Способ получения водорода при разложении воды



Способ получения водорода при разложении воды
Способ получения водорода при разложении воды
C25B1/04 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2640227:

Багич Геннадий Леонидович (RU)

Изобретение относится к энергетике, а именно к способу получения водорода при разложении воды. Способ включает подачу нагретой воды из водяного котла в устройство разложения воды на кислород и водород, содержащее катод и анод. При этом перфорированные катод и анод представляют собой цилиндрические коаксиально расположенные обкладки водяного конденсатора, причем анод содержит по меньшей мере два трансформатора с индуктивностями, образующие магнитный поток, проходящий через воду, при этом слагаемые магнитных потоков каждого трансформатора образуются за счет намотки изолированного провода. Направления векторов магнитных напряженностей, образованных одним трансформатором совместно с нагрузочной индуктивностью, совпадают, а направление суммарного вектора магнитной напряженности одного трансформатора, за счет переключения полярности питающего напряжения, отличается от направления суммарного вектора магнитной напряженности другого трансформатора. При этом на перфорированную изолированную со всех сторон обкладку меньшего диаметра, внутренний объем которой служит для накопления и транспортировки ионов кислорода, подается положительный потенциал, а на перфорированную обкладку большого диаметра, на которой происходит нейтрализация ионов водорода, который транспортируется через отверстия корпуса устройства разложения воды, подается отрицательный потенциал. Технический результат заключается в повышении КПД устройств разложения воды. 4 з.п. ф-лы, 2 ил., 1 пр.

 

Изобретения относятся к энергетике, а именно к способам преобразования внутренней энергии водорода как в механическую с последующим преобразованием механической в электрическую, так и тепловую с последующим преобразованием ее во внутреннюю энергию водорода, замыкая тем самым за счет подачи тепловой энергии внешней среды энергетический цикл.

Известен способ получения водорода электролизом, в котором ионы водорода и кислорода нейтрализуются каждый у своих электродов. При этом за счет дополнительной входной электроэнергии происходит нагрев воды, который не участвует в процессе разложения ввиду того, что вода разлагается электрическим полем. Предлагается с целью повышения КПД один из электродов изолировать, а нейтрализацию ионов производить, например, с помощью подачи повышенного напряжения на нейтрализационную сетку, расположенную в газовой области.

Наиболее близким техническим решением к заявляемому изобретению является Российский патент №2596605 водородный электрогенератор, содержащий емкость с водой, связанный водяным каналом с устройством разложения воды на кислород и водород, гремучая смесь которого сжигается в камере, механическая энергия которого преобразуется преобразователем тепловой энергии в электрическую, причем выхлопной пар от ДВС по патрубку поступает на вход устройства разложения воды. Преобразователь воды в водород имеет сложное энергоемкое устройство.

Известно, что нагрев материальных тел сказывается на увеличении кинетической энергии их микроэлементов. Так увеличение тепловой энергии воды - это интенсификация броуновского движения молекул. При действии на воду энергии электрических и магнитных полей диполи воды стремятся ориентироваться вдоль суммарного вектора электрического и магнитного полей при условии одновременного их действия. В результате этого интенсификация теплового движения дипольных молекул снижается. Спрашивается, куда преобразовалась часть тепловой энергии воды. Очевидно, она преобразовалась в интенсифицированное движение атомов водорода и кислорода на другую траекторию движения или расслабления их связей, на которые влияет также энергия электрических и магнитных полей. На основании сказанного делается вывод, что разрушение молекулы воды происходит тогда, когда суммарная энергия тепловая, энергия электрического и магнитного полей превосходит энергию сцепления водорода и кислорода в молекуле воды. Так при нагревании воды до ее плазменного состояния (до температуры, которая образуется при сжигании водорода) происходит разрушение молекул воды без действия электроэнергии. И, наоборот, при действии электрической энергии, эквивалентной тепловой энергии разрушения молекулы воды на воду, имеющую, например, температуру около нуля, происходит также разложение воды. Способы существующих устройств разложения воды в основном включают электрическое поле образованное водяным конденсатором, где вода играет роль диэлектрика. Недостатком устройств является преобразование входной электроэнергии в тепловую энергию воды, которая совместно с энергией электрического поля разлагает воду, что значительно снижает КПД устройств из-за значительного потребления электроэнергии, расходуемой на единицу объема разлагаемой воды.Известен способ получения водорода и кислорода из воды, включающий получение в незамкнутом пространстве перегретого водяного пара с температурой 500-550°С, который пропускают через постоянное электрическое поле, образованное между расположенными на расстоянии друг от друга электродами высокого напряжения (6000 В) с получением водорода и кислорода (продуктов диссоциации) и их отвод [Описание изобретения к патенту РФ №2142905 от 27.04.1998, МПК С01В 3/00, С01В 13/02, опубл. 20.12.1999]. Продекларировано, что способ прост в аппаратурном оформлении, экономичен, пожаро- и взрывобезопасен и высокопроизводителен.

Однако в указанном изобретении не учитываются затраты на энергию, затрачиваемую на образование перегретого пара.

Целью изобретения является использование при разложении воды как тепловой энергии окружающей среды, так и выхлопной тепловой энергии при сгорании водорода, что приводит к значительному повышению КПД устройств разложения воды.

На фиг. 2 показана схема водородного электрогенератора, содержащая водяной котел 22, в который вода поступает от природных тепловых источников, например по каналу 39 от солнечного коллектора 38, по каналу 28 с помощью насоса 23 с рек, озеров, морей. Водяная емкость каналом 29 связана с устройством 24 разложения воды.

От устройства 24 не разложившаяся вода с заниженной по отношению к входной температурой, например 1 градус Цельсия, по каналу 31 выходит наружу. Образовавшиеся выходные газы от устройства 24 по фитилям 32 водородному и 33 кислородному, которые изолированы, например, термостойкой керамикой (см. Российский патент №2517721) попадают в камеру смешивания 25. Гремучий газ по каналу 34 подается в устройство 26 (ДВС), откуда выхлопной пар по каналу 36 подается на вход устройства 24. Выхлопной пар может подаваться на вход другого аналогичного устройства разложения воды. При этом расход механической энергии, преобразуемой электрогенератором, компенсируется тепловой энергией окружающей среды, поступающей в виде нагретой воды от, например, солнечных коллекторов в водяной котел.

Механическая энергия от ДВС по валу 35 подается электрогенератору 27. Вырабатываемая электроэнергия по каналам 37, 40 поставляется потребителям или используется, например, для зарядки аккумуляторных батарей.

Известно, что КПД ДВС при механической нагрузке не может быть выше 20-30% от энергии, получаемой от сгорания топлива. Поэтому при использовании тепловой энергии выхлопного пара значительно повышается КПД. Например, при работе электрогенератора на углеводородном топливе, учитывая теплотворную способность водорода и углеводородов и высокий КПД водородного электрогенератора, при одной и той же входной электрической мощности по каналу 30 источника 41 можно зарядить аккумуляторов от водородного электрогенератора примерно в 10 раз больше, чем от углеводородного электрогенератора. При этом работа водородного электрогенератора не сказывается на ухудшении экологической обстановки.

Согласно фиг. 1 устройство 24 разложения воды содержит корпус 1, представляющий цилиндрическую трубу, коаксиально которой расположены токопроводящие перфорированные отверстиями 5 катод 3 и отверстиями 7 анод 6, играющие роль цилиндрических коаксиально расположенных обкладок водяного конденсатора. Причем анод полностью изолирован диэлектриком 8. Анод 6 содержит по меньшей мере два намагничивающих устройства (трансформатора, излучающих магнитные поля с нагрузочными индуктивностями, которые также излучают магнитные поля, причем направление векторов магнитных напряженностей, образованных одним трансформатором, совпадают), расположенных вдоль оси 9 трубы на некотором расстоянии друг от друга, представляющей собой положительно заряженную нейтрализующую сетку, статический заряд которой превышает потенциал положительного электрода. Каждое устройство содержит трансформатор, магнитопровод которого образован обмоткой изолированного проводника, выполненного из электротехнической стали, имеющего, например, в сечении прямоугольную форму. Обмотка магнитопровода проводником вокруг анода 6 выполнена, например, поочередно витками 15 малого и витками 13 большого диаметра. Входная катушка 17, выходная катушка 16 и дополнительно катушка 14 обратной связи наматываются на магнитопровод, содержащий витки большого диаметра. Катушки 14, 16 и нагрузочная излучающая индуктивность 21, соединенные последовательно так же, как обмотки магнитопровода малого диаметра, имеют токовые контуры, токи которых согласно принципу суперпозиции образуют суммарное магнитное поле вместе с излучающим магнитным потоком. При соединении катушки 14 обратной связи параллельно вторичной катушки 16 получаем значительное увеличение тока индуктивности 21, соединенной так же параллельно с выходной вторичной катушкой 16, что приводит к значительному увеличению плотности излучающего индуктивностью магнитного поля за счет увеличения в индуктивностном контуре тока. Магнитный поток трансформатора, проходя по магнитопроводу, образованному витками малого диаметра, также дополнительно излучает магнитное поле, что значительно повышает эффективность разложения значительного объема воды за короткое время, а значит, позволяет повысить скорость разложения воды. На входную катушку 17 и на обмотку магнитопровода подается выпрямленное импульсное напряжение. Ток по катушке 17 протекает заданного направления через нормально замкнутые контакты промежуточного реле. При включении реле происходит смена полярности входного напряжения и, как следствие, изменение направления суммарного вектора напряженности магнитного потока трансформатора. Полярность входного напряжения трансформатора определяет направление суммарного магнитного потока излучаемого трансформатором и его катушкой индуктивности. При изменении полярности входного напряжения суммарный магнитный поток изменяет направление на 180 градусов, при этом переключение полярностей происходит с заданной частотой.

Вектора магнитных напряженностей, вырабатываемых двумя трансформаторами, могут иметь согласное встречное и противоположное направление. Магнитные потоки трансформаторов, при различных сочетаниях полярностей входных напряжений проходя через воду, оказывают на диполи воды одностороннее сжимающее растягивающее действие. Поэтому при смене полярности на диполи воды переменно и одновременно действуют силы, вызываемые двумя магнитными потоками, вектора напряженности которых изменяют направление с частотой переключения полярности входного напряжения каждого излучателя. При переключении полярностей питающих напряжений трансформаторов происходит увеличение эффективности разложения воды. С целью охлаждения обмоточных проводов они могут представлять полую перфорированную конструкцию, изолированную со всех сторон термостойкой изоляцией.

Работа устройства заключается в том, что горячая вода поступает через регулировочный давление клапан 12 в межэлектродную полость 20, а холодная, не разложившаяся вода через регулируемый давление клапан 4 выходит наружу. При разложении воды давление в полости 20 повышается, клапан 12 закрывается. Ионы водорода, имеющие положительную полярность, нейтрализуются на отрицательном электроде 3, и водород через отверстия 5 попадает в полость 19, расположенную между корпусом 1 и конденсаторной пластиной 3 и через отверстие 11 по фитилю 32 попадает в камеру 25. Ионы кислорода, имеющие отрицательную полярность, отталкиваясь от отрицательного электрода 3, попадают в положительное статическое поле полости 18, нейтрализуются сеткой 9, потенциал которой превышает потенциал положительного электрода и под действием созданного давления через отверстие 10 по фитилю 33 попадают в смесительную камеру 25. Клапан 4 может открываться при заданном давлении в межэлектродной полости 20 или в функции температурного режима в этой полости. При достижении в полости 20 заданной температуры клапан 4 открывается, давление в полости 20 падает, что приводит к открытию клапана 12. Цикличность работы устройства зависит от количества энергии, вводимой в устройство 24, разложения воды. Ввиду того что в водогазовой смеси происходит разделение газов от воды, создается возможность для усиления статических полей установить между отрицательным электродом 3 и корпусом 1, а также в полости 18 токопроводящие сетки одноименной с соседними электродами полярностью, потенциал которых по абсолютному значению превосходит потенциал соседних конденсаторных пластин. Потенциал на сетки подается после разделения газов от воды.

С большим экономическим эффектом изобретение может использоваться без значительных доработок на тепловых электростанциях, например Конаковской ТЭЦ, где отработанной водяной пар (вода) тоннами отводится по искусственному каналу. При использовании этой бросовой тепловой энергии можно получить значительную добавку электроэнергии или энергии в виде сжиженного кислородного и водородного газов.

1. Способ получения водорода при разложении воды, включающий подачу нагретой воды из водяного котла в устройство разложения воды на кислород и водород, содержащее катод и анод, отличающийся тем, что перфорированные катод и анод представляют собой цилиндрические коаксиально расположенные обкладки водяного конденсатора, причем анод содержит по меньшей мере два трансформатора с индуктивностями, образующие магнитный поток, проходящий через воду, при этом слагаемые магнитных потоков каждого трансформатора образуются за счет намотки изолированного провода, выполненного из электротехнической стали, с образованием витков большого и малого диаметра с последующей подачей выпрямленного импульсного напряжения на сопротивление этого провода и с последующей намоткой на витки большого диаметра магнитопровода первичной и вторичной катушек с подключением к вторичной нагрузочной катушке индуктивности, которая также при прохождении по ней тока образует направленное магнитное поле, причем направления векторов магнитных напряженностей, образованных одним трансформатором совместно с нагрузочной индуктивностью, совпадают, а направление суммарного вектора магнитной напряженности одного трансформатора, за счет переключения полярности питающего напряжения, отличается от направления суммарного вектора магнитной напряженности другого трансформатора, при этом на перфорированную изолированную со всех сторон обкладку меньшего диаметра, внутренний объем которой служит для накопления и транспортировки ионов кислорода, подается положительный потенциал, а на перфорированную обкладку большого диаметра, на которой происходит нейтрализация ионов водорода, который транспортируется через отверстия корпуса устройства разложения воды, подается отрицательный потенциал.

2. Способ по п.1, отличающийся тем, что переключение полярностей питающих напряжений трансформаторов или одного трансформатора происходит с заданной частотой.

3. Способ по п.1, отличающийся тем, что на витки большого диаметра магнитопровода дополнительно наматывается катушка обратной связи, подключаемая параллельно вторичной (выходной) катушке или последовательно ей, при этом катушки и индуктивность должны образовывать токовый контур.

4. Способ по п.1, отличающийся тем, что обмоточный провод представляет полую перфорированную конструкцию, изолированную со всех сторон термостойкой изоляцией.

5. Способ по п.1, отличающийся тем, что после отделения газов от воды на токопроводящие сетки, установленные между отрицательным электродом (катодом) и корпусом и во внутренней части положительного электрода (анода), подается потенциал, полярность которого совпадает с полярностью соседних электродов.



 

Похожие патенты:

Изобретение относится к альтернативной энергетике. Технический результат - повышение производительности выработки водорода, повышение КПД и уменьшение габаритов.

Изобретение относится к электротехнике, основано на преобразовании энергии электронных пучков в электроэнергию электромагнитного процесса и может быть использовано для производства электроэнергии в электроэнергетике, в энергосиловых установках транспортных средств и других отраслях, вырабатывающих электроэнергию для собственных нужд.

Изобретение относится к тепловой защите летательных аппаратов. Крыло гиперзвукового летательного аппарата включает катод, состоящий из внешней оболочки крыла, анод, состоящий из слоя восприятия электронов и токопроводящей подложки анода.

Изобретение относится к электротехнике и может быть использовано для генерирования электроэнергии. Технический результат состоит в повышении выходной электроэнергии.

Изобретение относится к энергомашиностроению, к теплообменной аппаратуре и может быть использовано для конденсации отработанного пара без использования хладоагента с трансформацией части тепловой энергии в электрическую.

Электронный генератор электроэнергии относится к электротехнике, а именно к производству электроэнергии. Электронный генератор электроэнергии содержит реактор электронной плазмы (1), заполненный рабочей средой (разреженный инертный газ с примесью материалов с малой энергией ионизации), в котором установлены катод (2) и анод (3) электрической дуги, управляющие аноды (4), рабочие аноды (5) и поляризующиеся электроды (6), соединенные с концами первичной обмотки (7) силового трансформатора (12).

Изобретение относится к экологически чистому методу получения электроэнергии и может быть использовано для любого вида электроснабжения как бытового, так и промышленного.

Изобретение относится к энергетике и транспорту, а именно к получению электрической энергии от химической реакции детонационного сгорания топлива. .

Изобретение относится к электротехнике и может быть использовано для производства электрической энергии для малой энергетики и локальных электросетей с использованием как высокопотенциального, так и низкопотенциального тепла, в частности солнечного.
Изобретение относится к области производства энергии, в частности тепловой, которая выделяется из материала при пропускании через него электрического тока. .

Изобретение относится к получению порошкообразного оксида алюминия высокой чистоты. Устройство содержит электролизер для электролиза водных растворов с окислением металлического алюминия, соединенный трубопроводом с обратноосмотической установкой для подготовки исходной технической воды и приемной емкостью для продуктов окисления, причем в нижнем отверстии приемной емкости выполнено выходное отверстие, соединенное с верхним ситом промывного сепаратора, при этом нижнее сито промывного сепаратора соединено линией подачи продукта с блоком термической обработки продуктов окисления алюминия.

Изобретение может быть использовано в химической промышленности. Способ получения гипохлорита кальция из пересыщенного природного поликомпонентного рассола хлоридного кальциево-магниевого типа включает выделение из рассола кристаллогидрата хлорида кальция и отделение маточного рассола, обогащенного литием и бромом.

Изобретение относится к установке для электрохимического разложения водных растворов хлоридов, включающей проточные электрохимические реакторы, состоящие из внутреннего трубчатого титанового катода, внешнего трубчатого титанового анода и размещенной между ними трубчатой керамической ионопроницаемой диафрагмы, нижнего и верхнего анодных коллекторов, сепаратора, нижнего и верхнего катодных коллекторов и насосов.
Изобретение относится к способу получения концентрата адипиновой кислоты и натриевой щелочи из щелочных стоков производства капролактама, включающему электролиз стоков в мембранном электролизере с получением в катодном пространстве натриевой щелочи.

Изобретение относится к способу электросинтеза циклогексантиола, включающему взаимодействие циклогексена с сероводородом в апротонных органических растворителях в присутствии фонового электролита при температуре 20-25°C и атмосферном давлении.

Изобретение относится к электролитической ячейке для выработки неразделенных анодных и катодных продуктов, состоящая из литографически структурируемой подложки, имеющей поверхность, множество анодных и катодных микроэлектродов, сформированных на упомянутой поверхности, причем упомянутые анодные и катодные микроэлектроды взаимно вставлены один в другой с межэлектродным промежутком менее 100 микрометров и имеют среднюю шероховатость Ra поверхности менее 0,05 мкм.

Изобретение относится к электроду для устройства для разложения воды, содержащего: газопроницаемый материал; второй материал; разделительный слой, расположенный между газопроницаемым материалом и вторым материалом, где разделительный слой расположен рядом с внутренней стороной газопроницаемого материала, причем данный разделительный слой предоставляет газосборный слой, способен к перемещению газа внутри в электроде по меньшей мере к одной зоне выпуска газа, где перемещаемый газ является продуктом реакции разложения воды, и где газ мигрирует через газопроницаемый материал; и проводящий слой расположен рядом с внешней стороной газопроницаемого материала, на ней или частично внутри внешней стороны.

Изобретение относится к способу получения водорода на основе химической реакции электролиза алюминиевого сплава и щелочного раствора воды в заполненном электролитом электролизере, в котором расположены анод и катод.

Изобретение относится к области химической технологии, в частности к способам электрохимического окисления железа для получения реагента-окислителя феррата (VI) FeO42-.

Изобретение относится к способу получения альфа-оксида алюминия высокой чистоты. Способ включает анодное растворение алюминия высокой чистоты в водном растворе нитрата аммония, рафинирование электролита путем удаления 50-100% первой партии гидроксида алюминия с предварительным отстаиванием в электролите в течение 12-24 ч, разделение последующих партий гидроксида алюминия и электролита, промывку последующих партий гидроксида алюминия дистиллированной водой и их термическую обработку, которая осуществляется посредством предварительной сушки в течение 12-24 ч при температуре 200-250°С и окончательного прокаливания в течение 15-18 ч при температуре не менее 1100°С, при этом при прокаливании каждые 3 ч производится перемешивание продукта.

Изобретение относится к получению пузырьков и пен, содержащих пузырьки. Устройство содержит: первый блок, выполненный с возможностью определять по меньшей мере одну характеристику газа в пузырьках; второй блок, выполненный с возможностью вырабатывать пузырьки, содержащий: электролизер, выполненный с возможностью проводить электролиз электролита, чтобы вырабатывать газ в электролите, тем самым вырабатывая пузырьки; контроллер выполнен с возможностью регулировать второй блок, чтобы вырабатывать пузырьки согласно по меньшей мере одной характеристике газа. Изобретение позволяет регулировать характеристику газа в пузырьке на основе практических требований к газу, а также снизить уровень шума и габариты устройства для вырабатывания пузырьков и пен. 2 н. и 11 з.п. ф-лы, 11 ил.

Изобретение относится к энергетике, а именно к способу получения водорода при разложении воды. Способ включает подачу нагретой воды из водяного котла в устройство разложения воды на кислород и водород, содержащее катод и анод. При этом перфорированные катод и анод представляют собой цилиндрические коаксиально расположенные обкладки водяного конденсатора, причем анод содержит по меньшей мере два трансформатора с индуктивностями, образующие магнитный поток, проходящий через воду, при этом слагаемые магнитных потоков каждого трансформатора образуются за счет намотки изолированного провода. Направления векторов магнитных напряженностей, образованных одним трансформатором совместно с нагрузочной индуктивностью, совпадают, а направление суммарного вектора магнитной напряженности одного трансформатора, за счет переключения полярности питающего напряжения, отличается от направления суммарного вектора магнитной напряженности другого трансформатора. При этом на перфорированную изолированную со всех сторон обкладку меньшего диаметра, внутренний объем которой служит для накопления и транспортировки ионов кислорода, подается положительный потенциал, а на перфорированную обкладку большого диаметра, на которой происходит нейтрализация ионов водорода, который транспортируется через отверстия корпуса устройства разложения воды, подается отрицательный потенциал. Технический результат заключается в повышении КПД устройств разложения воды. 4 з.п. ф-лы, 2 ил., 1 пр.

Наверх