Стенд для "холодной" обкатки турбокомпрессоров энергетических установок

Стенд для «холодной» обкатки турбокомпрессоров энергетических установок включает источник подачи газа, напорный и выпускной воздуховоды, соединенные с рабочей камерой турбины, датчик частоты вращения и цифровой указатель оборотов, блок управления источником подачи газа. Дополнительно введены два модуля измерения параметров газа, модуль измерения параметров масла, перепускной клапан, емкость с нагревательным элементом для масла, масляный насос, электропривод масляного насоса, масляный фильтр, блок регистрации положения вала в подшипнике, блок обработки информации и управления стендом и фильтрующий элемент. Напорный воздуховод разделен на три части фильтрующим элементом и первым модулем измерения параметров газа. Первая часть напорного воздуховода соединена с источником подачи газа и фильтрующим элементом. Вторая часть напорного воздуховода соединена с фильтрующим элементом и первым модулем измерения параметров газа. Третья часть напорного воздуховода соединена с первым модулем измерения параметров газа и рабочей камерой турбины турбокомпрессора. Выпускной воздуховод разделен на две части, первая часть выпускного воздуховода соединена с рабочей камерой турбины турбокомпрессора и второй частью выпускного воздуховода, вторая часть выпускного воздуховода соединена с первой частью выпускного воздуховода и источником подачи газа. Источник подачи газа соединен с блоком управления источником подачи газа. Выход первого модуля измерения параметров газа соединен с блоком обработки информации и управления стендом. Второй модуль измерения параметров газа соединен с выходом рабочей камеры компрессора турбокомпрессора, выход второго модуля измерения параметров газа соединен с блоком обработки информации и управления стендом. Выход электропривода масляного насоса подключен к блоку обработки информации и управления стендом. Выход модуля измерения параметров масла соединен с блоком обработки информации и управления стендом. Выход с нагревательного элемента емкости для масла подключен к блоку обработки информации и управления стендом. Масляный насос соединен с электроприводом масляного насоса. Выход емкости с нагревательным элементом для масла подключен к входу масляного насоса. Выход масляного насоса соединен с входом перепускного клапана. Первый выход перепускного клапана соединен с входом масляного фильтра. Выход масляного фильтра соединен с входом модуля измерения параметров масла, первый выход модуля измерения параметров масла соединен с отверстием для подачи масла к подшипнику турбокомпрессора. Второй выход перепускного клапана соединен с первым входом емкости с нагревательным элементом для масла. Сливное отверстие подшипника турбокомпрессора соединено со вторым входом емкости с нагревательным элементом для масла. Выход цифрового указателя оборотов соединен с блоком обработки информации и управления стендом, выход блока регистрации положения вала в подшипнике подключен к блоку обработки информации и управления стендом. Выход блока управления источником подачи газа подключен к блоку обработки информации и управления стендом. Достигается повышение качества и информативности обкатки турбокомпрессоров, снижение энергозатрат и обеспечение режима «холодной» обкатки при номинальной частоте вращения ротора турбокомпрессора под нагрузкой. 1 ил.

 

Изобретение относится к стендам для «холодной» обкатки и испытания турбокомпрессоров энергетических установок и, в частности, для обкатки и испытания турбокомпрессоров двигателей внутреннего сгорания и обеспечивает режим «холодной» обкатки при номинальной частоте вращения вала турбокомпрессора под нагрузкой.

Производители турбокомпрессоров используют стенды для «горячей» обкатки и испытания турбокомпрессоров, в которых газ, подаваемый в рабочую камеру турбины, образуется в результате горения топлива и имеет высокую температуру. Предприятия, специализирующиеся на ремонте турбокомпрессоров и двигателей внутреннего сгорания, используют стенды для «холодной» обкатки турбокомпрессоров. Функционирование стенда для «холодной» обкатки и испытания турбокомпрессора отличается подачей газа к рабочей камере турбины турбокомпрессора от источника подачи газа, способного осуществить подачу газа на сопловой аппарат турбины с расходом газа, сопоставимым с расходом газа двигателя внутреннего сгорания с турбокомпрессором на номинальном режиме работы, без горения топлива. При этом за счет кинетической энергии потока газа обеспечивается раскрутка вала турбокомпрессора и таким образом производится «холодная» обкатка турбокомпрессора [1].

Известно решение в области «холодной» обкатки турбокомпрессоров энергетических установок патент на изобретение RU 2362137 С1 «Стенд для «холодной» обкатки турбокомпрессоров энергетических установок» [2], включающий источник подачи воздуха в виде осевого вентилятора, напорный и выпускной воздуховоды, соединенные с рабочей камерой турбины, в котором на всасывающий и выпускной патрубки рабочей камеры компрессора установлены герметичные крышки, которые оборудованы перепускным и обратным клапаном соответственно, и перепускной клапан, установленный на герметичную крышку всасывающего патрубка компрессора, кинематически связан с электромеханическим приводом, осуществляющим перевод клапана в закрытое или открытое состояние.

Недостатком данного стенда является отсутствие системы смазки турбокомпрессора, при этом нарушение условий смазывания вала турбокомпрессора на высоких частотах вращения будет приводить к интенсивному износу деталей и снижению ресурса турбокомпрессора. Также в патенте на изобретение RU 2362137 С1 контроль обкатки осуществляется только по сигналу датчика частоты вращения, осуществляя раскрутку вала без нагрузки, турбокомпрессор же предназначен для нагнетания воздуха во впускной коллектор двигателя внутреннего сгорания, поэтому обкатку следует проводить под нагрузкой, создаваемой компрессором турбокомпрессора, и при этом осуществлять контроль частоты вращения вала турбокомпрессора, параметров газа в турбине и компрессоре модулями измерения параметров газа, параметров масла модулем измерения параметров масла с целью сравнения, а также при необходимости настройке полученных показателей для доведения их до паспортных значений.

Задачей предлагаемого изобретения является создание стенда, который позволяет обнаружить случаи граничного трения и вибрации вала турбокомпрессора с помощью блока регистрации положения вала в подшипнике, а также определить нерегламентированный расход масла через подшипниковый узел, утечки масла через уплотнения турбокомпрессора с помощью модуля измерения параметров масла.

Цель изобретения заключается в повышении качества обкатки турбокомпрессоров, повышении информативности процесса обкатки и испытания турбокомпрессоров энергетических установок, снижении энергозатрат и обеспечении режима «холодной» обкатки при номинальной частоте вращения ротора турбокомпрессора под нагрузкой.

Поставленная цель достигается тем, что в стенд для «холодной» обкатки турбокомпрессоров энергетических установок, включающий источник подачи газа, напорный и выпускной воздуховоды, соединенные с рабочей камерой турбины, датчик частоты вращения и цифровой указатель оборотов, блок управления источником подачи газа, дополнительно введены два модуля измерения параметров газа, модуль измерения параметров масла, перепускной клапан, емкость с нагревательным элементом для масла, масляный насос, электропривод масляного насоса, масляный фильтр, блок регистрации положения вала в подшипнике, блок обработки информации и управления стендом и фильтрующий элемент, при этом напорный воздуховод разделен на три части фильтрующим элементом и первым модулем измерения параметров газа, первая часть напорного воздуховода соединена с источником подачи газа и фильтрующим элементом, вторая часть напорного воздуховода соединена с фильтрующим элементом и первым модулем измерения параметров газа, третья часть напорного воздуховода соединена с первым модулем измерения параметров газа и рабочей камерой турбины турбокомпрессора, выпускной воздуховод разделен на две части, первая часть выпускного воздуховода соединена с рабочей камерой турбины турбокомпрессора и второй частью выпускного воздуховода, вторая часть выпускного воздуховода соединена с первой частью выпускного воздуховода и источником подачи газа, источник подачи газа соединен с блоком управления источником подачи газа, выход первого модуля измерения параметров газа соединен с блоком обработки информации и управления стендом, второй модуль измерения параметров газа соединен с выходом рабочей камеры компрессора турбокомпрессора, выход второго модуля измерения параметров газа соединен с блоком обработки информации и управления стендом, выход электропривода масляного насоса подключен к блоку обработки информации и управления стендом, второй выход модуля измерения параметров масла соединен с блоком обработки информации и управления стендом, выход с нагревательного элемента емкости для масла подключен к блоку обработки информации и управления стендом, масляный насос соединен с электроприводом масляного насоса, выход емкости с нагревательным элементом для масла подключен к входу масляного насоса, выход масляного насоса соединен с входом перепускного клапана, первый выход перепускного клапана соединен с входом масляного фильтра, выход масляного фильтра соединен с входом модуля измерения параметров масла, первый выход модуля измерения параметров масла соединен с отверстием для подачи масла к подшипнику турбокомпрессора, второй выход перепускного клапана соединен с первым входом емкости с нагревательным элементом для масла, сливное отверстие подшипника турбокомпрессора соединено со вторым входом емкости с нагревательным элементом для масла, выход цифрового указателя оборотов соединен с блоком обработки информации и управления стендом, выход блока регистрации положения вала в подшипнике подключен к блоку обработки информации и управления стендом, выход блока управления источником подачи газа подключен к блоку обработки информации и управления стендом.

Блок-схема стенда для «холодной» обкатки турбокомпрессора схематически представлена на чертеже, которая состоит из источника подачи газа 1, напорного 2 и выпускного 4 воздуховодов, соединенных с рабочей камерой турбины турбокомпрессора 6, датчика частоты вращения 14 и цифрового указателя оборотов 13, блока управления источником подачи газа 18, первого модуля измерения параметров газа 5, второго модуля измерения параметров газа 16, модуля измерения параметров масла 12, перепускного клапана 10, емкости с нагревательным элементом для масла 7, масляного насоса 8, электропривода масляного насоса 9, масляного фильтра 11, блока регистрации положения вала в подшипнике 15, блока обработки информации и управления стендом 17 и фильтрующим элементом 3, при этом напорный воздуховод 2 разделен на три части фильтрующим элементом 3 и первым модулем измерения параметров газа 5, первая часть напорного воздуховода соединена с источником подачи газа 1 и фильтрующим элементом 3, вторая часть напорного воздуховода соединена с фильтрующим элементом 3 и первым модулем измерения параметров газа 5, третья часть напорного воздуховода соединена с первым модулем измерения параметров газа 5 и рабочей камерой турбины турбокомпрессора 6, выпускной воздуховод разделен на две части, первая часть выпускного воздуховода соединена с рабочей камерой турбины турбокомпрессора 6 и второй частью выпускного воздуховода 4, вторая часть выпускного воздуховода 4 соединена с первой частью выпускного воздуховода 4 и источником подачи газа 1, источник подачи газа 1 соединен с блоком управления источником подачи газа 18, выход первого модуля измерения параметров газа 5 соединен с блоком обработки информации и управления стендом 17, второй модуль измерения параметров газа 16 соединен с выходом рабочей камеры компрессора турбокомпрессора 6, выход второго модуля измерения параметров газа 16 соединен с блоком обработки информации и управления стендом 17, выход электропривода масляного насоса 9 подключен к блоку обработки информации и управления стендом 17, второй выход модуля измерения параметров масла 12 соединен с блоком обработки информации и управления стендом 17, выход с нагревательного элемента емкости для масла 7 подключен к блоку обработки информации и управления стендом 17, масляный насос 8 соединен с электроприводом масляного насоса 9, выход емкости с нагревательным элементом для масла 7 подключен к входу масляного насоса 8, выход масляного насоса 8 соединен с входом перепускного клапана 10, первый выход перепускного клапана 10 соединен с входом масляного фильтра 11, выход масляного фильтра 11 соединен с входом модуля измерения параметров масла 12, первый выход модуля измерения параметров масла 12 соединен с отверстием для подачи масла к подшипнику турбокомпрессора 6, второй выход перепускного клапана 10 соединен с первым входом емкости с нагревательным элементом для масла 7, сливное отверстие подшипника турбокомпрессора 6 соединено со вторым входом емкости с нагревательным элементом для масла 7, выход цифрового указателя оборотов 13 соединен с блоком обработки информации и управления стендом 17, выход блока регистрации положения вала в подшипнике 15 подключен к блоку обработки информации и управления стендом 17, выход блока управления источником подачи газа 18 подключен к блоку обработки информации и управления стендом 17.

Для контроля частоты вращения вала турбокомпрессора используется датчик частоты вращения 14 и цифровой указатель оборотов 13.

Для регистрации случаев и величины отклонения смещения вала в радиальном и осевом направлении в подшипниковом узле вала турбокомпрессора 6 установлен блок регистрации положения вала в подшипнике 15, имеющий возможность регистрировать возникновение дисбаланса вала турбокомпрессора 6.

Для регистрации нерегламентированного расхода масла через подшипниковый узел турбокомпрессора 6, утечек масла через уплотнения турбокомпрессора 6 используется модуль измерения параметров масла 12.

Известно, что при подаче масла в подшипниковый узел при температуре ниже рабочей температуры масла при работе его в двигателе внутреннего сгорания (90-150°C) возникает тормозное усилие, действующее на вал турбокомпрессора 6, по причине высокой вязкости масла и, как следствие, высокого напряжения сдвига масляного слоя в предлагаемом стенде для исключения данного фактора используется емкость для масла 7, в которой имеется нагреватель масла, работа которого контролируется блоком обработки информации и управления стендом 17 на основе данных, полученных с модуля измерения параметров масла 12.

Процесс обкатки на предлагаемом стенде осуществляется в следующем порядке.

После установки турбокомпрессора 6 на стенд для «холодной» обкатки турбокомпрессоров энергетических установок и закрепления напорных 2 и выпускных воздуховодов 4 подключается сливное отверстие подшипника турбокомпрессора 6 ко второму входу емкости с нагревательным элементом для масла 7, далее соединяется первый выход модуля измерения параметров масла 12 с отверстием для подачи масла к подшипнику турбокомпрессора 6. Для обеспечения условий смазывания подшипникового узла турбокомпрессора 6 блок обработки информации и управления стендом включает электропривод масляного насоса 9 и нагревательный элемент емкости для масла 7. Соединенный с электроприводом масляного насоса 9 масляный насос 8 создает в масляной магистрали движение масла, при этом регулирование давления осуществляется перепускным клапаном 10, очистка масла осуществляется масляным фильтром 11, измерение параметров масла в масляной магистрали осуществляется модулем измерения параметров масла 12, сигналы с которого поступают на блок обработки информации и управления стендом 17. После создания условий смазывания подшипникого узла турбокомпрессора 6 блок обработки информации и управления стендом 17 подает сигнал на блок управления источником подачи газа 18, который включает источник подачи газа 1, газ подается от источника подачи газа 1 и циркулирует по контуру: источник подачи газа 1 - первая часть напорного воздуховода 2 - фильтрующий элемент 3 - вторая часть напорного воздуховода 2 - первый модуль измерения параметров газа 5 - третья часть напорного воздуховода 2 - рабочая камера турбины турбокомпрессора 6 - первая часть выпускного воздуховода 4 - вторая часть выпускного воздуховода 4 - источник подачи газа 1. Путем подачи газа на сопловой аппарат турбины турбокомпрессора 6 раскручивается вал турбокомпрессора 6 с закрепленными на нем турбинным и компрессорным колесами, компрессорное колесо начинает нагнетать газ, параметры которого регистрирует второй модуль измерения параметров газа 16, информация с которого передается на блок обработки информации и управления стендом 17, при этом контролируется частота вращения вала турбокомпрессора 6 на основе сигнала с датчика частоты вращения 14, подключенного к компрессорной части турбокомпрессора 6 и цифрового указателя оборотов 13, соединенного с блоком обработки информации и управления стендом 17. В случае отклонения и смещения вала в радиальном и осевом направлении в подшипниковом узле вала турбокомпрессора 6 блок регистрации положения вала в подшипнике 15, подключенный к компрессору турбокомпрессора 6, подает сигнал возникновения дисбаланса вала турбокомпрессора 6 на блок обработки информации и управления стендом 17. На основании этих данных принимается диагностическое решение по определению нарушений работоспособности турбокомпрессоров, возникающих на стадиях производства или ремонта турбокомпрессоров.

Использование предлагаемого стенда для «холодной» обкатки турбокомпрессора позволяет осуществлять более качественную обкатку турбокомпрессоров в условиях, близких к эксплуатационным, а также диагностические возможности стенда позволяют определять нарушения работоспособности турбокомпрессоров, возникающие на стадиях производства или ремонта турбокомпрессоров, а также за счет того, что газ, поступающий на вход источника подачи газа, обладает остаточной кинетической энергией, происходит снижение количества энергии, необходимое на сообщение газу требуемой энергии в источнике подачи газа, что в целом использование предлагаемого стенда позволяет повысить технико-экономические показатели процесса обкатки и испытания турбокомпрессоров энергетических установок.

Источники информации

1. Стенд для обкатки турбокомпрессора ТК-34. Каталог оборудования локомотивных депо. Том VIII, М.: Транспорт. 1973, с. 35-37.

2. RU 2362137 С1 «Стенд для «холодной» обкатки турбокомпрессоров энергетических установок» Опуб. 20.07.2009, бюл. №20 (прототип)

Стенд для «холодной» обкатки турбокомпрессоров энергетических установок, включающий источник подачи газа, напорный и выпускной воздуховоды, соединенные с рабочей камерой турбины, датчик частоты вращения и цифровой указатель оборотов, блок управления источником подачи газа, отличающийся тем, что в него дополнительно введены два модуля измерения параметров газа, модуль измерения параметров масла, перепускной клапан, емкость с нагревательным элементом для масла, масляный насос, электропривод масляного насоса, масляный фильтр, блок регистрации положения вала в подшипнике, блок обработки информации и управления стендом и фильтрующий элемент, при этом напорный воздуховод разделен на три части фильтрующим элементом и первым модулем измерения параметров газа, первая часть напорного воздуховода соединена с источником подачи газа и фильтрующим элементом, вторая часть напорного воздуховода соединена с фильтрующим элементом и первым модулем измерения параметров газа, третья часть напорного воздуховода соединена с первым модулем измерения параметров газа и рабочей камерой турбины турбокомпрессора, выпускной воздуховод разделен на две части, первая часть выпускного воздуховода соединена с рабочей камерой турбины турбокомпрессора и второй частью выпускного воздуховода, вторая часть выпускного воздуховода соединена с первой частью выпускного воздуховода и источником подачи газа, источник подачи газа соединен с блоком управления источником подачи газа, выход первого модуля измерения параметров газа соединен с блоком обработки информации и управления стендом, второй модуль измерения параметров газа соединен с выходом рабочей камеры компрессора турбокомпрессора, выход второго модуля измерения параметров газа соединен с блоком обработки информации и управления стендом, выход электропривода масляного насоса подключен к блоку обработки информации и управления стендом, второй выход модуля измерения параметров масла соединен с блоком обработки информации и управления стендом, выход с нагревательного элемента емкости для масла подключен к блоку обработки информации и управления стендом, масляный насос соединен с электроприводом масляного насоса, выход емкости с нагревательным элементом для масла подключен к входу масляного насоса, выход масляного насоса соединен с входом перепускного клапана, первый выход перепускного клапана соединен с входом масляного фильтра, выход масляного фильтра соединен с входом модуля измерения параметров масла, первый выход модуля измерения параметров масла соединен с отверстием для подачи масла к подшипнику турбокомпрессора, второй выход перепускного клапана соединен с первым входом емкости с нагревательным элементом для масла, сливное отверстие подшипника турбокомпрессора соединено со вторым входом емкости с нагревательным элементом для масла, выход цифрового указателя оборотов соединен с блоком обработки информации и управления стендом, выход блока регистрации положения вала в подшипнике подключен к блоку обработки информации и управления стендом, выход блока управления источником подачи газа подключен к блоку обработки информации и управления стендом.



 

Похожие патенты:

Изобретение относится к электрическим испытаниям транспортных средств. В способе испытаний электрооборудования автотранспортных средств на восприимчивость к внешнему электромагнитному полю испытываемое электрооборудование устанавливают в бортовую сеть транспортного средства и подвергают воздействию внешнего излучения с заданными параметрами.

Изобретение относится к области стендовых испытаний деталей и корпусов турбомашин, в частности авиационного двигателестроения, а именно к конструкции стендовых силовых рам для статических и циклических испытаний.

Изобретение относится к области управления работой двигателя внутреннего сгорания, в частности к диагностике неисправности датчиков влажности. Способ диагностики для емкостного датчика влажности, содержащего нагреватель и элемент считывания емкости, который по отдельности идентифицирует ухудшение характеристик нагревателя, элемента считывания температуры или элемента считывания емкости.

Предложены способы и системы диагностирования каждого из множества компонентов системы охлаждения двигателя, включающих в себя различные клапаны и заслонки решетки радиатора.

Способ испытания заключается в задании режима работы гидромеханической части (ГМЧ) САУ ВГТД, измерении расхода топлива, формировании по нему с помощью модели турбокомпрессора частоты вращения рессоры всережимного регулятора, формировании с помощью модели электронного регулятора выходного сигнала канала регулирования по частоте вращения, задании с помощью модели приводного компрессора нагрузки на электрогидравлическом исполнительном механизме и/или на имитаторе гидроцилиндра, формировании выходного сигнала канала регулирования электронного регулятора по направляющему аппарату, задании нагрузки на ГМЧ, воспроизведении ее с помощью загрузочного устройства, дополнительной корректировки выходных сигналов моделей канала регулирования электронного регулятора по регулируемому параметру и по углу поворота направляющего аппарата до достижения ими заданных значений.

Настоящее изобретение относится к системе обнаружения пропуска зажигания, используемой в двигателе внутреннего сгорания. Система обнаружения пропуска зажигания для двигателя включает в себя датчик угла поворота коленчатого вала, блок обнаружения пропуска зажигания, блок получения и блок коррекции.

Устройство диагностики технического состояния электродвигателя подвижного роботизированного комплекса относится к области диагностики технических систем и может быть использовано для диагностирования промышленного оборудования и технических систем, к которым могут быть отнесены подшипники электродвигателей, ленточные конвейеры, промышленные вентиляторы и т.п.

Изобретение относится к измерительной технике, а в частности для проведения оптико-акустических и газодинамических измерений в помещении, для создания свободного звукового поля в помещении, при продувке моделей элементов авиационных ГТД и позволяет повысить надежность и достоверность получаемой при измерении информации.

Изобретение предназначено для использования в энергомашиностроении и может найти широкое применение при создании систем определения динамических напряжений в лопатках рабочих колес осевых турбомашин в авиации и энергомашиностроении.

Изобретение относится к испытаниям лопаточных машин - компрессоров и турбин. В способе лопаточные машины изготовляют с помощью аддитивных технологий (или AF-технологий), а работоспособность лопаточных машин обеспечивают уменьшением характерной температуры рабочего процесса в соответствии с зависимостью: Ти/Тн≤(σи×ρн)/(σн×ρи); где Ти - характерная температура газодинамического процесса при испытаниях; Тн - соответствующая температура в натурных условиях работы; σи - определяющая прочностная характеристика материала модели; σн - соответствующая определяющая прочностная характеристика материала критичных натурных деталей лопаточной машины; ρи - плотность материала модели; ρн - плотность материала критичных натурных деталей лопаточной машины.

Изобретение относится к области двигателестроения и может найти применение при стендовых испытаниях и в эксплуатации газотурбинных двигателей, а также для создания систем диагностики. Техническим результатом, на достижение которого направлен предлагаемый способ, является повышение надежности работы подшипника и двигателя в целом, снижение трудоемкости и затрат на реализацию способа за счет сохранения неизменной материальной части (не требуется внесения конструктивных изменений в опору), расширение области его использования, включая эксплуатацию двигателей. Предварительно определяют частоту вращения сепаратора подшипника, измеряют динамические сигналы с датчиков вибрации, установленных в осевом и вертикальном направлениях, преобразуют их в амплитудно-частотные спектры осевой и радиальной вибрации, строят график изменения амплитуды осевой вибрации с частотой вращения ротора от времени, исключают из рассмотрения участки графика, на которых повышение амплитуды осевой вибрации вызвано отсутствием влияния осевой силы, определяют максимальную амплитуду осевой вибрации, которая соответствует максимальному значению осевой силы, действующей на радиально-упорный подшипник, и определяют соответствующий ей режим работы двигателя, выбирают участки графика, на которых происходит снижение осевой вибрации, при этом в спектре радиальной вибрации при наборе и снижении частоты вращения ротора выполняют поиск дискретной составляющей на предварительно определенной частоте вращения сепаратора подшипника, наличие которой соответствует минимальному значению осевой силы, действующей на радиально-упорный подшипник, и определяют соответствующие ей режимы работы двигателя. 4 з.п. ф-лы, 4 ил.

Изобретение относится к стендовым испытаниям узлов транспортных средств. Предложена автоматизированная система управления нагружающим устройством для стендовых испытаний автомобильных энергетических установок, в которой устройство имитации колеса содержит блок модели привода, который в реальном автомобиле связывает вал испытываемого силового агрегата энергоустановки с колесами, и интегрирующее звено, постоянная времени которого равна моменту инерции имитируемого колеса и коэффициент усиления равен радиусу имитируемого колеса. Первым выходным сигналом блока модели шины является сумма ее продольной реакции и силы сопротивления качения, вторым сигналом - вектор составляющих ее касательной реакции. Выходным сигналом блока модели движения автомобиля является вектор составляющих проскальзывания шины и ее нормальная реакция. Повышается точность воспроизведения нагрузочных режимов энергоустановки в широком диапазоне воспроизводимых системой режимов движения автомобиля. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области измерительной техники, к испытаниям, доводке, диагностике и эксплуатации реактивных двигателей, а конкретно к способам диагностики технического состояния двухконтурного газотурбинного двигателя по газодинамическим параметрам потока. Диагностику технического состояния проводят при одной и той же, выбранной из рабочего диапазона приведенной частоте вращения ротора низкого давления, по приведенным к стандартным атмосферным условиям отклонениям текущих значений параметров от исходных. Приводятся зависимости, по которым определяют вышеуказанные отклонения. При этом отрицательные значения свидетельствуют о загрязнении газовоздушного тракта двигателя или утечках воздуха из тракта компрессора низкого давления, а положительные значения свидетельствуют об ухудшении КПД компрессора низкого давления и/или компрессора высокого давления, и/или турбины высокого давления, и/или турбины низкого давления, причем положительные значения и отрицательное значение свидетельствуют об отборе воздуха из тракта компрессора высокого давления. Технический результат - повышение точности и достоверности при диагностике состояния элементов проточной части двигателя и определение конкретного дефекта и его местонахождения. 1 ил., 2 табл.

Изобретение относится к области измерительной техники, к испытаниям, доводке и эксплуатации всех типов газотурбинных двигателей (ГТД), к способам доставки измерительного элемента в заданную позицию при замерах параметров газового потока, к проведению инженерных и сертификационных испытаний ГТД, к верификации расчетных моделей узлов двигателей. В данном способе дополнительно применяют систему отслеживания смещения ГТД, применяют систему отслеживания отклонения фактической позиции ПР от заданной, измеряют в режиме реального времени фактическое смещение ГТД, отклонение фактической позиции ПР от заданной, затем вычисляют фактическое положение измерительного элемента относительно ГТД, сравнивают вычисленное фактическое значение с позицией ПР в соответствии с управляющей программой, передают в ПР необходимое значение коррекции для перемещения измерительного элемента в заданную позицию относительно ГТД. Кроме того, дополнительно применяют систему отслеживания деформации гребенки, измеряют фактическую деформацию гребенки в режиме реального времени и сравнивают фактическую позицию измерительного элемента, с учетом измеренной фактической деформации гребенки, с заданной. Кроме того, дополнительно после перемещения измерительного элемента в заданную позицию относительно ГТД повторно оценивают отклонение фактической позиции измерительного элемента от заданной и в случае необходимости повторно корректируют положение ПР. Технический результат изобретения – обеспечение доставки измерительного элемента в заданную позицию относительно ГТД в режиме реального времени. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области испытаний авиационных двигателей, в частности к созданию на стендах условий для подготовки испытаний авиационного двигателя по оценке достаточности запасов газодинамической устойчивости. При испытании двигателя обеспечивают дозвуковое течение потока в незатененной области интерцептора, для чего определяют оптимальное расстояние от интерцептора до входного сечения двигателя последовательной установкой интерцептора от входного сечения двигателя на расстояние от 2 до 4 диаметров подводящего коллектора. При последовательной установке измеряют значение комплексного показателя неравномерности W, определяют достижение границы преждевременного помпажа путем обнаружения границы появления сверхзвукового течения потока в незатененной области интерцептора и определяют расстояние между интерцептором и входным сечением двигателя, обеспечивающее возможность измерения реального значения комплексного показателя неравномерности W. Достигается улучшение определения точности (достоверности) значений показателя достаточности запаса газодинамической устойчивости авиационного двигателя. 4 ил.

Изобретение относится к системе судового энергетического оборудования, в частности к способам анализа отработавших газов. Технический результат заключается в возможности определения оптимального режима нагрузки дизеля и контроля процесса горения топлива на основе полученных параметров, а именно размеров твердых частиц отработавших газов дизеля. Предложенный способ обеспечивает контроль процесса сгорания тяжелого топлива в судовом дизеле с помощью анализа пробы отработавших газов в коллекторе отработавших газов судового дизеля. Получают параметры твердых частиц в отработавших газах дизеля на различных режимах эксплуатации и принимают решения по оценке технического состояния дизеля. Предложенный способ может быть применен при эксплуатации судна. Использование предлагаемого изобретения позволяет контролировать техническое состояние в зависимости от абразивного износа дизеля в эксплуатации на тяжелом топливе, в результате повышаются технико-экономические и экологические показатели судовой дизельной установки. 1 з.п. ф-лы, 2 ил.

Изобретение относится к датчику отработавших газов в моторном транспортном средстве. Предложен способ для контроля датчика отработавших газов, присоединенного на выпуске двигателя. В одном из вариантов осуществления способ содержит указание ухудшения характеристик датчика отработавших газов на основе временной задержки и линейного отрезка каждого замера из набора реакций датчика отработавших газов, собранных во время входа в или выхода из перекрытия топлива при замедлении (DFSO). Таким образом, датчик отработавших газов может контролироваться с использованием надежных параметров неагрессивным образом. 3 н. и 15 з.п. ф-лы, 11 ил.

Изобретение относится к измерительным устройствам, в частности к устройствам диагностики технического состояния подшипниковых опор авиационных газотурбинных двигателей. Устройство для измерения акустического сигнала от деталей турбомашины содержит трубчатый полый корпус, установленный в газовоздушном тракте турбомашины, микрофон, установленный в трубчатом полом корпусе и зафиксированный от смещения относительно продольной оси последнего. Причём со стороны измерительной части микрофона канал трубчатого полого корпуса перекрывает торцевая перфорированная крышка, жестко закрепленная относительно последнего. При этом между микрофоном и торцевой перфорированной крышкой образована полость, заполненная звукопоглощающим материалом. Кроме того, трубчатый полый корпус соединен с наружным корпусом турбомашины посредством фиксирующего элемента. Изобретение позволяет повысить амплитуду полезного акустического сигнала, а также позволяет исключить изменение его параметров за счет установки устройства непосредственно вблизи от объекта диагностирования, что приводит к улучшению качество сигнала. 1 ил.

Изобретение относится к области автомобилестроения, в частности к системам двигателя с датчиком влажности. Представлены способы и системы эксплуатации двигателя с емкостным датчиком влажности. В одном из вариантов осуществляют контроль за изменениями датчика давления и влажности с одновременным направлением газов в воздухозаборник двигателя ниже по потоку от датчика влажности и выше по потоку от компрессора, в случае, если контролируемые изменения датчика давления и влажности меньше соответствующих пороговых значений, осуществляют интрузивное регулирование давления в воздухозаборнике и выполняют индикацию ухудшения работы датчика влажности, когда показания влажности изменяются на величину, которая меньше первого порогового значения, а давление на датчике изменяется на величину, которая больше второго порогового значения. Техническим результатом является повышение точности показаний датчика влажности. 3 н. и 16 з.п. ф-лы, 8 ил.

Изобретение относится к двигателям транспортных средств. В способе управления двигателем определяют, образовался ли лед во впускном коллекторе или корпусе дросселя двигателя, в ответ на рабочие параметры двигателя. Затем глушат двигатель в ответ на действие водителя. Определяют, растопился ли лед после глушения двигателя. Определяют, рассеялся ли растопленный лед. Активируют диагностику пропусков зажигания в двигателе после запуска двигателя в ответ на определение о рассеянном растопленном льде. Кроме наличия льда, определяют также его количество. Повышается точность диагностики пропусков зажигания. 3 н. и 17 з.п. ф-лы, 4 ил.
Наверх