения, концентрирования и очистки молибдена от элементов-спутников (Fe3+, Cu2+, Zn2+, Ni2+, Co2+ , Al3+, Sn4+, Sb3+, РЗЭ 3+ и др.) при переработке различных жидких и твердых молибденсодержащих отходов и промпродуктов.

Изобретение относится к способу выделения способных к поглощению водорода металлов из растворов, а также к установке для его осуществления. .
Изобретение относится к металлургии благородных металлов, а точнее - к способам извлечения ценных компонентов из цинксодержащих золотосеребряных и/или серебряно-золотых цементатов с повышенным содержанием серебра.

Изобретение относится к способам гидродинамической очистки поверхностей химико-технологического оборудования от шламов, содержащих металлы платиновой группы (МПГ), и может быть использовано в металлургической и химической отраслях промышленностях, в частности в установках, в которых используются катализаторы из металлов платиновой группы, например в установках по производству азотной, синильной кислот, гидроксиламинсульфата и т.д.
Наверх