Устройство для проведения геофизических исследований (варианты)

Группа изобретений относится к горному делу и может быть применена для проведения геофизических исследований без извлечения бурового инструмента из скважины. Устройство по первому варианту включает сборку скважинных приборов, снабженную транзитной линией электронной связи, установленную в колонне бурильной или насосно-компрессорной труб, включающую соосно установленные кожух для защиты и транспортировки сборки приборов и направляющую трубу с расположенным в нижней части ограничителем хода и отверстиями над ним, камеру управления в виде полости, образованной между кожухом и направляющей трубой, сборку приборов, выполненную в верхней части с плечом и хвостовиком и жестко скрепленную в нижнем окончании с бурильной трубой, отстыковочно-стыковочное устройство с цанговым захватом, установленное в верхней части в кожух посредством муфты с отверстиями, жестко скрепленной с бурильной трубой, конусную втулку, установленную в направляющей трубе для возможности взаимодействия с цанговым захватом. По второму варианту устройство включает соосно установленные защитный кожух, с возможностью перемещения вдоль колонны, направляющую трубу с каналами внутри для прохода промывочной жидкости к бурильному инструменту и каналами для управления перемещением кожуха, сборку приборов, закрепленную в верхней части к направляющей трубе, а в нижней - посредством муфты - к бурильной трубе. Муфта выполнена с подпружиненными шариками для фиксации защитного кожуха при спуске и каналами для прохода промывочной жидкости во время бурения. На внутренней поверхности кожуха выполнены кольцевые выступы, образующие верхнее и нижнее плечо. Площадь нижнего плеча больше, чем площадь верхнего плеча. Обеспечивается возможность исследования без извлечения бурового инструмента, сокращается время на проведение исследований, снижается аварийность, повышается информативность. 2 н.п. ф-лы, 2 ил.

 

Область техники

Изобретение относится к горному делу и может быть применено для проведения геофизических и иных исследований без предварительного извлечения бурового инструмента из скважины с любым закачиванием (вертикальных, наклонных, горизонтальных, сложно профильных).

Уровень техники

Известно устройство для доставки геофизического прибора или сервисного оборудования в горизонтальную скважину, получившее название «скважинный трактор» [патент РФ №2487230, опубл. 10.07.2013]. Трактор содержит цилиндрический корпус с установленным в нем электродвигателем, шарнирно установленными расклинивающими опорами, и, по крайней мере, одну секцию с движителем, выполненным в виде установленных в корпусе колес с радиусом закругления, равным радиусу исследуемой скважины. При этом трактор дополнительно снабжен насосом с приводом от электромотора, гидромотором с цепным приводом на колеса, а также активатором расклинивающих опор. В корпусе может быть установлен дополнительный электродвигатель для активатора расклинивающих опор. Доставку геофизических приборов с помощью него осуществляют следующим образом. Скважинный трактор соединяют муфтой с геофизическим прибором и геофизическим кабелем и спускают в скважину. При достижении трактором горизонтального участка скважины включают электродвигатель, который приводит в движение активатор расклинивающих опор. Расклинивающие опоры раздвигаются, и колеса трактора упираются в стенки скважины. При достижении необходимой силы прижима активатор расклинивающих опор прекращает их раздвигать. Крутящий момент от электродвигателя передается на насос, приводящий в действие гидромотор. С гидромотора через цепную передачу приводятся в движение колеса. Перемещаясь вдоль горизонтальной части ствола скважины в направлении к ее забою, трактор тянет за собой геофизический кабель. Для подъема скважинного трактора из скважины включают активатор расклинивающих опор в обратном направлении, при этом расклинивающие опоры складываются и скважинный трактор извлекается путем наматывания геофизического кабеля на бухту каротажного подъемника. Данный способ является достаточно доргостоящим в том числе и в сервисе и аварийным. Кроме того, существенным недостатком данного способа является то, что трактор необходимо располагать по центру скважины, что ведет к перекрытию потока буровой жидкости.

Известен специальный геофизический кабель для исследования наклонных и горизонтальных скважин, обладающий повышенной жесткостью, что позволяет с помощью этого кабеля не только опускать приборы в скважину, но и проталкивать их на забой горизонтальных скважин [патент РФ №2087929, опубл. 20.08.1997]. Геофизический кабель состоит из токоведущих жил, электрической изоляции, двухслойного повива брони, поверх которой нанесено покрытие из пластичного материала толщиной, дополнительная двухслойная броня с взаимно противоположным повивом и промежутками между отдельными проволоками в повивах, поверх которой нанесено общее покрытие из пластичного материала, заполняющего промежутки между проволоками. Недостатком является то, что жесткий геофизический кабель не гарантирует доставку приборов к забоям скважин, имеющих протяженную горизонтальную часть. Кроме того, такой кабель имеет свойство сохранять остаточную деформацию, вызванную намоткой на барабан лебедки каротажного подъемника. Это приводит к чередующимся с неравномерным движением остановкам приборов в стволе скважины при выполнении измерений. Поэтому при интерпретации полученных данных каротажа возникают большие трудности в увязке глубин, и все это в конечном итоге приводит к ошибочным выводам при интерпретации каротажных диаграмм, зарегистрированных за несколько спусков и подъемов в условиях быстро меняющихся динамических процессов при освоении эксплуатационных скважин. Существенно так же, что жесткий кабель обеспечивает успешную доставку стандартных скважинных приборов к забоям лишь сильно пологих скважин, значения зенитных углов в которых не превышают 70-75 градусов.

Из патента РФ №2520733, опубл. 27.06.2014 известна скважинная геофизическая аппаратура, содержащая геофизический кабель с кабельным наконечником и герметичный корпус с находящимися внутри него датчиками для регистрации параметров геофизического поля, например сейсмоприемниками. В герметичный корпус и в кабельный наконечник дополнительно введены модули радиосвязи, а верхняя часть герметичного корпуса и нижняя часть кабельного наконечника выполнены в виде радиопрозрачных окончаний с возможностью информационного обмена между модулями радиосвязи. Основным недостатком использования данной аппаратуры является использование в нем обычного геофизического кабеля, который невозможно протолкнуть к прикрепленным к концу буровой колонны насосно-компрессорных труб (НТК) приборам в случае горизонтальных скважин.

Известен способ спуска геофизических приборов на нужную глубину, раскрытый в патенте РФ №2563855, опубл. 20.09.2015, где поставленная цель достигается тем, что колонну НКТ перемещают вместе с содержащимся в ней отрезком кабеля в горизонтальную часть ствола на расстояние, соизмеримое с вертикальной частью ствола, затем, по крайней мере, один раз дополнительно в колонну НКТ опускают отрезок кабеля такой же длины с возможностью механического и бесконтактного радиоволнового соединения его нижнего конца с верхним концом содержащегося в скважине отрезка кабеля, при этом каждый дополнительный отрезок каротажного кабеля поочередно опускают и прижимают к колонне насосно-компрессорных труб. Реализация способа требует проведение сложных технологических операций, а для проведения исследований необходимо полное извлечение труб из скважины.

Наиболее близким техническим решением является устройство для каротажа горизонтальных скважин, известное из патента РФ №2353955, опубл. 27.04.2009, которое содержит спускаемые в скважину автономные геофизические модули, соединенные между собой в сборку, к верхней части которой присоединено средство для соединения сборки с колонной буровых труб, а также наземный комплекс, включающий глубиномер и персональный компьютер, при этом сборка содержит модули гамма-каротажа, трехзондового нейтрон-нейтронного каротажа, многозондового электрического бокового каротажа, волнового акустического каротажа, акустического профилемера, инклинометра, при этом в нижней части сборки установлено сопло для выхода промывочной буровой жидкости в затрубное пространство при промывке скважины, а каждый автономный геофизический модуль содержит автономный блок питания, блоки преобразования сигналов и памяти. Однако, для проведения работ необходима длительная остановка скважины, что в ряде случаев, является не допустимым из за высокой степени аварийности.

Сущность изобретения

Технический результат, получаемый при реализации разработанных технических решений, состоит в проведении геофизических исследований в скважинах с любым закачиванием без предварительного извлечения бурового инструмента, сокращении времени на проведение геофизических и иных исследований в скважинах, снижении аварийности этого вида работ, и в повышении информативности геофизических исследований различных скважин.

Заявленный технический результат достигается применением устройства для геофизического исследования скважины по первому варианту, включающем сборку скважинных геофизических и иных приборов, снабженную транзитной линией электронной связи, при этом устройство установлено непосредственно в колонне бурильной или насосно-компрессорной трубы, соосно установленные кожух для защиты и транспортировки сборки приборов и направляющую трубу с коаксиально расположенными отверстиями, камеру управления, в виде полости между кожухом и трубой, сборку приборов, в верхней части выполненную с плечом и хвостовиком, и жестко скрепленную в нижнем окончании посредством муфты с бурильной трубой, универсальное отстыковочно-стыковочное устройство с цанговым захватом, установленное в кожухе в верней части посредством муфты, жестко скрепленной с бурильной трубой, конусную втулку, установленную в направляющей трубе, для взаимодействия с цанговым захватом отстыковочно-стыковочного устройства.

Заявленный технический результат достигается применением устройства для геофизического исследования скважины по второму варианту, установленного непосредственно в колонне бурильной или насосно-компрессорной трубы, включающем сборку скважинных геофизических и иных приборов, снабженную транзитной линией электронной связи, соосно установленные кожух для защиты сборки приборов и направляющую трубу с каналами внутри, сборку приборов, закрепленную в верхней части на направляющей трубе, а в нижней посредством концевой муфты с бурильной трубой, муфта выполнена с подпружиненными шариками для фиксации защитного кожуха при спуске и каналами для прохода промывочной жидкости во время бурения, на внутренней поверхности кожуха выполнены кольцевые выступы, образующие верхнее и нижнее плечо.

Описание изобретения

Устройство установлено непосредственно в колонне бурильной или насосно-компрессорной трубы в специальной трубе - кожухе. Диаметр кожуха определяется как максимально допустимый для беспрепятственного бурения. В кожухе специальным образом устанавливается сборка скважинных геофизических и иных приборов, при этом свободное пространство между приборами и кожухом достаточно для беспрепятственного прохождения промывочной жидкости. Механизм, которым верхняя часть жесткой сборки геофизических и иных приборов присоединена к кожуху, снабжен универсальным отстыковочно-стыковочным устройством. Для расстыковки приборов от кожуха в отстыковочное устройство под воздействием потока промывочной жидкости доставляется ключ, что приводит к отстыковке сборки геофизических и иных приборов от кожуха, а кожуха от буровой колоны. Отстыковавшись от удерживающего геофизические приборы в кожухе устройства, сборка геофизических приборов, жестко скрепленная в нижнем окончании с буровой колонной, телескопически выдвигается под воздействием потока промывочной жидкости или силы тяжести и трения из кожуха Рис. 1 или в зависимости от типа устройства выдвигается кожух Рис. 2. Движение кожуха после обнажения сборки приборов останавливается при помощи ограничителей. Отсоединение сборки от кожуха синхронизировано с включением приборов и проведением записи геофизической информации. Длина кожуха определяется длиной сборки геофизических приборов. В сборку геофизических приборов могут входить все основные приборы необходимые для качественного изучения геологического разреза скважины:

- модуль ГГК (литоплотностной гамма-гамма каротаж);

- модуль (АК) - (широкополосный акустический каротаж);

- модуль ННК (двуххзондовый нейтрон-нейтронный каротаж);

- модуль ГК - (гамма каротаж);

- модуль СГК (спектрометрического гамма каротаж);

- модуль ЭК (четырехзондового электрического каротажа);

- модуль - имиджер (электрический или акустический сканер);

- модуль АКП (акустический профилимер);

- модуль ЯМК (ядерный магнитный каротаж);

- модуль ГДК (гидродинамический каротаж);

- модуль ВСП (вертикальное сейсмическое профилирование);

- модуль гироинклинометра.

- модуль «Пи Ди Кей» (термометр, дебитомер, влагомер)

Все приборы соединены между собой транзитной высокопроизводительной линией электронной связи. В верхнем окончании сборки приборов расположен управляющий модуль. Информация, получаемая в процессе записи, записывается в память в каждом модуле и в устройство памяти управляющего модуля. При обратной стыковке сборки приборов в кожух питание приборов отключается. Приборы демпфируются, и продолжается бурение. В зависимости от характеристики скважин используется два варианта устройств Рис. 1 и Рис. 2

Краткое описание чертежей

На Рис. 1 приведена принципиальная схема устройства по первому варианту для горизонтального бурения.

На Рис. 2 приведена принципиальная схема устройства по второму варианту для вертикальных пологих эксплуатационных скважин.

Осуществление изобретения

На Рис. 1 показан первый вариант устройства для геофизического исследования скважины. Устройство состоит из сборки геофизических приборов 1 снабженной хвостовиком в виде грибка 16. Соосно сборке геофизических приборов 1 расположены кожух для транспортировки сборки 3 и направляющая труба 4. В направляющей трубе посредством крепежных винтов 6 установлена конусная втулка 5. В переходной муфте 2, крепящейся на бурильной трубе 17, находится универсальное отстыковочно-стыковочное устройство с цанговым захватом 7, причем, цанговый захват устройства в исходном состоянии и пружина 8 удерживает сборку геофизических приборов за хвостовик в виде грибка. Устройство снабжено сальниковыми уплотнениями 10. Сборка геофизических приборов нижней частью закреплена в концевой муфте 11, которая вкручивается в бурильную трубу 17. В направляющей трубе коаксиально расположены отверстия 13, а кожух для транспортировки сборки и направляющая труба образуют камеру управления 12. В нижней части направляющей трубы расположен ограничитель хода 18. Сборка геофизических приборов в верхней части имеет плечо 14.

Устройство работает следующим образом. Для вывода сборки скважинных геофизических и иных приборов из защитного кожуха на седло отстыковочно-стыковочного устройства 7 по бурильным трубам промывочной жидкостью спускают шар 15. Шар перекрывает давление промывочной жидкости. Отстыковочно-стыковочное устройство с цанговым захватом 7 начинает перемещение, наезжает цангами на конусную втулку 5 и освобождает от захвата грибок хвостовика 16 сборки скважинных геофизических приборов 1. Далее сборка скважинных геофизических и иных приборов 1 начинает перемещение относительно направляющей трубы. Жидкость из под плеча 14 сборки 1 перетекает по отверстиям 13 в камеру управления 12. При работе сборки приборов, давление в трубах должно быть сброшено. Таким образом, сборка скважинных геофизических и иных приборов готова к работе.

Для подъема сборки скважинных геофизических и иных приборов 1 в исходное состояние необходимо повысить давление промывочной жидкости в бурильных трубах. Остыковочно-стыковочное устройство с цанговым захватом 7 переместится, открывая отверстия 13 вверху. Промывочная жидкость под давлением по отверстиям 13 и камере управления 12, попадает под плечо 14 сборки геофизических приборов и, создавая перепад давлений, перемещает ее вверх. Оставшаяся промывочная жидкость из коаксиальной камеры между приборной частью 1 и направляющей камерой 12 через отверстия винтах 9 сбрасывается в затрубное пространство. В исходном состоянии сборки геофизических приборов цанговый захват остыковочно-стыковочного устройства захватывает грибок хвостовика 16. Таким образом, сборка геофизических приборов приведена в исходное состояние.

Принципиальная схема устройства по второму варианту, приведенная на Рис. 2, наиболее эффективна для работ в вертикальных пологих эксплуатационных скважинах.

Устройство Рис. 2 состоит из сборки геофизических приборов 1, закрытой защитным кожухом 4, и закрепленной одним концом к направляющей трубе 2, которая неподвижно крепится через переходную муфту 3 непосредственно к бурильной трубе 13. Причем направляющая труба 2 имеет канал 8, диаметр которого равен внутреннему диаметру бурильных труб и каналам 9, общая площадь, которых равна площади канала 8. Нижний конец сборки геофизических приборов 1 закреплен в переходной муфте 5, а та в свою очередь крепиться к бурильной трубе 14. Для фиксации защитного кожуха 4, при отсутствии давления промывочной жидкости в бурильных трубах при спуске, на переходной муфте 5 предусмотрены подпружиненные шарики 6, входящие в канавку защитного кожуха 4. Промывочная жидкость во время бурения проходит по каналам 8 и 9 и проточке 7 направляющей трубы 4, и каналам 10 переходной муфты 5. На внутреннем диаметре защитного кожуха имеются кольцевые выступы, образующие верхнее плечо 11 и нижнее плечо 12. Причем плечи выполнены разновеликими и площадь нижнего плеча 12 больше площади верхнего плеча 11. В таком виде устройство крепится к бурильному инструменту, и вместе с этим инструментом выполняет функции бурения с промывкой, ничем не препятствуя проведению бурильных работ.

Для подготовки устройства по второму варианту к работе необходимо поднять защитный кожух 4 вверх, тем самым открывая сборку приборов 1 для геофизических исследований. Это делается следующим образом. На седло 15 направляющей трубы 2 спускают шар 16. Шар перекроет давление промывочной жидкости в каналах 9 и жидкость пойдет по каналам 17 под верхнее плечо 11, тем самым создавая давление на это плечо и образуя силу подъема защитного кожуха вверх. Кожух двигается вверх до упора нижнего плеча 12 в направляющую трубу 2, причем усилие подпружиненных шариков по сравнению с силой подъема будет несравнимо меньше. По исполнении этой операции сборка геофизических приборов готова к работе.

Для приведения устройства по Рис. 2 в исходное состояние необходимо поднять шар 16. Промывочная жидкость под давлением по каналам 9, пойдет на нижнее плечо 12 и создаст силу на площади этого плеча. За счет разницы площадей нижнего и верхнего плеча защитный кожух 4 переместится вниз, закрывая сборку геофизических приборов 1. Оставшаяся между защитным кожухом и направляющей трубой жидкость через отверстия 18 сбрасывается в затрубное пространство.

Изобретение позволяет проводить как окончательные, так и промежуточные каротажные исследования.

Проведение геофизических и иных исследований скважины по мере технологического подъема бурового инструмента (смена бурового оборудования) до устья скважины. В этом случае роль ключа будет исполнять шар, попадание которого в отстыковочно-стыковочное устройство и приведет к исполнению указанной выше последовательности операций, позволяющей обнажить жесткую сборку приборов в открытом стволе скважины и провести необходимые геофизические исследования. Информация с приборов будет извлечена после подъема приборов на устье скважины.

Проведение промежуточных геофизических и иных исследований скважины в ограниченном интервале ствола скважины, считывание полученной информации посредством беспроводного считывающего устройства, доставляемого к приборам посредством каротажного кабеля. После считывания и анализа полученных данных кабель извлекают из скважины, осуществляют обратную стыковку буровой колоны с буровым инструментом, и продолжают бурение. При необходимости такие промежуточные исследования можно проводить в любом количестве при последующем наращивании длины буровой колоны. Для сокращения времени простоя скважины считывающую (путем бесконтактного радиоволнового соединения) головку промывают во время технологической промывки (проработке) скважины.

В отличие от других методов проведения исследований в скважинах различного профиля (горизонтальных искривленных и обычных вертикальных) изобретение позволяет:

- значительно сократить время на проведение геофизических и иных исследований в скважинах, так как приборы постоянно находятся в забойной части скважины, и приводятся в действие только после начала движения приборной части в кожухе;

- для обеспечения бесперебойной работы геофизического и иного оборудования в жесткую сборку геофизических и иных приборов может конструктивно включатся оборудование, необходимое для генерации электричества и передачи навигационных данных;

- скрытая в защитном кожухе компоновка приборов не создает дополнительных препятствий в процессе бурения, и способствует снижению уровня аварийности бурения;

- дорогостоящая сборка скважинных геофизических приборов при прихвате бурового долота может быть извлечена из скважины за счет превышения предельного разрывного усилия в месте стыковки нижней части приборов с буровой колонной;

- для работы используются наиболее распространенные технические средства.

Другие известные технологии и устройства для геофизических и иных исследований не обладают вышеперечисленными преимуществами.

1. Устройство для геофизических исследований скважины, включающее сборку скважинных геофизических и иных приборов, снабженную транзитной линией электронной связи, отличающееся тем, что установлено непосредственно в колонне бурильной или насосно-компрессорной труб, включает соосно установленные кожух для защиты и транспортировки сборки приборов и направляющую трубу с расположенным в нижней части ограничителем хода и отверстиями над ним, камеру управления в виде полости, образованной между кожухом и направляющей трубой, сборку приборов, выполненную в верхней части с плечом и хвостовиком и жестко скрепленную в нижнем окончании с бурильной трубой, отстыковочно-стыковочное устройство с цанговым захватом, установленное в верхней части в кожух посредством муфты с отверстиями, жестко скрепленной с бурильной трубой, конусную втулку, установленную в направляющей трубе для возможности взаимодействия с цанговым захватом.

2. Устройство для геофизических исследований скважины, включающее сборку скважинных геофизических и иных приборов, снабженную транзитной линией электронной связи, отличающееся тем, что установлено непосредственно в колонне бурильной или насосно-компрессорной труб и включает соосно установленные защитный кожух с возможностью перемещения вдоль колонны, направляющую трубу с каналами внутри для прохода промывочной жидкости к бурильному инструменту и каналами для управления перемещением кожуха, сборку приборов, закрепленную в верхней части к направляющей трубе, а в нижней - посредством муфты - к бурильной трубе, муфта выполнена с подпружиненными шариками для фиксации защитного кожуха при спуске и каналами для прохода промывочной жидкости во время бурения, на внутренней поверхности кожуха выполнены кольцевые выступы, образующие верхнее и нижнее плечо, причем площадь нижнего плеча больше, чем площадь верхнего плеча.



 

Похожие патенты:

Группа изобретений относится к инструменту ограничения потока для использования в поземной скважине, буровому снаряду и способу ориентирования бурового снаряда в скважине.

Изобретение относится к бурению сближенных параллельных скважин. Техническим результатом является повышение точности определения расстояния между стволами сближенных скважин.

Способ извлечения нефти, газа, конденсата из скважины преимущественно истощаемых газоконденсатных месторождений может быть использован на предприятиях нефтегазодобывающей промышленности.

Группа изобретений относится к нефтедобывающей промышленности и, в частности, к одновременно-раздельной закачке жидкости в нагнетательные скважины, вскрывшие два пласта.

Изобретение относится к геофизике и может быть использовано при дефектоскопии магнитных металлических труб, расположенных в скважинах, с одновременным вычислением толщины стенок каждой из труб в многоколонных скважинах.

Группа изобретений относится к способу и системе для уменьшения трения бурового оборудования, размещаемого в буровой скважине. Указанный способ включает: обеспечение наружного трубчатого элемента, имеющего ствол с внутренней поверхностью; нанесение первого слоя смазочного материала по меньшей мере на часть внутренней поверхности наружного трубчатого элемента; размещение наружного трубчатого элемента по меньшей мере в части буровой скважины; обеспечение бурового снаряда, содержащего внутренний элемент, имеющий наружную поверхность и центральную продольную ось, совмещенную с центральной продольной осью наружного элемента; нанесение второго слоя смазочного материала по меньшей мере на часть наружной поверхности внутреннего элемента; вставку внутреннего элемента в ствол наружного трубчатого элемента; обеспечение протекания бурового раствора через ствол бурового снаряда; поворот внутреннего элемента по отношению к наружному элементу; измерение показателя механического износа и/или трения между наружным элементом и внутренним элементом; определение того, превышает ли измеренный показатель заранее заданный пороговый уровень; и запуск последующей операции в ответ на определение того, что измеренный показатель превышает заранее заданный пороговый уровень.

Изобретение относится к способу контроля усилия, прикладываемого к компоненту в стволе скважины после бурения ствола скважины и к узлу, предназначенному для использования при выполнении операции в скважине после бурения ствола скважины.

Изобретение в целом относится к бурению скважин, и в частности к способу и устройству для распознавания трубного соединения внутри конструкции скважины. Система для обнаружения соединения труб внутри конструкции скважинного ствола содержит устройство, соединяемое в линию с конструкцией скважины.

Изобретение относится к геофизическому исследованию скважин. Техническим результатом является обеспечение точного измерения характеристик пласта и глубины в режиме реального времени.

Изобретение относится к разведке нефтяных месторождений, в частности к дальномерной системе позиционирования и методике с применением магнитных монополей. Техническим результатом является точное определение местоположения приемника относительно передатчиков и определение расстояния между передатчиком и приемником за счет использования передатчика и/или приемника, содержащего магнитный монополь.

Изобретение относится к области бурения скважин и предназначено для фиксации корпуса скважинных приборов забойной телеметрической системы (ЗТС) внутри вставки в колонне бурильных труб.

Группа изобретений относится к оборудованию для добычи нефти и газа, в частности к оборудованию для исследования и освоения наклонных и горизонтальных скважин, оборудованных компоновками для проведения многостадийного гидроразрыва пласта.

Группа изобретений относится к устройствам для установки датчиков на участки трубы в нефтегазодобывающих скважинах. Устройство включает механический зажим.

Группа изобретений относится к обнаружению подводных утечек углеводородов на морских объектах. Система содержит по меньшей мере один детектор (5) утечки, функционально подсоединенный к контроллеру (9), расположенному на подводном узле (14), система снабжена плавучим элементом (1), на котором закреплен детектор (5) утечки.

Изобретение относится к оборудованию для добычи нефти установками электроцентробежных насосов, спускаемыми в скважину на грузонесущем кабеле, и может быть использовано при промыслово-геофизических исследованиях в скважинах и каротажных работах.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к зондам, используемым при проведении подземных операций. Зонд предназначен для применения в подземном инструменте, содержащем корпус, имеющий подземную полость, подверженную воздействию внешнего давления среды, окружающей инструмент.

Группа изобретений относится к скважинным электромагнитным телеметрическим системам и способам нанесения изолирующих покрытий на элементы узлов электромагнитных телеметрических антенн.

Изобретение относится к области бурения скважин и предназначено для фиксации забойного блока телеметрической системы (ЗТС) в ориентирующем переводнике, используемого для ориентации направленного бурения.

Группа изобретений относится к нефтяной промышленности и может быть применена для доставки скважинных приборов. Способ доставки скважинных приборов к забоям бурящихся скважин сложного профиля и проведения геофизических исследований характеризуется тем, что каротажные приборы подсоединяют к приборному мосту, в верхнюю часть которого ввинчивают нижнюю трубу бурильной колонны и, посредством их наращивания, приборы опускают на заданную глубину.

Изобретение предназначено для размещения скважинного датчика давления и температуры, входящего в состав подземного скважинного оборудования. Конструкция объединяет в себе корпус, блок подвода погружного кабеля и переходник.

Изобретение относится к области роторного бурения скважин и может быть использовано при бурении наклонно направленных и горизонтальных скважин. Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины включает пустотелый цилиндрический герметичный корпус, содержащий основание, выполненное с возможностью вращения. На основании установлены навигационные датчики. В корпусе установлены датчик частоты вращения, моментный двигатель, в статоре моментального двигателя выполнено цилиндрическое отверстие, в которое установлены токопровод и первая втулка, соединенная с основанием. С обеих сторон корпуса расположены два амортизатора с прокладками. Первый амортизатор с одной стороны закреплен на моментном двигателе, а с другой стороны выполнен с возможностью жесткого соединения, например, с оборудованием телеметрической системы. Вторая втулка содержит подшипник вращения, жестко связана со вторым амортизатором и через подшипник вращения соединена с основанием. Второй амортизатор выполнен с возможностью жесткого соединения, например, с силовой частью компоновки низа бурильной колонны. Жесткость амортизационных прокладок в поперечном направлении превышает продольную. Техническим результатом является повышение надежности работы устройства, повышение стабильности геостационарного положения навигационных датчиков, повышение точности определения пространственного положения бурового инструмента. 1 ил.
Наверх