Способ очистки отходящих газов окисления изопропилбензола


B01D53/00 - Разделение (разделение твердых частиц мокрыми способами B03B,B03D; с помощью пневматических отсадочных машин или концентрационных столов B03B, другими сухими способами B07; магнитное или электростатическое отделение твердых материалов от твердых материалов или от текучей среды, разделение с помощью электрического поля, образованного высоким напряжением B03C; центрифуги, циклоны B04; прессы как таковые для выжимания жидкостей из веществ B30B 9/02; обработка воды C02F, например умягчение ионообменом C02F 1/42; расположение или установка фильтров в устройствах для кондиционирования, увлажнения воздуха, вентиляции F24F 13/28)

Владельцы патента RU 2640781:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" (RU)

Изобретение относится к нефтехимической и нефтеперерабатывающей промышленности. Способ очистки отходящих газов окисления изопропилбензола заключается в извлечении изопропилбензола с помощью низкотемпературной конденсации, причем для создания низких температур используют энергию отходящих газов окисления изопропилбензола. Изобретение позволяет увеличить степень извлечения изопропилбензола из отходящих газов. 1 ил.

 

Настоящее изобретение относится к нефтехимической либо нефтеперерабатывающей промышленности и может найти применение при получении фенола и ацетона окислением изопропилбензола. Фенол и ацетон широко используются в нефтехимии, например, для получения поликарбонатных пластиков.

Первой стадией получения фенола и ацетона кумольным способом является окисление изопропилбензола кислородом воздуха в кумилгидропероксид. В настоящее время большинство промышленно реализованных процессов окисления изопропилбензола осуществляется при избыточном давлении 3÷5 кг/см2. При этом энергия отходящих газов никак не используется. Отходящие газы окисления содержат до 5 г/м3 изопропилбензола.

Известен способ очистки газов от органических примесей окислением на поверхности катализатора (Справочник нефтехимика. - Л.: Химия, 1986 г., с. 556). По этому способу содержащийся в отходящих газах изопропилбензол окисляется кислородом до углекислоты и воды в присутствии алюмопалладиевого катализатора.

Недостатком способа являются применение дорогостоящего катализатора, сложность поддержания требуемого температурного режима в реакторе дожига, а также безвозвратные потери ценного продукта - изопропилбензола.

Известен способ адсорбционной очистки отходящих газов окисления изопропилбензола (Патент RU 2142326). Процесс очистки состоит из следующих стадий: адсорбции изопропилбензола из отходящих газов при низкой температуре, десорбции изопропилбензола из адсорбента водяным паром при высокой температуре, сушки адсорбента, охлаждения адсорбента до температуры адсорбции. Водяной пар, содержащий десорбированный изопропилбензол, конденсируется, образующийся органический слой после соответствующей обработки возвращается на стадию окисления.

Недостатком способа является цикличность процесса, высокий расход энергоносителей (до 10 тонн водяного пара на тонну выделенного изопропилбензола), низкий срок службы адсорбентов из-за значительных температурных перепадов.

Известен способ абсорбционной очистки отходящих газов окисления изопропилбензола, защищенный патентом RU 2300412. Сущность изобретения заключается в том, что отходящие газы окисления очищаются от изопропилбензола абсорбцией полиалкилбензолами при температурах ниже +10°С.

Недостатком способа является низкая степень очистки газа от изопропилбензола, высокий расход энергоносителей для поддержания низких температур процесса, затраты на извлечение изопропилбензола из насыщенного абсорбента.

При проведении патентного поиска близкого аналога предлагаемого способа не обнаружено.

Задачей настоящего изобретения является разработка нового более эффективного способа выделения изопропилбензола из отходящих газов окисления.

Технический результат - повышение эффективности процесса за счет увеличения степени извлечения изопропилбензола из отходящих газов окисления при низких температурах, при этом для создания низких температур используется энергия отходящих газов.

Технический результат достигается тем, что извлечение изопропилбензола осуществляется с помощью низкотемпературной конденсации, причем для создания низких температур используется энергия отходящих газов окисления изопропилбензола. Вышеназванные газы проходят конденсационную систему, где охлаждаются за счет теплообмена с возвратным отходящим газом, сконденсированная жидкость отделяется от газа в сепараторах, освобожденный от примесей отходящий газ изоэнтропно расширяется в детандере, после чего в качестве хладагента поступает в конденсационную систему и выводится с установки. В качестве теплообменников в конденсационной системе предпочтительно использование пластинчато-ребристых теплообменников, детандер может быть как объемного типа (предпочтительно винтовой), так и газодинамического типа (предпочтительно осевой либо радиально-осевой). Тормозное устройство детандера может быть выбрано любого типа и не ограничивается настоящим изобретением. Поскольку в отходящих газах окисления изопропилбензола содержится значительное количество метанола, для реализации предлагаемой схемы необязательно применение осушителей.

Вышеуказанные и иные аспекты и преимущества настоящего изобретения раскрыты в нижеследующем подробном его описании, приводимом со ссылками на фиг. 1, где изображена установка очистки отходящих газов окисления изопропилбензола.

Установка очистки отходящих газов окисления изопропилбензола состоит из теплообменников, сепараторов, а также детандера объемного либо газодинамического типа.

Отходящие газы окисления изопропилбензола потоком (а) поступают в предварительный теплообменник 1, предназначенный для конденсации основной массы водяных паров, где происходит охлаждение до уровня -5÷-10°С. Образующаяся газожидкостная смесь потоком (б) поступает в сепаратор 2, где разделяется на газовый поток (в) и жидкий поток (г). Поток (г) поступает в сборник 6, поток (в) поступает в основной теплообменник 3, где происходит охлаждение до уровня -40÷-50°С. Образующаяся газожидкостная смесь потоком (д) поступает в сепаратор 4, где разделяется на газовый поток (е) и жидкий поток (ж). Поток (ж) поступает в сборник 6, поток (е) поступает на расширение в детандер 5, где происходит охлаждение до уровня -50÷-60°С. Выходящий из детандера газ потоком (з) поступает в качестве хладагента в основной теплообменник 3, откуда потоком (и) поступает в предварительный теплообменник 1, после чего потоком (к) выводится с установки. Собранный в сборнике 6 конденсат потоком (л) после соответствующей подготовки отправляется на окисление.

Ниже приводятся конкретные примеры, поясняющие преимущества данного изобретения.

Пример 1

Отходящий газ окисления изопропилбензола, поступающий с расходом 12500 нм3/час, давлением 3 ати и температурой 15°С, имеет следующий состав:

Азот 93,67% об.
Кислород 6% об.
Изопропилбензол 4030 мг/м3
Вода 1528 мг/м3
Метанол 131 мг/м3
Прочие примеси 689 мг/м3

Пройдя предварительный теплообменник 1, газ с температурой -9°С поступает в сепаратор 2 для отделения конденсата. Выходящий с верха сепаратора 2 газ имеет следующий состав:

Изопропилбензол 723 мг/м3
Вода 243 мг/м3
Метанол 85 мг/м3

После сепаратора 2 газ поступает в основной теплообменник 3, где охлаждается до температуры -46°С и сепаратор 4. Выходящий с верха сепаратора 4 газ имеет следующий состав:

Изопропилбензол 13 мг/м3
Вода 2 мг/м3
Метанол 15 мг/м3

После сепаратора 4 газ поступает в турбодетандер 5, где охлаждается до температуры -60°С, после чего в качестве хладагента проходит последовательно холодильники 3 и 1 и выводится с установки. В качестве тормозного устройства турбодетандера используется гидравлический тормоз. Собранный в сепараторах 2 и 4 конденсат поступает в сборник 6, откуда поступает на отмывку рециклового изопропилбензола. Газ после очистки содержит изопропилбензол в количестве менее 50 мг/м3, степень извлечения изопропилбензола - более 99%.

Таким образом, предложен новый более эффективный способ очистки отходящих газов окисления изопропилбензола.

Способ позволяет выделять изопропилбензол с хорошим выходом и низкими энергозатратами.

Для специалистов могут быть очевидны и иные варианты осуществления изобретения, не меняющие его сущности, как она раскрыта в настоящем описании. Соответственно, изобретение следует считать ограниченным по объему только нижеследующей формулой изобретения.

Способ очистки отходящих газов окисления изопропилбензола, отличающийся тем, что извлечение изопропилбензола осуществляют с помощью низкотемпературной конденсации, причем для создания низких температур используют энергию отходящих газов окисления изопропилбензола.



 

Похожие патенты:

Изобретение относится к способам низкотемпературной очистки низконапорных нефтяных газов и может быть использовано в нефтяной промышленности. Способ включает ввод ингибитора гидратообразования в поток газа, охлаждение этого газа рекуперацией холода подготовленного газа и испарением хладагента, отделение охлажденного газа от конденсированной жидкой фазы и подачу потребителю конденсированных углеводородов и подготовленного газа.

Изобретение относится к способам компримирования газа и может быть использовано в различных отраслях промышленности для компримирования многокомпонентных газов, содержащих пары тяжелых компонентов.

Изобретение относится к газовой промышленности. Разработан способ очистки природного газа от тяжелых углеводородов, в котором природный газ отбирают из магистрального газопровода, подвергают предварительной осушке, удаляют пары воды и направляют в турбодетандер для последующего охлаждения.

Изобретение относится к способам очистки природного или нефтяного газа. Способ подготовки газа на нефтяных и газовых промыслах включает очистку от сероводорода и двуокиси углерода, сепарацию от капельной жидкости, ввод ингибитора гидратообразования в поток подготавливаемого газа, сепарацию из охлажденного газа конденсированных углеводородов и использованного ингибитора, регенерацию основного компонента ингибитора, подачу подготовленного газа и конденсированных углеводородов после рекуперации их холода потребителю, в качестве ингибитора гидратообразования используют раствор из аммиака и газа, газ охлаждают в испарителе хладагентом - аммиаком, регенерированным десорбцией из смеси использованного ингибитора и раствора, получаемого в процессе абсорбции из десорбционной воды и аммиака после испарителя, причем смесь на десорбцию подают насосом, регенерацию основного компонента ингибитора и хладагента - аммиака выполняют совместно, рекуперацию холода подготовленного газа дополнительно производят при отводе тепловой энергии в процессе абсорбции аммиака водой, излишки воды после десорбции используют для технологических нужд промысла, потери аммиака с подготавливаемым газом восполняют непосредственно его синтезом из азота и водорода на промысле или подводом извне.

Изобретение относится к устройствам для сжатия многокомпонентных газов, в частности попутного нефтяного газа, и может быть использовано в нефтегазовой промышленности.

Изобретение относится к газовой промышленности, в частности к обработке углеводородного газа с использованием низкотемпературного процесса, и может быть использовано в процессах промысловой подготовки к транспорту конденсатсодержащего пластового газа.

Изобретение относится к технике и технологии низкотемпературной переработки газа и может быть использовано на газоперерабатывающих заводах и заводах сжиженного природного газа.

Изобретение относится к способам подготовки газа путем низкотемпературной конденсации и может быть использовано в газовой промышленности для промысловой подготовки скважинной продукции газоконденсатных месторождений.

Изобретение относится к установкам комплексной подготовки природного газа к транспорту методом низкотемпературной сепарации и может быть использовано в газовой промышленности.

Изобретение относится к устройствам для подготовки природного газа путем низкотемпературной сепарации и может быть использовано в нефтегазовой промышленности. Предложено два варианта устройства.

Изобретение относится к двум вариантам способа алкилирования ароматических соединений. Один из вариантов включает: (a) предоставление исходного ароматического углеводородного сырья, содержащего алкилируемый ароматический углеводород, по меньшей мере 150 ч./млн по массе воды и по меньшей мере одну органическую азотную примесь, причем алкилируемый ароматический углеводород представляет собой бензол; (b) удаление воды из исходного ароматического углеводородного сырья в зоне обезвоживания с получением обезвоженного исходного ароматического сырья, имеющего содержание воды не более чем 20 ч./млн по массе; (c) контактирование обезвоженного исходного ароматического сырья с адсорбентом из глины в условиях, включающих температуру менее чем 130°С, так что адсорбент удаляет по меньшей мере часть органической азотной примеси, содержащейся в исходном сырье, с получением обработанного ароматического исходного сырья; и (d) подачу обработанного ароматического исходного сырья в реакционную зону алкилирования и/или реакционную зону трансалкилирования.

Изобретение относится к способу получения изопропилбензола алкилированием бензола пропиленом и переалкилированием полиалкилибензолов. Способ характеризуется тем, что реакции алкилирования и переалкилирования проводят раздельно, причем реакцию алкилирования проводят в жидкой фазе с применением полимерного катализатора, имеющего только Бренстодовые кислотные центры, а для осуществления реакции переалкилирования в качестве катализатора применяют кислоту Льюиса.

Изобретение относится к способу получения алкилбензола, включающему алкилирование бензола олефином в присутствии катализаторного комплекса на основе треххлористого алюминия путем подачи осушенной бензольной шихты, полиалкилбензолов, олефина, катализаторного комплекса, возвратного катализаторного комплекса в реактор алкилирования, в условиях турбулентности, и деалкилирование полиалкилбензолов.

Изобретение относится к способу алкилирования сырья. Способ включает контактирование сырья, содержащего по меньшей мере одно ароматическое соединение, способное алкилироваться, и алкилирующий агент, с первой алкилирующей каталитической композицией в условиях алкилирования.
Изобретение относится к способу алкилирования ароматических углеводородов олефинами, содержащими от 2 до 8 атомов углерода, который включает подачу углеводорода, олефинов и необязательно воды через крышку реактора с неподвижным слоем, работающего в режиме «капельного потока», содержащего, по меньшей мере, один слой катализатора, содержащего средне- или крупнопористый цеолит.
Изобретение относится к способу получения потока алкилированного ароматического соединения из по меньшей мере частично необработанного потока способного к алкилированию ароматического соединения, содержащего каталитические яды, и потока алкилирующего агента, включающего следующие стадии: (а) контактирование указанного потока способного к алкилированию ароматического соединения, содержащего указанные каталитические яды, с обрабатывающей композицией в зоне обработки, отдельной от реакционной зоны алкилирования, в условиях обработки с целью удаления по меньшей мере части указанных каталитических ядов и получения обработанного отходящего потока, который включает обработанное способное к алкилированию ароматическое соединение и сниженное количество каталитических ядов, причем указанная обрабатывающая композиция представляет собой пористый кристаллический материал, который имеет отношение площади поверхности к объему, составляющее более 30 дюймов-1 (12 см-1), указанные условия оработки включают температуру от 30 до 300°С; (б) периодическую подачу потока алкилирующего агента в указанную зону обработки совместно с указанным по меньшей мере частично необработанным способным к алкилированию ароматическим соединением, чтобы достичь увеличения температуры, вызванного экзотермической реакцией между указанным алкилирующим агентом и указанным по меньшей мере частично необработанным способным к алкилированию ароматическим соединением в присутствии указанной обрабатывающей композиции при указанных условиях обработки, причем указанное увеличение температуры определяет степень старения указанной обрабатывающей композиции; причем периодическая подача алкилирующего агента означает, что алкилирующий агент подают в зону обработки с интервалами от 1 секунды до 24 часов или более, и затем прекращают подавать на периоды времени от 1 минуты до 15 суток или более; и (в) контактирование указанного обработанного способного к алкилированию ароматического соединения в указанном отходящем потоке и потока алкилирующего агента с каталитической композицией в указанной реакционной зоне алкилирования, отдельной от указанной зоны обработки, при по меньшей мере частично жидкофазных условиях каталитического превращения с получением алкилированного отходящего потока, который включает дополнительное количество алкилированного ароматического соединения, причем указанная каталитическая композиция включает пористый кристаллический материал, имеющий каркасный структурный тип, выбранный из группы, включающей FAU, BEA, MOR, MWW и их смеси, причем указанные по меньшей мере частично жидкофазные условия каталитического превращения включают температуру от 100 до 300°С, давление от 689 до 4601 кПа, молярное отношение обработанного способного к алкилированию ароматического соединения к алкилирующему агенту от 0,01:1 до 25:1 и массовую часовую объемную скорость подачи сырья (МЧОС), составляющую в расчете на алкилирующий агент от 0,5 до 500 ч-1.
Изобретение относится к способу получения потока алкилированного ароматического соединения из по меньшей мере одного необработанного потока способного к алкилированию ароматического соединения, находящегося в жидкой фазе и содержащего каталитические яды, и потока алкилирующего агента, причем указанный необработанный поток способного к алкилированию ароматического соединения обрабатывают с целью снижения содержания каталитических ядов.
Изобретение относится к способу алкилирования ароматических углеводородов при помощи алифатических спиртов, содержащих от 1 до 8 атомов углерода. Способ включает в себя подачу углеводорода и спирта с крышки корпуса реактора с неподвижным слоем, функционирующего в режиме "капельного потока", содержащего, по меньшей мере, один слой катализатора, включающего в себя цеолит, выбранный из цеолитов со средними порами и цеолитов с большими порами, причем в реакторе алкилирования ароматический углеводород и алифатический спирт находятся в газовой фазе, а продукты алкилирования находятся в жидкой фазе.
Изобретение относится к способу каталитического превращения сырья, содержащего по меньшей мере одно алкилируемое ароматическое соединение и алкилирующий реагент, с образованием продукта превращения, содержащего алкилароматическое соединение, способ включает стадию взаимодействия указанного сырья по меньшей мере в частично жидкой фазе при условиях каталитического превращения, включающих отношение количества молей алкилируемого ароматического соединения к количеству молей алкилирующего реагента, составляющее от 0,1:1 до 100:1, и среднечасовую скорость подачи сырья (ССПС) в пересчете на алкилирующий реагент, равную от 0,1 до 500 ч-1, с каталитической композицией, содержащей пористое кристаллическое вещество, обладающее структурой типа FAU, *ВЕА или MWW, или их смесь, улучшение, включающее модификацию указанной каталитической композиции, такое, чтобы она обладала относительной активностью, измеренной, как RA220 при 220°С, равной от 7,5 до 30, или RA180 при 180°С, равной от 2,5 до 10.

Изобретение относится к способу извлечения моноалкилбензола из газового потока, содержащего кислород и моноалкилбензол. При этом газовый поток, содержащий кислород и моноалкилбензол, вступает в контакт с жидким потоком, включающим полиалкилбензол, соединение, содержащее две фенильные группы, соединенные между собой через алкиленовый мостик C1-С3, или их смесь.

Изобретение относится к составу катализатора для обработки выхлопного газа, включающему цеолитный материал, имеющий структуру с малыми порами и мольным отношением оксида кремния к окиси алюминия (SAR) от 10 до 30; от 1,5 до 5 вес.

Изобретение относится к нефтехимической и нефтеперерабатывающей промышленности. Способ очистки отходящих газов окисления изопропилбензола заключается в извлечении изопропилбензола с помощью низкотемпературной конденсации, причем для создания низких температур используют энергию отходящих газов окисления изопропилбензола. Изобретение позволяет увеличить степень извлечения изопропилбензола из отходящих газов. 1 ил.

Наверх