Способ получения радиационно-модифицированного полимерного покрытия на стальной трубе и стальная труба с радиационно-модифицированным полимерным покрытием

Изобретение относится к области машиностроения, а именно к технологии производства стальных труб с полимерным покрытием, используемых для строительства и эксплуатации нефте- и газопроводов, систем теплоснабжения и водоснабжения, в том числе труб большого диаметра. Способ получения радиационно-модифицированного полимерного покрытия на стальной трубе включает нанесение по крайней мере одного грунтовочного слоя на поверхность стальной трубы, нанесение по крайней мере одного адгезионного слоя на грунтовочный слой с последующим нанесением по крайней мере одного полимерного слоя на основе полимера выбранного из группы: полиолефины, полисилоксаны, полиамиды, синтетические каучуки, на адгезионный слой и радиационной модификацией покрытия при помощи по крайней мере одного ускорителя электронов с дозой облучения 1-100 Мрад при отношении скорости перемещения к скорости вращения трубы равной 0,1-5,0. Также изобретение относится к способу получения радиационно-модифицированного полимерного покрытия на стальной трубе, включающему нанесение по крайней мере одного грунтовочного слоя на поверхность стальной трубы, с последующим нанесением по крайней мере одного полимерного монослоя, содержащего полимер выбранный из группы: полиолефины, полисилоксаны, полиамиды, синтетические каучуки и клеевой состав на основе полиолефинов, и радиационной модификацией покрытия при помощи по крайней мере одного ускорителя электронов с дозой облучения 1-100 Мрад при отношении скорости перемещения к скорости вращения трубы равной 0,1-5,0 и стальной трубе с радиационно-модифицированным полимерным покрытием, содержащей покрытие на основе слоев, полученных по любому из указанных способов, при этом покрытие радиационно-модифицировано при помощи по крайней мере одного ускорителя электронов. Техническим результатом заявленной группы изобретений является повышение ударной прочности сопротивлению пенетрации покрытия, адгезионной прочности и стабильность адгезии полимерного покрытия в процессе длительной эксплуатации труб. 3 н.п. ф-лы, 4 ил., 1 табл.

 

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к области машиностроения, а именно к технологии производства стальных труб с полимерным покрытием, используемых для строительства и эксплуатации нефте- и газопроводов, систем теплоснабжения и водоснабжения, в том числе труб большого диаметра.

УРОВЕНЬ ТЕХНИКИ

Одной из основных задач при строительстве и эксплуатации стальных трубопроводов является обеспечение высоких эксплуатационных характеристик полимерных антикоррозионных покрытий труб по таким параметрам, как ударная прочность, сопротивление пенетрации, стойкость покрытия к катодному отслаиванию, повышенная адгезия, стабильность адгезии в процессе длительной эксплуатации труб. Для решения этой задачи в настоящее время используются заводские защитные полимерные покрытия, которые наносят на наружную подготовленную поверхность трубы. Для антикоррозионной защиты наружной поверхности трубы можно использовать многослойное полимерное покрытие, которое может состоять из грунтовочного слоя, адгезивного слоя и наружного слоя, выполненных из полимерных композиций на основе полиолефинов и специализированных добавок. Способ получения указанного многослойного покрытия и труба с многослойным покрытием раскрыты в RU 2458952 C2, опубл. 20.08.2012. Также появились монослойные полимерные покрытия, объединяющие свойства адгезивного и наружного полимерных слоев. Труба с подобным заводским антикоррозионным полимерным покрытием характеризуется достаточно высоким уровнем эксплуатационных механических свойств покрытия.

Однако описанное антикоррозионное полимерное покрытие стальных труб не обеспечивает требуемый современный уровень устойчивости к воздействию агрессивных сред, механическому повреждению. Имеет место также недостаточная адгезия полимерного материала покрытия к основному материалу трубы и стабильность адгезии полимерного покрытия в процессе длительной эксплуатации труб.

Известен способ нанесения многослойной полимерной изоляции на стальную трубу и труба стальная с многослойной полимерной изоляцией, состоящей из четырех слоев, раскрытые в RU 2413615 С2, опубл. 10.03.2011. Предложенная труба с полимерной изоляцией имеет многослойную конструкцию для защиты поверхности от повреждения, где первый нижний слой состоит из эпоксидного праймера, второй средний слой состоит из адгезионного полимерного подслоя, третий верхний слой состоит из полиэтилена высокой плотности серии ПЭВП, а четвертый наружный слой состоит из модифицированного силаном ПЭВП (по классификации РЕХ-b), с помощью которого достигается повышение ударной прочности и ударной вязкости образца.

Недостатком известного способа и стальной трубы с многослойным покрытием является требование применения сложных дополнительных и, следовательно, дорогостоящих технологических операции по нанесению дополнительного полимерного четвертого слоя, модифицированного силаном ПЭВП (по классификации РЕХ-b). Также для модификации по технологии РЕХ-b необходимо в течение нескольких часов выстаивать сшиваемый силаном полиолефин в водяной бане при температуре около 95°С, что ограничивает производительность технологии в целом и существенно повышает затраты на производство.

Кроме того, известен способ нанесения многослойного покрытия и стальная труба модифицированная с многослойной изоляцией «ТСИМ», раскрытая в RU 164448 U1, опубл. 27.08.2016 (прототип). Стальная труба модифицированная с многослойной изоляцией «ТСИМ» содержит нижний, средний и наружный полимерные слои, при этом нижний слой полимерного покрытия выполнен из эпоксидного праймера, средний слой полимерного покрытия – из клейкого адгезионного полимерного подслоя, а наружный слой – из модифицированного композита на основе полиолефинов, причем наружный слой выполнен с возможностью нанесения на средний слой экструдированием композита на основе полиолефинов и последующего радиационного сшивания под действием ускорителя электронов.

К недостаткам полученного покрытия можно отнести неудовлетворительную механическую прочность покрытия, не позволяющую применять трубы с покрытием в скалистых и мерзлых грунтах без дополнительных мер по защите. Это усложняет производство работ и влечет за собой дополнительные затраты при строительстве трубопроводов.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Задачей заявленной группы изобретений является разработка способа нанесения радиационно-модифицированного полимерного покрытия на стальную трубу с целью получения стальной трубы с высокими механическими характеристиками.

Техническим результатом заявленной группы изобретений является повышение ударной прочности, сопротивления пенетрации покрытия, адгезионной прочности и стабильность адгезии полимерного покрытия в процессе длительной эксплуатации труб.

Указанный технический результат достигается за счет того, что способ получения радиационно-модифицированного полимерного покрытия на стальной трубе включает нанесение по крайней мере одного грунтовочного слоя на поверхность стальной трубы, нанесение по крайней мере одного адгезионного слоя на грунтовочный слой, с последующим нанесением по крайней мере одного полимерного слоя на основе полиолефинов на адгезионный слой и радиационную модификацию покрытия при помощи по крайней мере одного ускорителя электронов с дозой облучения 1-100 Мрад при отношении скорости перемещения к скорости вращения трубы равной 0,1-5,0.

Указанный технический результат достигается за счет того, что способ получения радиационно-модифицированного полимерного покрытия на стальной трубе включает нанесение по крайней мере одного грунтовочного слоя на поверхность стальной трубы с последующим нанесением по крайней мере одного полимерного монослоя, содержащего полиолефины и клеевой состав на основе полиолефинов, и радиационную модификацию покрытия при помощи по крайней мере одного ускорителя электронов с дозой облучения 1-100 Мрад при отношении скорости перемещения к скорости вращения трубы равной 0,1-5,0.

Указанный технический результат достигается за счет того, что стальная труба с радиационно-модифицированным полимерным покрытием содержит покрытие на основе слоев, полученных раскрытыми выше способами, при этом покрытие радиационно-модифицировано при помощи ускорителя электронов

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Изобретение будет более понятным из описания, не имеющего ограничительного характера и приводимого со ссылками на прилагаемые чертежи, на которых изображено:

Фиг. 1 – поперечный разрез стальной трубы с трехслойным покрытием.

Фиг. 2 – поперечный разрез стальной трубы с монослойным покрытием.

Фиг. 3 – График зависимости предела прочности при растяжении (МПа) от дозы облучения для пучков 5 и 10 MэВ.

Фиг. 4 – Процесс радиационной модификации трубы с покрытием;

1 – стальная труба; 2 – грунтовочный слой; 3 – адгезионный слой; 4 – полимерный слой на основе полиолефинов; 5 – полимерный монослой; 6 – ускоритель электронов; 7 – пучок электронов.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

В соответствии с первым вариантом изобретения (см. фиг. 1) стальная труба (1) содержит по крайней мере один грунтовочный слой (2), нанесенный на наружную поверхность стальной трубы (1), по крайней мере один адгезионный слой (3), нанесенный на грунтовочный слой (2), по крайней мере один полимерный слой (4) на основе полиолефинов, нанесенный на адгезионный слой (3). При этом стальную трубу с полимерным покрытием, содержащим раскрытые выше слои, подвергают радиационной модификации пучком электронов при помощи по крайней мере, одного ускорителя электронов.

В соответствии со вторым вариантом изобретения (см. фиг. 2) стальная труба (1) содержит по крайней мере один грунтовочный слой (2), нанесенный на наружную поверхность стальной трубы (1) по крайней мере один полимерный монослой (5), содержащий полиолефины и клеевой состав на основе полиолефинов, нанесенный на грунтовочный слой (2). При этом стальную трубу с полимерным покрытием, содержащим раскрытые выше слои, подвергают радиационной модификацией пучком электронов при помощи по крайней мере одного ускорителя электронов.

Полимерный слой на основе полиолефинов (4) выполнен в виде полимера, выбранного из группы: полиэтилен, сэвилен, полипропилен, поливинилхлорид, полистирол, натуральный каучук, синтетические каучуки, полисилоксаны, полиамиды, полиэтиленоксид.

Адгезионный слой (3) содержит клеевую композицию на основе полиолефинов, выбранную из группы: на основе полиэтилена «Метален АПЭ-1», на основе сэвилена АТИ-06; на основе сэвилена TRISOLEN 190, на основе сэвилена TRISOLEN 200/U.

Грунтовочный слой (2) содержит материал, выбранный из группы: грунтовка эпоксидная «Праймер МБ», каучуко-смоляной «Праймер ПЛ-Л», каучуко-смоляной «Праймер НК-50», грунтовка "ТРАНСКОР-ГАЗ».

Полимерный монослой (5) содержит два компонента, при этом первый компонент содержит полимер на основе полиолефинов, выбранных из группы: полиэтилен, сэвилен, полипропилен, поливинилхлорид, полистирол, натуральный каучук, синтетические каучуки, полисилоксаны, полиамиды, полиэтиленоксид, а второй компонент – клеевой состав на основе полиолефинов, выбранный из группы: на основе полиэтилена «Метален АПЭ-1»; на основе сэвилена АТИ-06; на основе сэвилена TRISOLEN 190; на основе сэвилена TRISOLEN 200/U.

Радиационно-модифицированное покрытие на стальной трубе получают следующим образом.

В соответствии с первым вариантом изобретения наружную поверхность стальной трубы (1) подвергают предварительной очистке. Для этого сначала производят ее обезжиривание щелочным раствором путем подачи его на наружную поверхность трубы под давлением, после чего стальную трубу подвергают сушке и струйной очистке до получения шероховатости наружной поверхности трубы, которая не превышает Rz=100 мкм.

После чего очищенную поверхность стальной трубы (1) подвергают индукционному нагреву до температуры не менее 200°С с последующим нанесением на наружную поверхность трубы грунтовочного слоя (2) в виде порошка грунтовки на основе эпоксидной композиции, например грунтовка эпоксидная «Праймер МБ», толщиной 90-100 мкм, при помощи электростатического напыления. Частицы сухого порошка, нанесенные на поверхность стальной трубы (1), удерживаются на ней преимущественно за счет сил электростатического притяжения. Смачивание происходит, когда частицы порошка расплавляются при температуре выше 200°С. При этом эпоксидный порошок на поверхности трубы плавится и полимеризуется, образуя мягкую непрерывную пленку. Затем на грунтовочный слой (2) наносят адгезионный слой (3), содержащий клеевую композицию на основе полиолефинов, например на основе полиэтилена «Метален АПЭ-1». Адгезионный слой (3) наносят обычными способами, используемыми для покрытия трубопроводов, например, методом боковой «плоскощелевой» экструзии расплава клеевой композиции. Для нанесения адгезионного слоя (3) нагретую до состояния расплава адгезионную композицию выдавливают в плоскощелевую головку экструдера с образованием ленты толщиной от 100 до 500 мкм, которую наматывают на грунтовочный слой (2).

Затем поверх адгезионного слоя (3) наносят полимерный слой (4) на основе полиолефинов путем спиральной намотки нагретой до состояния расплава (экструзия) полимерной ленты толщиной от 100 до 500 мкм на основе полиолефинов, например полиэтилена, выдавливаемую также через плоскощелевую головку экструдера. При необходимости дополнительно осуществляют нанесение еще одного или несколько слоев полимерного слоя (4). Суммарная толщина трехслойного покрытия может достигать 3-6 мм.

После чего полученное многослойное покрытие прикатывают под давлением к наружной поверхности стальной трубы (1) роликом, а затем производят охлаждение стальной трубы (1) до температуры не выше 60°С и осуществляют радиационную модификацию полимерного покрытия стальной трубы (1) с применением технологии электронных ускорителей (см. фиг. 4).

При радиационной модификации стальную трубу (1) с нанесенным многослойным покрытием подвергают воздействию пучков электронов с энергией 0,5-10 МэВ и дозой облучения 1-100 Мрад при помощи по крайней мере одного ускорителя электронов (6) типа ЭЛВ и ИЛУ и аналогичных. При радиационной модификации стальная труба (1) под пучком электронов (7) проходит с определенными скоростями перемещения и вращения трубы при отношении скорости перемещения к скорости вращения трубы равной 0,1 – 5,0. Скорость перемещения определяется требуемой дозой, которая поглощается полимерным покрытием, а вращение обеспечивает однородность поглощенной дозы по всему поверхности полимерного покрытия трубы.

Поглощенную дозу, набираемую полимерным покрытием трубы, подбирают достаточной для перехода полимерного материала покрытия из свободномолекулярного состояния в частично сшитое состояние, характеризуемое формирование трехмерных молекулярных структур с более высокой молекулярной массой. За счет этого происходит повышение ударной прочности сопротивлению пенетрации полимерного покрытия, адгезионной прочности и стабильность адгезии полимерного покрытия стальных труб.

В соответствии с другим вариантом осуществления изобретения на очищенную наружную поверхность (операции очистки аналогичны раскрытым выше) стальной трубы (1) наносят грунтовочный слой (2), как описано выше, с последующим нанесением полимерного монослоя (5), аналогично нанесению полимерного слоя (4), описанному выше. Далее производят охлаждение трубы с двухслойным покрытием до температуры не выше 60°С и осуществляют радиационную модификацию полимерного покрытия стальной трубы (1) с применением технологии электронных ускорителей, как описано выше.

При необходимости дополнительно осуществляют нанесение еще одного или несколько слоев полимерного монослоя (5). Суммарная толщина трехслойного покрытия может достигать 3-6 мм.

Исследования по изучению структурных изменений и свойств облученных полимеров на примере полиэтилена позволили выделить отчетливо выраженные стадии, через которые проходит полимер по мере увеличения дозы. На начальной стадии радиационной модификации, при поглощенной дозе до 2,0 Мрад, происходит образование поперечных ковалентных связей между отдельными атомами углерода линейных молекул и создание трехмерных пространственных полимеров с более высокой молекулярной массой. Приобретаемые на этой стадии свойства полимера обуславливаются не столько вновь возникающими жесткими связями, формирующими разветвленные молекулярные системы, сколько межмолекулярными взаимодействиями между этими системами, допускающими возможность их взаимных смещений и деформаций при внешних механических воздействий. В таких условиях полиэтилен по своим свойствам становится близким к каучукоподобным материалам. При дальнейшем увеличении поглощенной дозы плотность поперечных связей возрастает и структура полиэтилена превращается в единую пространственную сетку. Благодаря этому материал приобретает новые полезные свойства: увеличивается модуль упругости, возрастает предел прочности на разрыв, возникает стойкость к химическим и температурным воздействиям. Изменения зависимости предела прочности при растяжении (МПа) от дозы облучения для полиэтилена отмечены на графике (Фиг. 3).

Заявленное изобретение при применении технологии радиационной модификации полимерных покрытий электронным пучком позволяет улучшить прочностные характеристики полученного полимерного защитного покрытия, результаты экспериментов стальной трубы с полимерным покрытием представлены в табл. 1.

На скорости вращения и перемещения трубы влияют такие факторы, как мощность пучка электронов, энергия электронного пучка, длина развертки электронного пучка, заданная поглощенная доза и диаметр трубы. Зависимость этих параметров в общем виде можно описать формулой:

216 • P / D = 25 • 10і • R • H • Vx,

где Р – мощность электронного пучка ускорителя; D – заданное значение поглощенной дозы; H – ширина зоны облучения; Vx – скорость перемещения трубы; R – глубина проникновения электронов (для полиэтилена R=2,4 г/см2).

Отношение скорости перемещения трубы и скорости её вращения в общем виде описывается формулой

Vx = N,

где Vx – скорость перемещения трубы; D – диаметр трубы; H- ширина пучка электронного ускорителя; N- скорость вращения трубы.

Практически отношение скорости перемещения к скорости вращения трубы попадает в диапазон 0,1-5,0. Правильно подобранное отношение скорости перемещения к скорости вращения позволяет добиться равномерного уровня поглощенной дозы покрытия на всей поверхности обрабатываемой трубы

Наличие более одного ускорителя электронов позволяет ускорить процесс радиационной модификации покрытия трубы, что немаловажно при промышленном производстве труб с радиационно-модифицированной изоляцией.

Таким образом, предлагаемое изобретение позволяет повысить ударную прочность, сопротивление пенетрации покрытия, адгезионную прочности и стабильность адгезии полимерного покрытия в процессе длительной эксплуатации труб.

Изобретение было раскрыто выше со ссылкой на конкретный вариант его осуществления. Для специалистов могут быть очевидны и иные варианты осуществления изобретения, не меняющие его сущности, как она раскрыта в настоящем описании. Соответственно, изобретение следует считать ограниченным по объему только нижеследующей формулой изобретения.

1. Способ получения радиационно-модифицированного полимерного покрытия на стальной трубе, включающий нанесение по крайней мере одного грунтовочного слоя на поверхность стальной трубы, нанесение по крайней мере одного адгезионного слоя на грунтовочный слой, с последующим нанесением по крайней мере одного полимерного слоя на основе полимера, выбранного из группы: полиолефины, полисилоксаны, полиамиды, синтетические каучуки, на адгезионный слой и радиационной модификацией покрытия при помощи по крайней мере одного ускорителя электронов с дозой облучения 1-100 Мрад при отношении скорости перемещения к скорости вращения трубы равной 0,1-5,0.

2. Способ получения радиационно-модифицированного полимерного покрытия на стальной трубе, включающий нанесение по крайней мере одного грунтовочного слоя на поверхность стальной трубы с последующим нанесением по крайней мере одного полимерного монослоя, содержащий полимер выбранный из группы: полиолефины, полисилоксаны, полиамиды, синтетические каучуки, и клеевой состав на основе полиолефинов, и радиационной модификацией покрытия при помощи по крайней мере одного ускорителя электронов с дозой облучения 1-100 Мрад при отношении скорости перемещения к скорости вращения трубы равной 0,1-5,0.

3. Стальная труба с радиационно-модифицированным полимерным покрытием, содержащая покрытие на основе слоев, полученных по любому из пп. 1, 2, при этом покрытие радиационно-модифицировано при помощи по крайней мере одного ускорителя электронов.



 

Похожие патенты:

Изобретение раскрывает установку паровой конверсии сернистого углеводородного газа, которая оснащена линией ввода сырьевого газа и линией вывода конвертированного газа с рекуперационным устройством, включает также нагреватель и конвертор, при этом установка оборудована узлом адсорбционного обессеривания, состоящим, по меньшей мере, из двух переключаемых адсорберов, по меньшей мере один из которых, находящийся в режиме регенерации адсорбента, соединен с линией вывода конвертированного газа в дефлегматор, установленный в качестве рекуперационного устройства и оснащенный линией вывода подготовленного газа, а остальные адсорберы, находящиеся в режиме адсорбции, установлены на линии ввода сырьевого газа, кроме того, установка оснащена блоком подготовки воды, соединенным линией подачи подготовленной воды с линией подачи сырьевого газа после адсорбера и оснащенным линиями ввода воды, подачи дегазированного водного конденсата из дефлегматора и вывода солевого концентрата, при этом нагреватель установлен на линии подачи парогазовой смеси из дефлегматора в конвертор.

Изобретение относится к области магистрального транспорта газа, в частности к компрессорным станциям подземных хранилищ газа. Технический результат изобретения - повышение надежности и эффективности работы устройства на протяжении полного периода закачки в подземное хранилище газа в широком диапазоне изменения технологических параметров, а также сокращение оборудования.
Изобретение относится к топливно-энергетическому комплексу, в частности к способу транспортировки сжиженных природных газов на значительные расстояния от источника к потребителю.

Изобретение относится к газовой промышленности. Установка содержит газопровод, газоход (2), продувочные свечи, состоящие из запорного устройства, выводящей трубы и оголовка (5), и решетчатую опорную мачту (3) для крепления и поддерживания газохода.

Способ предназначен для откачки газа из отключенного участка газопровода для проведения ремонтных работ. Способ включает подачу газа в сопло газового эжектора и перекачку этим газовым эжектором газа из отключенного участка газопровода в параллельную нитку или в участок, следующий за отключенным участком, при этом к отключенному участку газопровода дополнительно подключают жидкостно-газовый эжектор, сопло которого сообщено с гидронасосом, а выход из жидкостно-газового эжектора через сепаратор сообщают с параллельной ниткой газопровода или с участком газопровода, следующим за отключенным участком, при этом вход в гидронасос сообщают с емкостью с жидкостью, размещенной под сепаратором, после чего по мере уменьшения интенсивности откачки отключают газовый эжектор и производят откачку газа из отключенного участка газопровода жидкостно-газовым эжектором, включив подачу жидкости на его сопло.

Использование: очистка топливного газа от конденсата тяжелых углеводородов (C5-C15) и примесей с выделением легких фракций (C1-C4) для применения в когенерирующих установках.

Изобретение относится к магистральному трубопроводному транспорту, предназначенному, преимущественно, для транспортировки газа. Газопровод содержит линейные участки труб для перемещения транспортируемого газа от входа названного участка к его выходу, при этом, по меньшей мере, на части линейных участков установлена бесшовная труба, длина которой равна длине этого участка, которая выполнена из стекло - или углепластика, и имеет внутренний диаметр не менее 2500 мм.

Изобретение может быть использовано в двигателях внутреннего сгорания. Газово-поршневой электрогенератор, состоящий из двигателя (11) с низкой газовой концентрацией менее 30%, электрогенератора (12), системы (1) доставки мелкодисперсной водяной пыли, устройства (2) для охлаждения испарителя воды, электрического перекидного клапана (3), клапана-регулятора (4) давления, смесителя (5), температурного контроллера (6), переключателя датчика (7) тепловой нагрузки, камеры (8) сгорания газового двигателя, воздушного фильтра (9) и клапана (10) регулятора скорости.

Изобретение относится к энергосберегающим технологиям транспорта газа и может быть использовано при создании автоматизированной системы управления технологическим процессом магистрального газопровода на компрессорных станциях.

Изобретение относится к области транспортировки гелия и природного газа от месторождений потребителям. Удаленным потребителям общий поток добываемого с месторождения гелиесодержащего природного газа до транспортировки его в двухниточный магистральный газопровод направляют на установку для комплексной подготовки газа с последующим разделением его на два потока.

Изобретение относится к области металлургии, а именно к составу сероводородостойкой стали, используемой для изготовления бесшовных насосно-компрессорных и обсадных труб, предназначенных для эксплуатации в вертикальных, горизонтальных и наклонно-направленных скважинах, находящихся в умеренных макроклиматических районах, среды которых содержат сероводород при парциальном давлении более 1,5 МПа (15,0 кгс/см2).

Изобретение относится к изготовлению труб с внутренней пластмассовой оболочкой, которые предназначены для строительства трубопроводов различного назначения, по которым транспортируют агрессивные жидкости.

Изобретение относится к области металлургии, а именно к производству труб нефтяного сортамента. Для повышения коррозионной стойкости металла труб в средах, содержащих сероводород (при парциальном давлении H2S до 1,5 МПа) и углекислый газ (при парциальном давлении СО2 до 0,1 МПа) как одновременно, так и в отдельности, и обеспечения предела прочности не менее 655 МПа, предела текучести от 552 до 758 МПа и сопротивления ударным нагрузкам при минус 60°С не менее 70 Дж/см2 трубы получают из стали, содержащей, мас.%: углерод 0,15-0,25, кремний 0,15-0,35, марганец 0,40-0,70, хром 0,70-1,50, молибден 0,10-0,30, ванадий 0,03-0,08, алюминий 0,015-0,050, сера не более 0,010, фосфор не более 0,015, азот не более 0,012, медь 0,15-0,35, никель не более 0,30 (или 0,30-0,70), железо и неизбежные примеси остальное.

Изобретение относится к области металлургии, а именно к коррозионно-стойким сталям, используемым для производства бесшовных горячекатаных насосно-компрессорных и обсадных труб, работающих в условиях высокой концентрации углекислого газа и сероводорода в составе перекачиваемой углеводородной среды на месторождениях, расположенных в арктических районах.

Изобретение относится к области трубопроводного транспорта и может быть использовано при строительстве трубопроводов различного назначения, транспортирующих агрессивные среды.

Изобретение относится к металлической трубе с внутренней пластмассовой трубой. Металлическая труба с внутренней пластмассовой трубой содержит защитные втулки, которыми закреплены концы пластмассовой трубы.

Изобретение относится к строительству трубопроводов из труб с внутренней пластмассовой трубой. Технический результат заключается в повышении надежности защиты труб от коррозии и их сварных соединений.

Изобретение относится к стальным трубам, облицованным бетоном. Сущность изобретения: облицованная литьем под давлением стальная труба, которая введена в эксплуатацию для транспортировки жидкой среды, содержит кольцевую облицовку из бетона или цементного раствора, образующую внутренний диаметр трубы, металлическую оболочку, окружающую облицовку.
Группа изобретений относится к области добычи нефти и газа, в частности к конструкции труб. Насосно-компрессорная стальная труба содержит выполненную на своих концах наружную резьбу для соединения насосно-компрессорных стальных труб между собой посредством муфт.

Изобретение относится к металлургии и машиностроению и может быть использовано при изготовлении трубчатых материалов (труб) из металла, пластмассы, резины, стекла, комбинаций этих материалов, с покрытием и без покрытия для различных трубопроводов и трубчатых каналов связи.

Изобретение относится к способу получения сегментированного гелевого композита, содержащего стадии обеспечения листа сегментированного волокном холста или листа сегментированного пенопласта с открытыми порами, объединения листа с предшественником геля, гелеобразования предшественника геля, гелеобразования объединения с получением композитного листа, свертывания в рулон композитного листа и сушки композитного листа с получением сегментированного, армированного гелевого композита.
Наверх