Способ очистки водных растворов от тяжелых металлов и радионуклидов



Способ очистки водных растворов от тяжелых металлов и радионуклидов
Способ очистки водных растворов от тяжелых металлов и радионуклидов

Владельцы патента RU 2640244:

Федеральное государственное бюджетное учреждение науки "Институт химии твердого тела Уральского Отделения Российской Академии наук" (RU)

Изобретение может быть использовано в гидрометаллургии для очистки водных растворов от тяжелых металлов и радионуклидов, а также для очистки сточных и грунтовых вод. Способ осуществляют путем сорбции на сорбенте с использованием в качестве фильтрующего средства трековых мембран, при этом порошкообразный сорбент с размерами частиц 0,01-5000 мкм или его коллоидный раствор предварительно помещают в пакет произвольной формы, изготовленный из трековой мембраны на основе полиэтилентерефталата толщиной 50-75 мкм с размером пор, равным 0,01-10 мкм, причем сорбент занимает 5-80% от общего объема, а края торцевой части пакета герметично соединены путем склеивания. В качестве порошкообразного сорбента используют силикагель SiO2, катионит KУ2(Na), берлинскую лазурь. Способ обеспечивает конструктивно простую и эффективную технологию удаления тяжелых металлов и радионуклидов. 1 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

 

Изобретение относится к области гидрометаллургии, в частности к способам очистки водных растворов от тяжелых металлов и радионуклидов сорбцией, и может быть использовано для очистки сточных и грунтовых вод.

Известен способ обработки жидкости с помощью устройства, которое имеет закрытый корпус и связанные с ним фильтровальные средства для очистки жидкости и средства организации потока, причем фильтровальные средства выполнены из облученной частицами трековой мембраны или протравленной трековой мембраны, изготовленной из материала на основе пластика определенной толщины с определенным размером пор, при этом для очистки фильтровальных средств используют обратный поток, который создают путем подачи через фильтровальные средства обработанной жидкости (патент RU 2176986; МПК C02F 1/00, B01D 29/66; 2001 г.).

Недостатком известного способа является то, что он предназначен для удаления только твердых частиц (но не ионов и молекул раствора), имеющих размеры, большие размеров пор трековой мембраны 0.05-10.0 мкм, и может быть реализован только путем фильтрации под давлением жидкости, такой как вода. Жидкость должна подаваться из распределительной системы специальной конструкции, для ее подачи необходимы средства организации потока, такие как средства организации входного и/или выходящего потоков жидкости.

Известен способ удаления ионов и молекул тяжелых металлов из водных растворов с использованием кремнезема в качестве сорбента и фильтрующего средства, выполненного в виде колонки с пучком полых мембран в форме капилляров, имеющих поры с диаметром, меньше размера частиц кремнезема, что позволяет пропускать ионы металлов, при этом раствор, содержащий металлы, противотоком пропускают через диализную капиллярную колонку внутри или снаружи полых мембранных капилляров, а суспензию кремнезема пропускают с противоположной стороны стенки мембранных капилляров (патент US 6858147; МПК B01D 61/00, B01D 61/24, B01J 20/10, C02F 1/28; 2004 г.).

Недостатками известного способа являются, во-первых, необходимость применения реактора специальной конструкции, во-вторых, необходимость производить дозирование, загрузку и выгрузку сорбента в водный раствор, в-третьих, необходимость создания разности давлений на входе и выходе раствора сорбента в фильтрационную колонку и суспензии сорбента во встречном потоке.

Известен способ очистки жидкости с помощью устройства, содержащего средства очистки, выполненные в виде цилиндра из активированного угля, покрытого по своим поверхностям, находящимся в контакте с неочищенной жидкостью, тонкой фильтрующей пленкой, изготовленной из материала на основе пластика, такого как трековая мембрана или протравленная трековая мембрана (патент RU 2224576; МПК B01D 27/02, C02F 1/18; 2003 год).

Недостатками известного способа являются технологическая сложность процесса, обусловленная конструктивной сложностью устройства для очистки жидкости; ограниченный ряд сорбирующихся примесей, в основном различные органические примеси и хлор.

Таким образом, перед авторами стояла задача разработать простой способ очистки водных растворов, обеспечивающий упрощение конструктивного оформления процесса наряду с возможностью удаления большого числа примесей, в том числе тяжелых металлов и радионуклидов.

Поставленная задача решена в предлагаемом способе очистки водных растворов от тяжелых металлов и радионуклидов путем сорбции на сорбенте с использованием в качестве фильтрующего средства трековых мембран, отличается тем, что в качестве сорбента используют порошкообразный силикагель SiO2, или катионит КУ2, или берлинскую лазурь, или его (ее) коллоидный раствор с предварительным его (ее) помещением в пакет произвольной формы, изготовленный из трековой мембраны на основе полиэтилентерефталата толщиной 50-75 мкм с размером пор равным 0.01-10 мкм, при этом сорбент занимает 5-80% от общего объема, а края торцевой части пакета герметично соединены путем склеивания.

При этом для склеивания краев торцевой части пакета могут быть использованы например, клеи типа «Супер Момент Водостойкий» с последующей обработкой торцов пакета герметиком, например, «Момент силикон нейтральный».

В настоящее время не известен способ очистки водных растворов, в котором используют порошкообразный сорбент, предварительно помещенный в пакет из трековой мембраны с рабочими характеристиками в предлагаемых диапазонах значений.

В предлагаемом способе трековую мембрану и помещенный в нее сорбент или его коллоидный раствор используют как единое целое, поскольку сорбент изолирован (окружен) материалом мембраны со всех сторон, находясь в замкнутом для твердых частиц мембранном пакете. При этом существенное значение имеет размер частиц сорбента и объем, ими занимаемый. Так диапазон размеров частиц сорбента 0.01-5000 мкм обеспечивает стабильный процесс сорбции, в случае использования сорбента с размером частиц менее 0.01 мкм наблюдается неконтролируемое истечение коллоидного раствора через поры мембраны, в случае использования сорбента с размером частиц более 5000 мкм наблюдается возникновение механических напряжений на стенки мембраны, граничащих с их разрывом. Также стабильность процесса сорбции обеспечивается соотношением объемов сорбента и объема мембранного пакета, в который он помещен. При нахождении в пакете менее 5% сорбента наблюдается схлопывание конверта, которое замедляет массоперенос ионов сорбата через поры, при нахождении в пакете более 80% сорбента наблюдается возникновение механических напряжений на стенки мембраны, граничащих с их устойчивостью. Проведение процесса в предлагаемых авторами условиях обеспечивает ряд преимуществ, обеспечивающих упрощение процесса наряду с возможностью удаления большого числа примесей. Устраняется необходимость использования специального хроматографического оборудования, систем ввода и выхода растворов сорбата, коллоидного раствора или суспензии сорбента, манипуляций с загрузкой или выгрузкой порошка, или суспензии, или коллоидного раствора сорбента в реактор или хроматографическую колонку. Для достижения технического результата существенное значение имеют рабочие характеристики трековой мембраны, поскольку для выполнения ее в виде пакета и дальнейшего функционирования в качестве фильтрующего материала необходимо обеспечить сочетание прочности и эластичности. Экспериментальные исследования, проведенные авторами, позволили установить, что при толщине мембраны более 75 мкм возможно появление трещин на сгибах пакета вследствие недостаточной эластичности, а при толщине мембраны менее 50 мкм возможно появление трещин на сгибах пакета вследствие недостаточной прочности. Оптимальными условиями проведения сорбционного процесса является предлагаемый диапазон размера пор мембраны. Так, размер пор менее 0,01 мкм может привести к неоправданному возрастанию времени достижения эмпирического сорбционного равновесия сорбента с сорбатом, размер пор более 10 мкм может обусловить механическую неустойчивость использованной мембраны с суммарной относительной площадью пор 5-20%.

Предлагаемый способ может быть осуществлен следующим образом.

Сорбент, например силикагель SiO2 фракции 0,5-1,5 мкм; катионит КУ2 (Na) фракции 200-2300 мкм; берлинская лазурь фракции 0,2-0,9 мкм предварительно помещают в пакет произвольной формы, выполненный из трековой мембраны на основе полиэтилентерефталата толщиной 70-75 мкм с размером пор равным 0,1-0,2 мкм. Сорбент занимает 5-80% от общего внутреннего объема. Края торцевой части пакета герметично соединены путем склеивания, в качестве склеивающего материала могут быть использованы, например, клеи типа «Супер Момент Водостойкий» с последующей обработкой торцов пакета герметиком, например, «Момент силикон нейтральный». Герметизация делает возможным контакт частиц сорбента с внешней средой только через сквозные поры мембраны. Пакет с сорбентом помещают в сорбат (сточные, промышленные, грунтовые воды или иные растворы) и выдерживают. После достижения требуемого коэффициента очистки или степени сорбции пакет с сорбентом удаляют как единое целое из раствора сорбата. После удаления из раствора сорбата жидкость из внутреннего пространства пакета самопроизвольно стекает и/или испаряется через сквозные поры, оставляя сухой сорбент в пакете для его дальнейшего препарирования. В случае необходимости, если в качестве сорбента используют нанодисперсный материал сорбента, частицы которого невозможно отделить от раствора, может быть использован коллоидный раствор этого сорбента, предварительно помещенный в пакет. Значительным преимуществом способа является возможность просто и эффективно осуществлять очистку почв с его использованием, для чего пакеты с сорбентом помещают в почву, при этом грунтовые воды являются в данном случае сорбатом.

Предлагаемый способ иллюстрируется следующим примером.

Пример. В стеклянный сосуд емкостью 1 л наливают мерным цилиндром объем V=500 мл дистиллированной воды, опускают на дно магнитную мешалку. В раствор добавляют аликвоту (1 мл) стандартного раствора соли металла Fe(III), Cd(II), Cs(I), перемешивают и отбирают пробу на анализ для определения начальной концентрации иона металла (Сн, мг/л): Cd(II) - 2,0; Cs(I) - 2,0 (1800 Бк/мл): Fe(III) - 5,0. Затем в раствор помещают пакет с сорбентом - силикагелем фракции 50-100 мкм. Масса сорбента внутри пакета m (г)=1,3; что составляет 53% от общего объема пакета. Размер пакета - 2,2×2,5(×0,3) см2, материал - трековая мембрана из лавсана толщиной 75 мкм с размером пор 0,1 мкм. Раствор с пакетом выдерживают до установления равновесия. Затем определяют массовую концентрацию Fe(III), Cd(II), Cs(I) в равновесном растворе (Ср, мг/л), вычисляют долю сорбированного катиона S (S=1-Cp/Сн), коэффициент распределения Kd (Kd=S/(1-S)×V/m, где концентрацию кадмия в растворе определяют методом инверсионной вольтамперометрией, железо определяют фотометрическим методом с сульфосалициловой кислотой, цезий - масс-спектрометрически на приборе ЭЛАН 9000 или радиометрически по бетта-активности радионуклида Cs-137 на установке УМФ 1500 м.

На фиг. 1 изображен внешний вид пакета с сорбентом - силикагелем фракции 50-100 мкм. Материал пакета - трековая мембрана из полиэтилентерефталата производства ЛЯР ОИЯИ толщиной 75 мкм с размером пор равным 0.01-10 мкм, общей поверхностью 9,2 см2.

Параллельно с использованием пакета с сорбентом повторяли эксперименты по сорбции ионов Fe(III), Cd(II), Cs(I), используя в качестве сорбента гранулированные материалы в их естественном состоянии сыпучести. Условия сорбции с использованием гранулированных материалов: масса сорбента m=1,3 г SiO2: 0,9 г KY2Na; 0,30 г берлинская лазурь, объем воды 500 мл, периодическое перемешивание. Оба процесса сорбции ведут с выдержкой в течение 7 сут в водопроводной воде. После установления равновесия суспензию сорбата отделяли от взвеси сорбента фильтрованием, определяли равновесное содержание металлов в фильтрате, вычисляли коэффициенты распределения Kd. Результаты определения коэффициентов распределения по предлагаемому способу и с использованием гранулированных сорбентов приведены в таблице.

Из результатов эксперимента, приведенных в таблице, видно, что как известный, так и предлагаемый способы сорбции, используемые для очистки растворов, позволяют достичь высокую степень очистки. Однако предлагаемый способ характеризуется упрощением процесса, поскольку исключает стадии фильтрования суспензии сорбента, его извлечение из фильтрационной колонки.

Таким образом, авторами предлагается простой способ очистки водных растворов, обеспечивающий упрощение конструктивного оформления процесса наряду с возможностью удаления большого числа примесей, в том числе тяжелых металлов и радионуклидов.

1. Способ очистки водных растворов от тяжелых металлов и радионуклидов путем сорбции на сорбенте с использованием в качестве фильтрующего средства трековых мембран, отличающийся тем, что в качестве сорбента используют порошкообразный силикагель SiO2, или катионит КУ2, или берлинскую лазурь, или его (ее) коллоидный раствор с предварительным его (ее) помещением в пакет произвольной формы, изготовленный из трековой мембраны на основе полиэтилентерефталата толщиной 50-75 мкм с размером пор, равным 0,01-10 мкм, при этом сорбент занимает 5-80% от общего объема, а края торцевой части пакета герметично соединены путем склеивания.

2. Способ по п. 1, отличающийся тем, что для склеивания краев торцевой части пакета используют клей «Супер Момент Водостойкий» с последующей обработкой торцов герметиком.



 

Похожие патенты:

Изобретение относится к получению пузырьков и пен, содержащих пузырьки. Устройство содержит: первый блок, выполненный с возможностью определять по меньшей мере одну характеристику газа в пузырьках; второй блок, выполненный с возможностью вырабатывать пузырьки, содержащий: электролизер, выполненный с возможностью проводить электролиз электролита, чтобы вырабатывать газ в электролите, тем самым вырабатывая пузырьки; контроллер выполнен с возможностью регулировать второй блок, чтобы вырабатывать пузырьки согласно по меньшей мере одной характеристике газа.

Изобретение относится к ротационно-ударному испарителю (РУИ), который предназначен для испарения жидкостей, например нефти и нефтепродуктов, и может быть применен в установках для вакуумной перегонки, очистки, опреснения, получения элитных эфирных масел и спиртных напитков, а также в ряде других областей.

Изобретение относится к биотехнологии. Предложен способ очистки нефтесодержащих сточных вод.

Описаны способ магнитной активации жидких высокомолекулярных углеводородов, в котором для создания магнитного поля в жидкости, протекающей по диамагнитной трубе, пропускают импульсы тока по проводникам, расположенным в потоке жидкости, и устройство для реализации данного способа, в котором формирователи магнитного поля находятся вне трубы, а внутри трубы установлены металлические проводники, изолированные концы которых выведены наружу трубы и через управляемые коммутаторы подключены к импульсным источникам электроэнергии.

Изобретение может быть использовано для безреагентной очистки сапонитсодержащей воды и уплотнения сапонитсодержащего осадка. Для осуществления способа формируют излучение бегущих гидроакустических волн звукового и ультразвукового диапазонов частот, воздействуют излучением на загрязненную сапонитсодержащую воду, осуществляют гидроакустическую коагуляцию и осаждение сапонитсодержащих частиц, уплотнение тел водоупорных дамб и акустическую сушку осадка.

Изобретение относится к очистке природных и сточных вод и может быть использовано в коммунальном хозяйстве и в сфере природообустройства. Способ удаления плавающих веществ (1) с поверхности воды емкостного сооружения (2) включает удаление плавающих веществ (1) в отводящий желоб (3), переливной бортик (4) которого расположен строго горизонтально выше рабочего уровня воды (5) емкостного сооружения (2), а дно желоба (3) имеет уклон для самотечного отвода плавающих веществ (1).

Изобретение относится к приготовлению раствора, содержащего катионы и анионы. Токовый способ для выбора вида ионов и концентрации является традиционным путем химического растворения.

Изобретение относится к дозирующему устройству для подачи дозы добавки в жидкость, в частности, оно касается дозирующего устройства, которое используется для добавления малых количеств добавки в поток жидкости в трубе, в общем случае в поток воды, во время протекания жидкости мимо дозирующего устройства.

Изобретение относится к способам очистки воды от стронция. Способ очистки питьевой воды от стронция осуществляют путём ионного обмена.

Изобретение может быть использовано в аналитической химии природных вод для инструментального определения микроэлементов. Для осуществления способа группового концентрирования из кислых растворов и разделения ионов Ti, Mo, Sn, Fe к 10 мл водной фазы анализируемого кислого раствора добавляют 1 г легкоплавкого расплава ацетилсалицилата антипириния [AntH3O+]⋅[AcSal-], отделяют концентрат ионов Ti, Mo, Sn, Fe, озоляют азотной кислотой в микроволновой печи и анализируют атомно-эмиссионной спектрометрией.

Изобретение относится к извлечению кислых компонентов из газовых потоков, таких как попутные газы из скважин или дымовые/выхлопные газы с использованием мембран, содержащих макромолекулярный самоорганизующийся полимер.
Изобретение относится к области разделения сред с помощью полупроницаемых мембран, в частности к способу производства тpековых мембpан из полимерных пленок путем облучения их высокоэнергетическими тяжелыми ионами и обработки растворами химических травящих реагентов, и может быть использовано в производстве мембранных фильтрующих материалов.

Изобретение относится к разделению веществ, в частности к способу изготовления полупроницаемых мембран. .

Изобретение относится к технологии получения полупроницаемых мембран из сложных полиэфиров тетрабромбисфенола А и определенных ароматических дикарбоновых кислот, а также касается способов, использующих указанные мембраны для селективного разделения по крайней мере одного компонента от жидкой смеси, содержащей указанный компонент в смеси с другими компонентами, в частности, для разделения газов.

Изобретение относится к способу формирования угольного слоя, применяемого в фильтрующей коробке для респиратора. Способ формирования конформного фильтрующего слоя включает определение внутреннего периметра впуска контейнера для образования фильтрующего слоя, предоставление заполняющей трубы, имеющей внутренний периметр первого размера, причем первый размер заполняющей трубы является меньшим, чем внутренний периметр фильтрующего слоя, и штормовое заполнение, по меньшей мере частично, фильтрующего слоя фильтрующими гранулами, причем фильтрующие гранулы пропускают через первую заполняющую трубу для формирования слоя в фильтрующем слое.

Изобретение относится к устройствам для очистки сточных вод и может быть использовано для очистки воды от хрома, хлоридов, сульфатов, взвешенных веществ, СПАВ, БПК И ХПК.

Изобретение относится к обезвоживанию нефти, содержащей механические примеси. Предварительно нагретую водонефтяную эмульсию пропускают через фильтрующий материал, очищаемый при забивке механическими примесями промывкой.

Изобретение относится к устройствам очистки поверхностного стока и может быть использовано для очистки ливневых и талых вод с территорий городов и промышленных предприятий от взвешенных веществ, нефтепродуктов, органических веществ и ионов тяжелых металлов.

Намывной фильтр содержит емкость, внутри которой размещены перфорированные вертикальные боковые стенки, обтянутые сеткой, с возможностью подачи очищаемой воды в зазор между перфорированной стенкой и стенками емкости.

Переносная система обработки воды включает по меньшей мере одну подсистему для обработки воды, включающую систему флокуляции, систему хлорирования и систему биопесочной фильтрации.

Настоящее изобретение относится к области очистки отработанной воды в устройстве с фильтрующей средой, имеющем всасывающую трубную систему. Фильтрующая среда может представлять собой среду из скорлупы грецких орехов.
Наверх