Способ маршрутизации в беспроводных сетях zigbee

Изобретение относится к области беспроводной связи и может быть использовано в беспроводных сенсорных сетях ZigBee.Технический результат состоит в повышении точности маршрутизации при двухадресных пакетах, содержащих адрес начального отправителя и конечного получателя. Для этого функции портов, соединяющих маршрутизаторы в проводных сетях, в сетях ZigBee выполняют временные слоты, в течение которых осуществляется связь между маршрутизаторами сети. Временные слоты суперфреймовой структуры ZigBee как бы выполняют функции портов, через которые осуществляется связь между маршрутизаторами в сети ZigBee. Перед передачей маячка в выходном буфере каждого маршрутизатора формируется суперфрейм в виде набора ячеек памяти. В каждой из ячеек, за которыми закреплены соответствующие маршрутизаторам слоты, размещаются пакеты, получаемые от маршрутизаторов для последующей передачи. Каждый маршрутизатор независимо от других периодически по сигналу таймера рассылает широковещательно суперфреймы, ограниченные маячками. Все соседние маршрутизаторы, принявшие начальный маячок, запускают механизмы синхронизации, генерирующие последовательность временных слотов, и производят последовательный (послотовый) прием всех пакетов, содержащихся в соответствующей им ячейке. В течение тех слотов, в которых отсутствует информация, передача не происходит, а осуществляются только механизмы синхронизации, во время которых затрачивается малое количество энергии по сравнению с режимом передачи. 1 ил.

 

Изобретение относится к беспроводным сетям связи. В частности, к способу маршрутизации в беспроводных сенсорных сетях ZigBee. Указанные сети представляют альтернативу проводным соединениям в распределенных системах управления и мониторинга.

В рассматриваемых сетях объединенные в сеть сенсоры образуют территориально-распределенную самоорганизующуюся систему сбора, обработки и передачи информации. Синхронизация для данных сетей является сложной и важной задачей, поскольку она требует взаимной пространственно-временной координации между узлами. Решение данной задачи возможно благодаря использованию суперфреймовой структуры в сетях ZigBee [1]. Суперфрейм ограничивается периодически передаваемыми кадрами маячков, которые позволяют узлам синхронизироваться с сетью. Активная часть суперфрейма разделяется на 16 последовательных временных слотов и включает три части: маячок, период конкурентного доступа (САР) и период неконкурентного доступа (CFP). Конец суперфрейма является неактивным периодом, в котором узлы могут входить в режим пониженного потребления энергии. В сети могут происходить коллизии маячков, что, безусловно, может приводить к нарушению синхронизации сети. Указанные коллизии устраняются тремя способами:

- выделение временного окна в начале каждого суперфрейма, зарезервированного для передачи кадра-маячка [2];

- временное планирование, при котором кадры маячков передающих маршрутизаторов (ZigBee Routers, ZRs) отправляются в течение неактивных периодов длительности суперфреймов принимающих ZRs [2];

- временное планирование, при котором выбор времени передачи кадров маячков осуществляется в произвольном периоде времени CFP цикла маячкового сигнала координатора сети (ZigBee Coordinator, ZC) [3].

Однако ни один из перечисленных способов не позволяет, используя суперфреймовую структуру, совместить функции синхронизации и маршрутизации сети. Существующие способы маршрутизации, не использующие суперфреймовую структуру, приводят к значительному увеличению потребления энергии узлами, что достаточно критично для рассматриваемых сетей [1].

Разработано достаточно большое количество алгоритмов маршрутизации для сетей ZigBee, из которых наибольшую известность приобрели DSR (Dynamic source routing) и AODV (Ad hoc On-demand Distance Vector routing) [4].

В протоколе DSR маршрут до требуемого узла находится путем рассылки из каждого узла специального пакета запроса маршрута во все узлы окружения, т.е. используется маршрутизация от источника, не полагаясь на таблицы маршрутизации на каждом промежуточном устройстве. Недостатком протокола DSR является нерациональное увеличение как стоимости пути до узла назначения, так и увеличение энергопотребления узлами.

Особенностью протокола AODV является неявное предположение, что любой узел сети может участвовать в процессе маршрутизации. Однако сети ZigBee являются гетерогенными сетями, так как для устройств предусмотрены различные роли и функции. К недостаткам данного протокола следует отнести значительный объем памяти устройств для хранения таблиц маршрутов, а также значительный сетевой трафик, который необходим для поиска маршрутов в разветвленных сетях [4].

Наиболее близким по технической сущности является способ маршрутизации в проводных сетях, основанный на построении минимального связующего дерева (протокол STP (Spanning Tree Protocol)) [5]. Однако данный способ не может быть применен напрямую в сетях ZigBee, т.к. в них отсутствует возможность блокировки портов, как это происходит в проводных сетях, работающих по протоколу STP.

С целью устранения этого недостатка предлагается связи между ZRs устанавливать в течение определенных временных слотов.

Сущность предлагаемого изобретения заключается в том, что ZC закрепляет за каждым из ZRs определенные временные слоты суперфрейма, в течение которых данный ZR осуществляет прием предназначенной ему информации, а каждый узел, передающий суперфрейм, осуществляет передачу данному ZR только в течение закрепленного за данным ZR слота.

Техническим результатом предлагаемого изобретения является возможность осуществления полноценной маршрутизации при двухадресных пакетах, содержащих адрес начального отправителя (НО) и конечного получателя (КП), по аналогии с тем, как это реализуется в проводных сетях протокола STP.

В рамках данного изобретения рассматривается кластерная древовидная сеть ZigBee, тем не менее, предлагаемый способ может быть использован применительно и к другим топологиям ZigBee («звезда», «mesh»), т.к. он соблюдает общие принципы функционирования рассматриваемых сетей.

Реализация предлагаемого способа предусматривает процесс формирования топологии сети, в результате которого будет построено минимальное связующее дерево (аналогично проводным сетям, работающим на основе протокола STP) [5], в котором корнем выступает ZC, а вершинами дерева являются ZRs. При этом вся сеть разделяется на подсети, называемые кластерами. Каждый кластер содержит ZR, через которые кластеры общаются между собой, и конечные узлы (ZigBee End Device, ZED), связанные только с ZR своего кластера.

Каждый ZR независимо от других периодически по сигналу таймера рассылает широковещательные пакеты BPDU (Bridge Protocol Data Units) со своим МАС-адресом, а все ZRi, имеющие с ним непосредственную связь (узлы его окружения в «дереве»), принимают указанные BPDU. В результате широковещательной рассылки в каждом из ZRs сформируется таблица МАС-адресов, содержащая МАС-адреса узлов окружения, входящих в «дерево», и соответствующие им номера слотов, которые по специальному алгоритму распределяет ZC. При распределении слотов используется алгоритм, минимизирующий число слотов, т.к. допускается повторное использование слотов, но на разных уровнях (невзаимодействующих) иерархии сети.

Рассмотрим принцип работы предлагаемого способа на примере, представленном на рис. 1, где имеются следующие обозначения:

1 - маячки;

2 - слот суперфрейма, в который помещаются принятые пакеты (с адресами НО и КП) для последующей передачи;

3 - принимаемый суперфрейм;

4 - рабочая область ZR4;

5 - рабочая область ZR5;

6 - таблица МАС-адресов ZR5;

7 - передаваемый суперфрейм;

8 - рабочая область ZR8;

9 - рабочая область ZR9.

В приведенном фрагменте показаны рабочие области четырех маршрутизаторов, которые взаимодействуют между собой посредством радиосвязи, в частности ZR (4) взаимодействует с ZR (5), a ZR (5) с ZR (8), ZR (9). За каждым из представленных ZRs предварительно ZC закрепил слоты (из формата суперфрейма). Допустим, что в представленном фрагменте сети номер закрепленного слота соответствует номеру ZRi. Каждый ZRi настраивается на работу в соответствующих слотах таким образом, что для каждого слота в каждом из ZRi отводится буферная память для приемо-передачи информации в течение данного слота.

Согласно рис. 1 ZR (4) получает пакет, в адресной части которого имеются МАС-адреса НО и КП. ZR (4) анализирует полученный пакет (в слоте с номером 4), определяет, что адреса КП отличаются от его собственного, т.е. в данном случае ZR (4) является промежуточным узлом при маршрутизации пакетов в сети ZigBee. ZR (4) анализирует собственную таблицу МАС-адресов и определяет, что для доставки пакета по адресу данного КП нужно отправить пакет в слоте с номером 5. ZR (4), формирующий свой собственный суперфрейм, помещает принятый пакет в ячейку с номером 5 (2) и по истечении времени таймера отправляет сформированный суперфрейм соседним ZRs (в данном случае ZR (5)).

ZR (5), получив пакет в слоте с номером 5, аналогично ZR (4) производит анализ МАС-адресов КП, а затем обращается к собственной таблице МАС-адресов и, в случае если в ней не было ранее таких МАС-адресов НО, вносит в нее адреса НО и номера слотов, в которых ZR (5) должен будет направить пакет для достижения указанных адресов НО (в данном случае это слот с номером 4). Одновременно с этим ZR(5) находит в своей таблице МАС-адресов (6) строчку, содержащую МАС-адреса КП и номера слотов, в течение которых необходимо отравить предназначенную для них информацию. В данном случае адресу КП8 соответствует МАС-адрес ZR (8) и слот с номером 8, а адресу КП9 соответствует МАС-адрес ZR (9) и слот с номером 9. ZR (5), формирующий собственный суперфрейм, помещает информацию для каждого из ZR в соответствующий ему слот и по истечении времени таймера отправляет указанный суперфрейм (7) соседним ZRs (в данном случае ZR(8), ZR(9)).

ZR (8) и ZR (9) принимают указанные пакеты, передаваемые в течение соответствующих им слотов.

Рассмотренные выше процессы происходят независимо в каждом из маршрутизаторов сети ZigBee. Из вышеизложенного следует, что в предлагаемом способе временные слоты суперфреймовой структуры как бы выполняют функции портов (аналогично портам в проводных сетях протоколов STP), через которые осуществляется связь между ZRs в сети ZigBee.

Достоинством предлагаемого способа является то, что в результате закрепления за каждым из узлов определенного временного слота (из формата суперфрейма), в течение которого он может принимать данные, становится возможным осуществить полноценную маршрутизацию при двухадресных пакетах по аналогии с тем, как это происходит в проводных сетях, работающих на основе протокола STP. Каждый ZRs производит активную передачу только в тех слотах, которые закреплены за узлами окружения. Это позволяет существенно уменьшить энергопотребление ZRs, что немаловажно для рассматриваемых сетей.

Литература

1. Rao V.P., Marandin D. Adaptive Channel Access Mechanism for Zigbee (IEEE 802.15.4) // Proceedings of the 6th international conference on Next Generation Teletraffic and Wired/Wireless Advanced Networking, 2006. - pp. 501-516.

2. Koubaa A., Cunha A., Alves M., Tovar E. TDBS: A time division beacon scheduling mechanism for Zigbee cluster-tree wireless sensor networks // Real-Time Systems Journal, 2008. - Vol. 40. - №3. - P. 321-354.

3. Beacon scheduling method in wireless sensor network system: pat. US 20060104251 A1; Filed: 14.11.2005; Publ.: 18.05.2006.

4. Влияние гетерогенности на процесс маршрутизации в сетях ZigBee [Электронный ресурс] - Режим доступа: http://tm.ifmo.ru/tm2009/src/244bs.pdf

5. Алгоритм покрывающего дерева Spanning Tree [Электронный ресурс] - Режим доступа: http://life-prog.ru/1_10569_algoritm-pokrivayushchego-dereva-Spanning-Tree.html

Способ слотовой маршрутизации в беспроводных сетях ZigBee, имеющих суперфреймовую временную синхронизацию, отличающийся тем, что за каждым маршрутизатором закрепляются временные слоты суперфрейма, в течение которых он может принимать предназначенные ему пакеты, а каждый передающий маршрутизатор рассылает пакеты, предназначенные принимающему маршрутизатору, только в течение слотов, закрепленных за указанным принимающим маршрутизатором.



 

Похожие патенты:

Изобретение относится к беспроводной связи. Устройство включает первое средство связи для выполнения беспроводной связи с другим устройством по первому способу связи (NFC), второе средство связи для выполнения беспроводной связи с другим устройством связи по второму способу связи (WLAN или Bluetooth), отличающемуся от первого способа связи (NFC), и средство отправки для отправки запросного сообщения передачи обслуживания NFC соединения для запрашивания, посредством использования первого средства связи, параметра соединения для соединения с другим устройством связи, посредством второго средства связи (WLAN или Bluetooth), причем запросное сообщение передачи обслуживания NFC соединения включает информацию об услуге связи.

Изобретение относится к системам мобильной связи. Технический результат заключается в обеспечении речевой связи при поддержании режима работы без транскодера.

Изобретение относится к области радиосвязи. Техническим результатом является повышение точности определения местоположения вычислительного устройства.

Изобретение относится к способу, выполняемому передающим устройством для передачи блока в приемное устройство, когда передающее устройство и приемное устройство работают в беспроводной сети связи.

Изобретение относится к содействию связи от устройства к устройству. Технический результат – устранение громоздкости назначения маяковых сигналов в сети и передача информации о их назначении в устройства ввиду увеличения возможного количества устройств.

Изобретение относится к системе мобильной связи и предназначено для поддержания каждой из множества систем мобильной связи, когда эти системы используются одновременно.

Изобретение относится к области технологий сетевой связи и раскрывает узел доступа, сетевой элемент управления мобильностью и способ обработки пейджингового сообщения, согласно которому после приема сетевым элементом управления мобильностью уведомляющего сообщения о функциональных возможностях узла, переданного узлом доступа, причем уведомляющее сообщение о функциональных возможностях узла используется для обозначения, что узел доступа поддерживает использование Протокола пользовательских датаграмм, отличающегося от Протокола передачи и управления потоком, для приема пейджингового сообщения с сетевого элемента управления мобильностью, сетевой элемент управления мобильностью выбирает и использует Протокол пользовательских датаграмм для передачи первого пейджингового сообщения на узел доступа, так чтобы пользовательское требование надежной передачи пейджингового сообщения могло выполняться, степень потребления ресурсов сетевого элемента управления мобильностью могло быть снижено и удавалось бы избежать возникновения перегрузки на сетевом элементе управления мобильностью.

Изобретение относится к области техники систем мобильной связи Задачей изобретения является предоставление гарантии, что пользовательское оборудование (UE) в смешанной сети: сотовой и связи устройства с устройством (D2D), может работать должным образом при переходе передачи между сотовым подкадром и подкадром RX D2D или между подкадром TX D2D и подкадром RX D2D.

Изобретение относится к области связи. Технический результат изобретения заключается в улучшении использования сетевого ресурса, снижении проблемы защиты, вызванной перегруженностью узла проверки подлинности, и снижении риска возникновения ошибок в начислении абонементской платы за время подключения.

Изобретение относится к сетям связи. Технический результат заключается в добавлении элементов протокола, которые могут использоваться для улучшения эвристики очистки таблицы на посредниках, что приводит к повышению быстродействия и эффективности сети связи.

Изобретение относится к беспроводной связи. Способ для сообщения неисправности повторной передачи управления радиолинией (RLC, Radio Link Control) содержит этапы: осуществляют связь как с первой станцией BS, так и со второй станцией BS, первая станция BS имеет соединения управления радиоресурсами (Radio Resource Control, RRC) с оборудованием UE; передают сообщение первой станции BS об ошибке повторной передачи RLC без повторного установления RRC-соединения для первой станции BS, если ошибка повторной передачи RLC возникает в объекте RLC, передающем блок данных протокола (Protocol Data Unit, PDU) RLC для второй станции BS. Технический результат заключается в обеспечении эффективного управления радиолинией второй BS. 2 н. и 12 з.п. ф-лы, 19 ил.

Изобретение относится к области радиосвязи. Техническим результатом является эффективное извлечение позиционной информации о радиотерминале независимо от конкретной функции радиотерминала. Обрабатывающее информацию устройство (10) включает в себя средство (11) сравнения для сравнения множества элементов RF измеренной информации (1046), указывающих информацию о приеме сигналов, измеренную для каждого из множества радиотерминалов (31-34), с множеством элементов RF прогнозируемой информации (1045), прогнозируемой в качестве информации о приеме в одном радиотерминале, для каждой из множества локальных областей, и средство (12) агрегирования для агрегирования количества радиотерминалов, которые измерили измеренную информацию, находящуюся в пределах заданного диапазона прогнозируемой информации, среди множества элементов измеренной информации, для каждой из множества локальных областей. 4 н. и 6 з.п. ф-лы, 6 ил.

Изобретение относится к беспроводной связи. Способ устранения отказа включает этапы, на которых: принимают с помощью шлюза сети пакетной передачи данных P-GW, данные по нисходящей линии связи после обнаружения отказа в ассоциированном первом S-GW; и передают, с помощью P-GW, сообщение с уведомлением на узел управления мобильностью ММЕ посредством использования второго S-GW, при этом сообщение с уведомлением включает в себя идентификатор P-GW и идентификатор пользователя, так что при определении того, что идентификатор P-GW, содержащийся в сообщении с уведомлением, отличается от идентификатора P-GW, соответствующего контексту идентификатора пользователя, ММЕ отклоняет инициирование процедуры устранения отказа в первом S-GW. Технический результат заключается в обеспечении возможности предотвратить многократное выполнение процедуры устранения отказа и облегчить нагрузку на сигнализацию. 5 н. и 24 з.п. ф-лы, 12 ил.

Изобретение относится к области компьютерных технологий. Технический результат заключается в расширении арсенала технических средств представления мультимедийной информации. Технический результат достигается за счет скачивания политики публикации и множества блоков мультимедийной информации посредством установления соединения между интерфейсом и сервером; после обнаружения стартового события приложения, определения блока мультимедийной информации, который нужно опубликовать в рассматриваемом приложении, согласно политике публикации и предварительно заданному множеству блоков мультимедийной информации, где множество блоков мультимедийной информации содержит множество блоков мультимедийной информации; представления найденного блока мультимедийной информации в стартовом интерфейсе приложения, в котором политики публикации содержат один или более список публикующих приложений, период времени публикации приложения и первую частоту публикаций, отображающую частоту публикации в терминале. 3 н. и 14 з.п. ф-лы, 6 ил.

Группа изобретений относится к технологиям предоставления информации. Техническим результатом является повышение точности и полноты информации, представляющей интерес для пользователя за счет выполнения кластерного и корреляционного анализа. Предложен способ предоставления доставляемой информации. Способ содержит этап, на котором получают целевую информацию, хранящейся локально в терминале, определяют интересующий параметр на основании целевой информации. Способ включает в себя этап, на котором передают в терминал доставляемую информацию, соответствующую интересующему параметру, в котором целевая информация включает текущую целевую информацию и целевую информацию об истории. При этом определение интересующего параметра на основании целевой информации дополнительно содержит выполнение кластерного корреляционного анализа на основании текущей целевой информации и целевой информации об истории. 8 н. и 14 з.п. ф-лы, 13 ил.

Изобретение относится к технологии «умный дом». Технический результат заключается в повышении безопасности интеллектуального домашнего устройства. Такой результат достигается тем, что обнаруживают пользовательскую операцию запуска, которая служит для получения права управления интеллектуальным домашним устройством, определяют, имеется ли в пределах заранее заданной дальности ассоциированное носимое устройство, и предоставляют права управления интеллектуальным домашним устройством, если определено, что в пределах заранее заданной дальности имеется ассоциированное носимое устройство. 3 н. и 12 з.п. ф-лы, 13 ил.

Изобретение относится к способам передачи облачной карты. Технический результат – возможность распознавания входящих вызовов от незнакомых лиц. Для этого способ включает: определение, предпочел ли пользователь предоставление облачной карты во время вызова, инициированного этим пользователем; и если пользователь предпочел предоставление облачной карты во время вызова, инициированного этим пользователем, передачу инструктирующего сообщения на сервер; при этом инструктирующее сообщение используют для инструктирования облачного сервера о необходимости пересылки данных облачной карты пользователя, которые хранят на облачном сервере, на приемную сторону вызова, в результате чего данные облачной карты будут отображены в интерфейсе приема вызова на приемной стороне данного вызова. 4 н. и 10 з.п. ф-лы, 12 ил.

Изобретение относится к области беспроводной связи. Технический результат изобретения заключается в возможности связи электронного устройства беспроводным способом с другим электронным устройством через беспроводную ячеистую сеть. Электронное устройство беспроводной связи включает в себя сетевой интерфейс, который позволяет электронному устройству беспроводным способом связывать электронное устройство с другими электронными устройствами, процессор, который определяет по меньшей мере один путь данных к другим электронным устройствам с использованием механизма маршрутизации Протокола Информации Маршрутизации Следующего Поколения (RIPng). После идентификации по меньшей мере одного пути данных к другим электронным устройствам, процессор может определить, является (являются) ли идентифицированный(е) путь(и) данных безопасным(и), с использованием протокола Безопасности Транспортного Уровня Дейтаграмм (DTLS). Если идентифицированный(е) путь(и) данных является (являются) безопасным(и), процессор может послать пакеты данных Интернет-протокола версии 6 (IPv6) к другим электронным устройствам через безопасный(е) путь(и) данных. 3 н. и 18 з.п. ф-лы, 12 ил.

Настоящее изобретение относится к способу и устройству для представления информации по билету, позволяющим обеспечить более разностороннее представление информации по билету. Технический результат заключается в расширении арсенала средств того же назначения В способе принимают мгновенное сообщение; и если мгновенное сообщение включает информацию по билету, представляют информацию по билету в виде мультимедийной карты. Технические решения настоящего изобретения позволяют визуально представить информацию по билету. Таким образом, представление информации по билету становится более красочным, и представление мгновенного сообщения является более разносторонним. Как следствие, пользователи могут насладиться визуальной красотой. 2 н. и 5 з.п. ф-лы, 13 ил.

Изобретение относится к области беспроводной связи. Технический результат изобретения заключается в сокращении нагрузки на нисходящую линию связи LTE в лицензируемом спектре путем выгрузки ее в нелицензируемый спектр. Способ включает в себя этапы передачи первого связного сигнала множественного доступа с ортогональным частотным разделением (OFDMA) на беспроводной узел в лицензируемом спектре, и передачи параллельно передаче первого связного сигнала OFDMA второго связного сигнала OFDMA на беспроводной узел в нелицензируемом спектре. Кроме того, способ включает в себя этапы формирования периодического селекторного интервала для нисходящей линии сотовой связи в нелицензируемом спектре, и синхронизации по меньшей мере одной границы периодического селекторного интервала с по меньшей мере одной границей периодической структуры кадра, связанной с первичной компонентной несущей нисходящей линии сотовой связи. 8 н. и 61 з.п. ф-лы, 56 ил.

Изобретение относится к области беспроводной связи и может быть использовано в беспроводных сенсорных сетях ZigBee.Технический результат состоит в повышении точности маршрутизации при двухадресных пакетах, содержащих адрес начального отправителя и конечного получателя. Для этого функции портов, соединяющих маршрутизаторы в проводных сетях, в сетях ZigBee выполняют временные слоты, в течение которых осуществляется связь между маршрутизаторами сети. Временные слоты суперфреймовой структуры ZigBee как бы выполняют функции портов, через которые осуществляется связь между маршрутизаторами в сети ZigBee. Перед передачей маячка в выходном буфере каждого маршрутизатора формируется суперфрейм в виде набора ячеек памяти. В каждой из ячеек, за которыми закреплены соответствующие маршрутизаторам слоты, размещаются пакеты, получаемые от маршрутизаторов для последующей передачи. Каждый маршрутизатор независимо от других периодически по сигналу таймера рассылает широковещательно суперфреймы, ограниченные маячками. Все соседние маршрутизаторы, принявшие начальный маячок, запускают механизмы синхронизации, генерирующие последовательность временных слотов, и производят последовательный прием всех пакетов, содержащихся в соответствующей им ячейке. В течение тех слотов, в которых отсутствует информация, передача не происходит, а осуществляются только механизмы синхронизации, во время которых затрачивается малое количество энергии по сравнению с режимом передачи. 1 ил.

Наверх