Способ повышения маневренности и безопасности аэс на основе теплового и химического аккумулирования

Согласно предлагаемому способу повышения маневренности и безопасности АЭС на основе теплового и химического аккумулирования в ночные часы провала электрической нагрузки часть пара из ПГ через устройство парораспределения направляется в пароводяной поверхностный теплообменник, где отдает тепло холодной воде, перекачиваемой посредством насоса холодной воды из БХВ в БГВ. Дренаж греющего пара подается в тракт питательной воды основного контура после подогревателей высокого давления перед ПГ. За счет электролиза воды происходит аккумулирование невостребованной электроэнергии в виде водорода и кислорода, которые при помощи дожимных водородных и кислородных компрессорных агрегатов поступают в ресиверы. В случае аварии с полным обесточиванием АЭС пар, генерируемый остаточным тепловыделением реакторной установки, через устройство парораспределения направляется на дополнительную ПТУ, которая вырабатывает электроэнергию для электроснабжения собственных нужд АЭС. Технический результат – повышение маневренности и безопасности двухконтурной АЭС на основе теплового и химического аккумулирования внепиковой электроэнергии в виде водородного топлива и горячей воды. 1 ил.

 

Изобретение относится к области энергетики и предназначено для использования на атомных электрических станциях (АЭС) с водоохлаждаемыми реакторами.

Известна энергетическая установка (см. авт. свид. СССР на изобретение №1133428, МПК F01K 17/00; 13/00, опубл. 07.01.1985), содержащая подключенный к линии подачи острого пара из парогенератора в основную паротурбинную установку (ПТУ) фазовый аккумулятор, в котором в период уменьшения нагрузки аккумулируется тепловая энергия, а в часы пиковых нагрузок генерируется пар, служащий рабочим телом для дополнительной ПТУ, предназначенной для получения дополнительной пиковой мощности.

Недостатком известной установки является то, что она предназначена для повышения маневренности энергоблока АЭС и не может быть использована для расхолаживания реактора при полном обесточивании станции, так как пар, генерируемый за счет остаточного тепловыделения, не может быть использован напрямую в ПТУ, а аккумулированного тепла недостаточно для расхолаживания в течение 72 часов (требование МАГАТЭ). Кроме того, аккумуляторы фазового перехода имеют сложную и дорогостоящую конструкцию, в связи с чем не получили развитие в современной энергетике.

Известен способ повышения маневренности АЭС с пароводородным перегревом пара на сателлитной ПТУ, параллельно подключенной к основной ПТУ (см., например, статью Малышенко С.П., Назаровой О.В., Сарутова Ю.А. Некоторые термодинамические и технико-экономические аспекты применения водорода как энергоносителя в энергетике // Атомно-водородная энергетика и технология. – М.: Энергоатомиздат. – 1986. – Вып. 7. – С. 116-117). На сателлитную ПТУ подается часть основного пара путем его разделения перед цилиндром высокого давления основной ПТУ АЭС. При входе в сателлитную ПТУ осуществляется пароводородный перегрев пара.

Недостатком известной схемы является использование сателлитной ПТУ только через разгрузку основной ПТУ, что сопряжено с потерей ее мощности и возникновением переменного расхода рабочего тела, что повлечет за собой снижение надежности.

Известен способ повышения маневренности турбинной установки атомной электростанции (см. патент РФ №2459293, МПК G21D 01/00, МПК F01K 23/10, МПК G21D 05/08, МПК G21D 03/08. Бюл. №23, опубл. 20.08.2012), предназначенный для обеспечения надежного режима работы основной ПТУ АЭС. Свежий пар, предназначенный для осуществления промежуточного перегрева, вытесняется в результате водородного перегрева пара после сепаратора. Вытесненный пар направляется на сателлитную ПТУ, в результате чего устраняется переменный расход рабочего тела основной ПТУ энергоблока АЭС.

Недостатком известного способа является установка водородного пароперегревателя в основном цикле АЭС, что сложно реализуемо и повлечет к снижению безопасности энергоблока, в связи с взрывоопасностью водородного топлива. Кроме того, в случае работы по 1-му варианту без водородного перегрева пар поступает в сателлитную паровую турбину с низкими параметрами, что приводит к уменьшению выработки электрической энергии и повышению влажности, следовательно, и к снижению эффективности и надежности установки.

Известен способ расхолаживания водоохлаждаемого реактора посредством многофункциональной системы отвода остаточного тепловыделения в условиях полного обесточивания АЭС (см. патент РФ №2601285, МПК G21D 01/00, МПК F01K 23/10, МПК G21C 15/18, МПК G21D 03/08. Бюл. №30, опубл. 27.10.2016), предназначенный для расхолаживания реактора при полном обесточивании, путем использования энергии остаточного тепловыделения активной зоны и аккумулированного тепла для подогрева питательной воды и генерации пара, используемого в качестве рабочего тела в дополнительной ПТУ, генерирующей в аварийном режиме необходимую для расхолаживания электроэнергию. В штатном режиме в ночные внепиковые часы горячая вода аккумулируется в баках-аккумуляторах, после чего в дневное время за счет аккумулированного тепла вытесняется часть отборов пара, в результате чего образуется дополнительный расход пара, приводящий к повышению мощности цилиндра высокого давления (ЦВД) основной ПТУ, после ЦВД избыток пара направляется на дополнительную ПТУ для выработки электроэнергии.

Недостатком известного способа является возникновение переменного расхода рабочего тела в основной ПТУ, что снижает надежность энергоблока АЭС. Кроме того, в аварийной ситуации с полным обесточиванием, сопровождаемым течью в первом контуре, дополнительная ПТУ не сможет работать на электроснабжение собственных нужд.

Наиболее близким аналогом является установка для обеспечения маневренности атомных электрических станций (см. патент РФ на изобретение №70312, МПК F01K13/02 (2006.01), H02J9/04 (2006.01), G21D3/08 (2006.01), опубл. 20.01.2008 г.), предназначенная для обеспечения маневренности АЭС за счет выработки дополнительной энергии в пиковой ПТУ, работающей на высокотемпературном паре, генерируемом в водород-кислородном парогенераторе. В периоды минимума нагрузок, путем расщепления воды, осуществляется генерация водорода и кислорода, что является дополнительной нагрузкой и повышает маневренность станции, защищает реактор от необходимости разгрузки, позволяя ему работать в номинальном режиме. Полученные кислород и водород направляются в емкости хранения. В периоды нехватки электрической мощности блока компенсация недостающей мощности будет осуществляться энергетическим потенциалом сгенерированных водорода и кислорода, которые подаются в камеру сгорания, где в результате сгорания образуется высокотемпературный пар, поступающий на пиковую ПТУ для выработки недостающей электроэнергии.

Недостатком известной установки для обеспечения маневренности АЭС является перерасход водородного топлива, возникающий за счет необходимости нагрева воды, поступающей в камеру сгорания, до температуры насыщения. Станция имеет определенный диапазон маневрирования, который ограничен объемом вырабатываемых в периоды минимума нагрузок водорода и кислорода, поэтому увеличение маневренных возможностей возможно только за счет соответствующего увеличения дорогостоящей системы хранения и производства водородного топлива. Кроме того, пиковая ПТУ не может быть использована для расхолаживания реактора с использованием остаточного тепловыделения реактора при полном обесточивании АЭС, так как не имеет прямой связи с парогенератором.

Задачей настоящего изобретения является повышение маневренности и безопасности двухконтурной АЭС.

Техническим результатом, достигаемым при использовании настоящего изобретения, является аккумулирование на АЭС в ночные внепиковые часы невостребованной электрической энергии в виде водородного топлива и горячей воды, с последующей выработкой дополнительной электроэнергии в пиковые часы электрической нагрузки без изменения расхода рабочего тела через основную ПТУ, при этом в случае полного обесточивания станции, обеспечивается расхолаживание энергоблока за счет аккумулированной энергии и остаточного тепловыделения реакторной установки.

Указанный технический результат достигается тем, что на АЭС, содержащей основную ПТУ, парогенератор (ПГ), устройство парораспределения, причем устройство парораспределения соединено с входом в основную ПТУ и ПГ посредством паропроводов, систему регенерации, электролизную установку для получения водорода и кислорода, водородные и кислородные ресиверы, водород-кислородный парогенератор, дополнительную ПТУ, бак горячей воды (БГВ), бак холодной воды (БХВ), поверхностный теплообменник, при этом дополнительная ПТУ подключена к водород-кислородному парогенератору и к устройству парораспределения посредством паропроводов, водород-кислородный парогенератор соединен с водородными и кислородными ресиверами и БГВ, БГВ соединен с поверхностным теплообменником посредством трубопровода, БХВ соединен с конденсатором дополнительной ПТУ и поверхностным теплообменником посредством трубопроводов, поверхностный теплообменник соединен также с устройством парораспределения и трактом питательной воды основного цикла (после подогревателей высокого давления системы регенерации основной ПТУ), оборудование, входящее в состав водородного хозяйства, выведено за территорию площадки АЭС, пар, получаемый в ПГ, согласно изобретению в ночные внепиковые часы электрической нагрузки после устройства парораспределения направляется в поверхностный теплообменник, где отдает тепло холодной воде, перекачиваемой из БХВ в БГВ, после чего сконденсировавшийся пар направляется в тракт питательной воды после подогревателей высокого давления системы регенерации основной ПТУ, при этом часть электроэнергии, генерируемой основной ПТУ, направляется на производство водорода с кислородом; в пиковые часы горячая вода из БГВ подается в водород-кислородный парогенератор, в котором генерируется пар с использованием энергии сжигания аккумулированного водородного топлива, полученный пар направляется на дополнительную ПТУ для выработки электроэнергии; в случае полного обесточивания АЭС пар, генерируемый остаточным тепловыделением реактора, через устройство парораспределения направляется на дополнительную ПТУ, которая вырабатывает необходимую для электроснабжения собственных нужд АЭС мощность, при недостатке генерируемого остаточным тепловыделением пара горячая вода из БГВ подается в водород-кислородный парогенератор, в котором генерируется дополнительное количество пара путем использования энергии сжигания аккумулированного водородного топлива.

Сущность изобретения заключается в обеспечении надежного повышения маневренности и безопасности двухконтурной АЭС на основе теплового и химического аккумулирования внепиковой электроэнергии в виде водородного топлива и горячей воды, которые могут использоваться для выработки пиковой электроэнергии и обеспечения резервного электроснабжения собственных нужд АЭС с использованием энергии остаточного тепловыделения реактора при полном обесточивании.

Изобретение иллюстрируется чертежом (фиг. 1), где показана схема системы повышения маневренности и безопасности АЭС. Позиции на чертежах обозначают следующее: 1 – устройство парораспределения; 2 – водород-кислородный парогенератор; 3 – дополнительная ПТУ; 4 – электрический генератор; 5 – конденсатор; 6 – конденсатный насос; 7 – БХВ; 8 – насос холодной воды; 9 – поверхностный теплообменник; 10 – дренажный насос; 11 – БГВ; 12 – питательный насос.

В ночные часы провала электрической нагрузки часть пара из ПГ через устройство парораспределения 1 направляется в пароводяной поверхностный теплообменник 9, где отдает тепло холодной воде, перекачиваемой посредством насоса холодной воды 8 из БХВ 7 в БГВ 11. Дренаж греющего пара подается в тракт питательной воды основного контура после подогревателей высокого давления перед ПГ. Одновременно с этим за счет электролиза воды происходит аккумулирование невостребованной электроэнергии в виде водорода и кислорода, которые при помощи дожимных водородных и кислородных компрессорных агрегатов поступают в ресиверы.

В пиковые часы электрической нагрузки из БГВ 11 горячая вода посредством питательного насоса 12 подается в водород-кислородный парогенератор 2, в котором генерируется пар с использованием энергии сжигания аккумулированного водородного топлива. Полученный пар направляется на дополнительную ПТУ 3 для выработки электроэнергии. Конденсат отработавшего пара после конденсатора 5 направляется в БХВ 7 посредством конденсатного насоса 6.

В остальное время водород-кислородный парогенератор 2 отключен, дополнительная ПТУ 3 работает в режиме холостого хода (горячий резерв на случай обесточивания), за счет незначительного расхода пара, отбираемого после устройства парораспределения 1.

В случае аварии с полным обесточиванием АЭС пар, генерируемый остаточным тепловыделением реакторной установки, через устройство парораспределения 1 направляется на дополнительную ПТУ 3, которая вырабатывает необходимую для электроснабжения собственных нужд АЭС электроэнергию. В случае недостатка пара, генерируемого остаточным тепловыделением (в том числе при разгерметизации первого контура), вырабатывается дополнительное количество пара за счет аккумулированной энергии: горячая вода из БГВ 11 подается в водород-кислородный парогенератор 2, в котором генерируется пар с использованием энергии сжигания аккумулированного водородного топлива. При этом в процессе расхолаживания в первые часы после обесточивания образуется избыточное количество энергии остаточного тепловыделения, которое можно аккумулировать в виде водорода или горячей воды и использовать в последующие часы при нехватке энергии остаточного тепловыделения.

Отличительным признаком способа повышения маневренности и безопасности АЭС является тепловое и химическое аккумулирование в ночные внепиковые часы невостребованной электрической энергии в виде водородного топлива и горячей воды, с последующей выработкой дополнительной электроэнергии в пиковые часы электрической нагрузки без изменения расхода рабочего тела через основную ПТУ, при этом в случае полного обесточивания АЭС обеспечивается штатное расхолаживание энергоблока за счет аккумулированной энергии и остаточного тепловыделения реакторной установки.

Способ повышения маневренности и безопасности АЭС, содержащей основную паротурбинную установку (ПТУ), парогенератор (ПГ), устройство парораспределения, причем устройство парораспределения соединено с входом в основную ПТУ и ПГ посредством паропроводов, систему регенерации, электролизную установку для получения водорода и кислорода, водородные и кислородные ресиверы, водород-кислородный парогенератор, дополнительную ПТУ, бак горячей воды (БГВ), бак холодной воды (БХВ), поверхностный теплообменник, при этом дополнительная ПТУ подключена к водород-кислородному парогенератору и к устройству парораспределения посредством паропроводов, водород-кислородный парогенератор соединен с водородными и кислородными ресиверами и БГВ, БГВ соединен с поверхностным теплообменником посредством трубопровода, БХВ соединен с конденсатором дополнительной ПТУ и поверхностным теплообменником посредством трубопроводов, поверхностный теплообменник соединен также с устройством парораспределения и трактом питательной воды основного контура (после подогревателей высокого давления системы регенерации основной ПТУ), оборудование, входящее в состав водородного хозяйства, выведено за территорию площадки АЭС, отличающийся тем, что пар, получаемый в ПГ, в ночные внепиковые часы электрической нагрузки после устройства парораспределения направляется в поверхностный теплообменник, где отдает тепло холодной воде, перекачиваемой из БХВ в БГВ, после чего сконденсировавшийся пар направляется в тракт питательной воды после подогревателей высокого давления системы регенерации основной ПТУ, при этом часть электроэнергии, генерируемой основной ПТУ, направляется на производство водорода с кислородом; в пиковые часы горячая вода из БГВ подается в водород-кислородный парогенератор, в котором генерируется пар с использованием энергии сжигания аккумулированного водородного топлива, полученный пар направляется на дополнительную ПТУ для выработки электроэнергии; в случае полного обесточивания АЭС пар, генерируемый остаточным тепловыделением реактора, через устройство парораспределения направляется на дополнительную ПТУ, которая вырабатывает необходимую для электроснабжения собственных нужд АЭС мощность, при недостатке генерируемого остаточным тепловыделением пара, горячая вода из БГВ подается в водород-кислородный парогенератор, в котором генерируется дополнительное количество пара путем использования энергии сжигания аккумулированного водородного топлива.



 

Похожие патенты:

Изобретение относится к устройству ввода газа в тяжелый жидкий металл. Устройство состоит из электродвигателя (12), магнитной муфты (6), вала (1), заборной и рабочей частей устройства, корпуса (5) с отверстиями (9), нижнего вращающегося (2) и верхнего неподвижного (7) диска, кожуха (4), побудителя расхода (10) тяжелого жидкого металла, опорного узла вала (8) с, по меньшей мере, одним каналом (3).

Изобретение относится к металлобетонному корпусу ядерного реактора. Заявленный корпус включает металлобетонный стакан с днищем и герметичным перекрытием внутренней полости стакана.

Изобретение относится к реакторной установке с водоохлаждаемым реактором, предназначенной для локального регулирования спектра нейтронного потока в активной зоне и улучшения топливоиспользования.

Изобретение относится к секции модулей вертикального парогенератора. Заявленное устройство состоит из вертикально ориентированных модулей, участок перегревателя и участок экономайзера которого имеют линейную продольную ось, которая не перпендикулярна земной поверхности, а также состоит из одного коллектора теплоносителя, имеющего продольную ось, расположенную горизонтально на уровне одной стороны участка перегревателя, одного коллектора пара, имеющего продольную ось, расположенную горизонтально на уровне другой стороны участка перегревателя и одного коллектора подачи воды с продольной осью, расположенной горизонтально на уровне выходных камер теплоносителя.
Способ состоит в том, что околоствольный двор отделяют бетонными перемычками от всех других выработок ликвидируемой шахты для предотвращения доступа в околоствольный двор метана и шахтных вод, и в качестве потенциального саркофага, предназначенного для размещения атомной силовой установки, при этом для подачи электроэнергии на шахтную поверхностную подстанцию используют силовые стволовые шахтные кабели, а канал связи потенциального саркофага с окружающей средой осуществляют через ствол ликвидируемой шахты, выполненный с возможностью осуществления оперативного бетонирования шахтного ствола в случае аварии на атомной силовой установке, причем бункера приема угля надшахтного здания ликвидируемой шахты используют в качестве емкостей хранения щебня, песка, цемента и воды для осуществления начала оперативного бетонирования ствола шахты - перекрытия канала связи с окружающей средой саркофага атомной силовой установки на случай аварии, угрожающей загрязнением окружающей среды, а надшахтное здание ликвидированной шахты используют в качестве помещения для размещения комплекса по принятию щебня, песка, цемента, подвозимых и разгружаемых транспортными средствами службы ликвидации аварий, приготовления бетона и сбрасывания его в ствол шахты для завершения выполнения саркофага атомной силовой установки.

Изобретение относится к способу демонтажа крышки парогенератора ядерной энергетической установки, приваренной к корпусу. С помощью устройства для фрезерования с установленной торцовой фрезой в теле сварного шва выполняется несквозное отверстие таким образом, чтобы угол наклона оси полости несквозного отверстия соответствовал углу фаски кромки корпуса парогенератора, соприкасающейся со сварным швом, так, что между полостью несквозного отверстия и внутренним объемом парогенератора остается тонкий слой непрорезанного металла.

Изобретение относится к системе для уменьшения вредных выбросов в атмосферу из промышленной или ядерной установки (1) в случае аварии. Система содержит следующие компоненты: конструкцию (10) для обеспечения непроницаемости почвы, которая проходит, по меньшей мере, по кольцеобразному участку, окружающему установку (1); множество опрыскивающих вышек (20-22), расположенных вокруг установки (1) и/или на прилегающей территории и выполненных с возможностью разбрызгивания воды в атмосферу, предпочтительно смешанной с химическими, и/или биологическими, и/или минеральными веществами; и периферийную конструкцию (50) для сбора, выполненную с возможностью приема воды, задержанной конструкцией (10) для обеспечения непроницаемости почвы.

Использование: в области электроэнергетики. Техническим результатом является упрощение конструкции, повышение срока службы, повышение надежности и автономности работы.

Изобретение относится к атомной энергетике и предназначено для использования на паротурбинных установках АЭС двухконтурного типа с водо-водяными энергетическими реакторами.

Способ относится к области создания атомных электростанций (АЭС). Способ строительства атомных электростанций с подземным размещением ядерного реактора включает размещение ядерного реактора в подземной шахте.

Изобретение относится к топливно-энергетическому комплексу и может быть использовано для решения круга задач снабжения потребителей тепловой и электрической энергией с повышением эффективности, безопасности и экологической чистоты. Подземная атомная гидроаккумулирующая теплоэлектрическая станция выполнена в виде поверхностного и подземного энерготехнологических комплексов, включающих главный и вспомогательный шахтные стволы, околоствольный двор с камерами для размещения в них блочно-модульного оборудования по меньшей мере одной атомной энергетической установки в виде атомного реактора и турбомашинного преобразователя энергии, подземные шахтные установки и производственно-технологические блоки - потребители электрической и тепловой энергии. При этом станция снабжена пассивной и активной системами аварийного расхолаживания атомного реактора. Техническим результатом изобретений является исключение вредных выбросов в атмосферу и окружающую среду потребителями на дневной поверхности за счет экологически чистой энергии вырабатываемой атомными энергетическими установками, снижение потерь энергии и энергоемкости подземных горнодобывающих технологий и оборудования, упрощение подземного оборудования для производства этих работ. 2 з.п. ф-лы, 8 ил., 1 табл.
Наверх