Способ формования лопатки спрямляющего аппарата

Изобретение относится к области изготовления спрямляющей лопатки турбореактивного двухконтурного двигателя авиационного применения. Способ формования лопатки спрямляющего аппарата, содержащей верхнюю и нижнюю полки с размещенным между полками пером и выполненной из препрега на основе связующего с волоконным армированием из непрерывного, по всему объему лопатки, углеродного многослойного композиционного материала, включает отверждение лопатки. Отверждение осуществляют в накрытой технологическим пакетом пресс-форме в автоклаве. При отверждении создают вакуум в технологическом пакете с пресс-формой не более 0,02 МПа и поднимают температуру до 100±5°C со скоростью 1-5°C/мин. Затем выдерживают при температуре 100±5°C в течение 30-120 минут, поднимают давление до 0,20 МПа со скоростью 0,01-0,02 МПа/мин, после чего поднимают давление до 0,60±0,05 МПа. Затем поднимают температуру до 175±5°C со скоростью 1-5°C/мин и выдерживают при температуре 175±5°C в течение 120-480 минут, после чего охлаждают до 30°C со скоростью 1-5°C/мин и сбрасывают давление. Выдерживают в течение 5-50 минут и сбрасывают вакуум в технологическом пакете. Изобретение позволяет повысить надежность лопатки спрямляющего аппарата, снизить трудоемкость его изготовления и обеспечить стабильность прочностных и жесткостных характеристик, а также улучшить массовые характеристики спрямляющего аппарата. 2 ил.

 

Изобретение относится к области изготовления спрямляющей лопатки газотурбинного двигателя из композитного материала, в частности к лопатке спрямляющего аппарата турбореактивного двухконтурного двигателя авиационного применения.

Известен способ формования листового полимерного материала (SU 490674 А1, В29с 17/00, опубл. 05.11.1975, бюл. №41). Однако он обеспечивает формование только в тонкостенной матрице, что не позволяет использовать заготовки больших размеров.

Известен способ формования лопатки спрямляющего аппарата для турбореактивного двигателя, содержащей удлиненные моноблочные передний и задний участки, а также внешний слой, соединенные посредством горячего прессования. Удлиненные моноблочные передний и задний участки, образующие, соответственно, переднюю и заднюю кромки лопатки, вырезаны из пултрудированного профиля, содержащего связанные смолой волокна (RU 2544102 С2, F01D 5/28, опубл. 10.03.2015, бюл. №7). Недостатками данного способа являются снижение прочностных и жесткостных характеристик лопатки при изготовлении лопаток больших размеров и существенные ограничения на геометрию пера лопатки, связанные с пултрузионным методом производства силовых слоев.

Известен способ формования лопатки из композитного материала, армированного короткими и длинными волокнами [RU 2591968 С2, F01D 5/14, F01D 5/28, F01D 9/02, опубл. 20.07.2016, бюл. №20]. Однако указанный способ обладает высокой трудоемкостью.

Известен способ формования лопатки спрямляющего аппарата из полимерных композиционных материалов в режиме отверждения (FR №2625528, F01D 5/28, F01D 9/02, F01D 29/00, 1987 г.). Недостатком данного способа является высокая трудоемкость, низкие прочностные характеристики лопатки, их нестабильность.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является способ формования лопатки спрямляющего аппарата, содержащей верхнюю и нижнюю полки, размещенное между полками перо, выполненное из однонаправленного или равнопрочного препрега на основе термореактивного или термопластичного связующего с волоконным армированием из непрерывного, по всему объему лопатки, углеродного многослойного композиционного материала (RU 163398 U1, F01D 9/00, F01L 5/00, опубл. 20.07.2016, бюл. №20). Недостатком данного способа является высокая трудоемкость и нестабильность получаемых прочностных характеристик.

Указанный способ формования лопатки спрямляющего аппарата из полимерных композиционных материалов принят за прототип.

Перед изобретением была поставлена задача снижения трудоемкости, обеспечения стабильности получаемых характеристик, исключения механической обработки изделия после прессования.

Техническим результатом изобретения является повышение надежности, увеличение производительности, снижение трудоемкости, обеспечение стабильности прочностных и жесткостных характеристик, исключение механической обработки после прессования, улучшение массовых характеристик спрямляющего аппарата, расширение арсенала выпускаемых изделий.

Технический результат достигается за счет того, что в способе формования лопатки спрямляющего аппарата из композитного материала (далее - лопатки), включающем режим отверждения лопатки, содержащей верхнюю и нижнюю полки с размещенным между полками пером, выполненной из однонаправленного или равнопрочного препрега на основе термореактивного или термопластичного связующего с волоконным армированием по всему объему лопатки, углеродного многослойного композиционного материала, который осуществляют в накрытой технологическим пакетом пресс-форме в автоклаве путем производства следующих последовательных технологических операций:

- создание вакуума в технологическом пакете с пресс-формой не более 0,02 МПа;

- подъем температуры до (100±5)°C со скоростью 1-5°C/мин;

- выдержка при температуре (100±5)°C в течение 30-120 минут;

- подъем давления до 0,20 МПа со скоростью 0,01-0,02 МПа/мин;

- подъем давления до (0,60±0,05) МПа;

- подъем температуры до (175±5)°C со скоростью 1-5°C/мин;

- выдержка при температуре (175±5)°C в течение 120-480 минут;

- охлаждение до 30°C со скоростью 1-5°C/мин;

- сброс давления;

- выдержка в течение 5-50 минут;

- сброс вакуума в технологическом пакете.

На фиг. 1 изображена лопатка спрямляющего аппарата; на фиг. 2. показана пресс-форма для изготовления лопатки.

Лопатка 1 содержит верхнюю 2 и нижнюю 3 полки, перо 4, размещенное между полками 2 и 3. Перо 4 лопатки 1 спрямляющего аппарата выполнено с двумя аэродинамическими поверхностями с непрерывной схемой армирования по всей геометрии. Пресс-форма содержит полуматрицу нижнюю 5, полуматрицу верхнюю 6, торцовые вставки 7 и 8 матрицы, торцовые вставки 9 и 10 пуансона.

Устройство работает следующим образом. В начальный момент заготовку, предварительно набранную из нескольких слоев препрега согласно схеме армирования, укладывают на состоящую из полуматриц 5 и 6 формующую матрицу. После этого пуансон, включающий торцовые вставки 9 и 10, накладывают на расположенную на матрице заготовку и посредством крепежных деталей прижимают к матрице, формуя листовую заготовку в изделие. Далее находящуюся под технологическим пакетом пресс-форму с заготовкой помещают в автоклав, в котором производят режим отверждения посредством выполнения указанных выше технологических операций. После окончания режима отверждения пресс-форму вынимают из автоклава, пуансон, а затем и готовое отформованное изделие снимают с матрицы.

Лопатки спрямляющего аппарата из полимерных композиционных материалов обеспечивают выравнивание воздушного потока, закрученного рабочей лопаткой вентилятора, до осевого направления в наружном контуре двигателя (не показано).

Осуществление указанного режима отверждения лопатки спрямляющего аппарата вентилятора двухконтурного турбореактивного авиационного двигателя методом автоклавного формования позволяет не только повысить производительность труда, ускорить процесс отверждения, но и поставить производство лопаток на поток за счет одновременной установки в автоклаве нескольких пресс-форм с заготовками.

Предлагаемое техническое решение обладает новизной, очевидным для специалистов не является, промышленно применимо.

Способ формования лопатки спрямляющего аппарата из композитного материала, включающий режим отверждения, отличающийся тем, что режим отверждения лопатки, содержащей верхнюю и нижнюю полки с размещенным между полками пером, выполненной из однонаправленного или равнопрочного препрега на основе термореактивного или термопластичного связующего с волоконным армированием из непрерывного, по всему объему лопатки, углеродного многослойного композиционного материала, осуществляют в накрытой технологическим пакетом пресс-форме в автоклаве путем производства следующих последовательных технологических операций:

- создание вакуума в технологическом пакете с пресс-формой не более 0,02 МПа;

- подъем температуры до (100±5)°C со скоростью 1-5°C/мин;

- выдержка при температуре (100±5)°C в течение 30-120 минут;

- подъем давления до 0,20 МПа со скоростью 0,01-0,02 МПа/мин;

- подъем давления до (0,60±0,05) МПа;

- подъем температуры до (175±5)°C со скоростью 1-5°C/мин;

- выдержка при температуре (175±5)°C в течение 120-480 минут;

- охлаждение до 30°C со скоростью 1-5°C/мин;

- сброс давления;

- выдержка в течение 5-50 минут;

- сброс вакуума в технологическом пакете.



 

Похожие патенты:

Узел уплотнения между полостью диска и каналом горячего газа, проходящий через секцию турбины газотурбинного двигателя, содержит вращающийся узел рабочих лопаток и неподвижный узел направляющих лопаток.

Изобретение относится к способу и оборудованию для наплавки металлической детали (202) турбореактивного двигателя летательного аппарата, содержащей множество подлежащих наплавке металлических частей (203, 204).

Изобретение относится к способу восстановления элемента турбомашины. Способ включает следующие этапы: настройку (50) установки для лазерного плакирования; подготовку (11) подлежащей восстановлению части элемента турбомашины путем удаления поврежденного объема элемента; поворот элемента турбомашины относительно установки для лазерного плакирования; восстановление (12) поврежденного объема с помощью лазерного плакирования для получения восстановленного объема в поврежденном элементе; применение (13) термической обработки к восстановленному объему элемента турбомашины; выполнение (14) чистовой обработки поверхности восстановленного объема и неразрушающее тестирование (15) восстановленного объема.

Изобретение может быть использовано для наплавки алюминиевых деталей турбомашины посредством сварочного оборудования MIG, например, при ремонте картера удержания. Наплавку осуществляют с использованием проволоки присадочного металла из алюминиевого сплава, состав которого идентичен составу алюминиевого сплава наплавляемой детали с получением валиков большого сечения.

Изобретение относится к области соединения металлов и может быть использовано при ремонте изготовленного из суперсплава компонента газотурбинного двигателя. Способ включает изъятие компонента из эксплуатации, удаление поврежденной части компонента для открытия ремонтируемой поверхности, покрытие ремонтируемой поверхности слоем порошка, включающим материал суперсплава и флюс, воздействие энергетическим лучом на часть поверхности сформированного слоя порошка для плавления выбранной части и образование структурированного первого слоя материала суперсплава, присоединенного к ремонтируемой поверхности и покрытого слоем шлака, удаление слоя шлака с первого слоя материала суперсплава, покрытие, по меньшей мере, первого слоя материала суперсплава дополнительным количеством упомянутого порошка, воздействие энергетического луча на дополнительное количество порошка для изготовления второго слоя материала суперсплава, присоединенного к первому слою и покрытого последующим слоем шлака, удаление последующего слоя шлака.

Изобретение относится к области ремонта, выполненного как единое целое моноколеса турбореактивного двигателя летательного аппарата, и предназначено для ремонта любой лопатки турбомашины.

Изобретение относится к авиационным двухконтурным турбореактивным двигателям (ТРДД). Предложена передняя опора ротора вентилятора двухконтурного турбореактивного двигателя, содержащая ступицу, корпус подшипника, два упругих элемента, соединенных параллельно так, что их жесткости суммируются, роликовый подшипник, смазываемый барботажем, цапфу, фигурную втулку, закрепленную на цапфе и фиксирующую фланцем внутреннее кольцо подшипника и вращающиеся детали сегментного контактного уплотнения, сегментное контактное уплотнение, состоящее из втулки с резьбой, закрепленной на цапфе, кольца, по резьбе соединенного с этой втулкой, трех графитовых уплотнительных колец, составленных из отдельных сегментов, прижатых к контактирующему с ними кольцу двумя пружинами так, что между торцами сегментов этих колец остается зазор 0,05÷0,1 мм, два из которых без зазора вставлены друг в друга, а третье кольцо установлено встык к этим двум кольцам, причем стыки сегментов этих колец в окружном направлении разнесены друг от друга, лабиринтное уплотнение предмасляной полости опоры, состоящее из лабиринтного кольца и статорного элемента, трубу, расположенную внутри цапфы и образующую воздушную полость в ней, и в фигурной втулке и цапфе выполнены отверстия, через которые подводится масло для охлаждения кольца, контактирующего с графитовыми уплотнительными кольцами, и в трубе, цапфе и лабиринтном кольце выполнены отверстия, через которые подается воздух для наддува предмасляной полости опоры, отличающаяся тем, что корпус подшипника выполнен за одно целое с обоими упругими элементами, выполненными в виде упругих колец с равномерно чередующимися наружными и внутренними выступами, натяг между наружным кольцом подшипника и внутренними выступами упругих колец равен 0÷h/2 мм, где h - высота выступов упругих колец, равная h=0,15÷0,3 мм, в расточки, выполненные в наружном кольце подшипника с обеих его сторон, запрессованы две втулки с полированными торцами, выполненные из стали или бронзы БрС30, и торцы зазора между ступицей и наружным кольцом подшипника, в котором размещены упругие кольца, уплотнены металлическими уплотнительными кольцами, которые прижаты ответными полированными торцами к полированным торцам этих втулок резиновыми уплотнительными кольцами, расположенными в кольцевых канавках в бурте корпуса подшипника и корпусе сегментного контактного уплотнения, и на каждом металлическом уплотнительном кольце выполнен выступ, который входит соответственно в ответный паз, выполненный в бурте корпуса подшипника или корпуса сегментного контактного уплотнения с зазором по периметру паза, меньшим смещения металлического уплотнительного кольца, при котором возникают взаимные проскальзывания металлического и резинового уплотнительных колец, и равным 0÷0,05 мм, а на торцах наружного кольца подшипника выполнены выступы, входящие в ответные пазы в металлических уплотнительных кольцах с зазором по периметру паза, равным или немного большим допустимого смещения цапфы в ступице, с зазором 0,15÷0,3 мм, и радиальный зазор между металлическими уплотнительными кольцами и корпусом подшипника меньше смещения металлического уплотнительного кольца, при котором возникают взаимные проскальзывания металлического и резинового уплотнительных колец, меньше 0,1 мм, и радиальное расстояние от наружной окружности, ограничивающей зону контакта резинового уплотнительного кольца с металлическим уплотнительным кольцом, до наружной цилиндрической поверхности металлического уплотнительного кольца таково, что гидравлическое давление, действующее на каждое металлическое уплотнительное кольцо со стороны уплотнительного резинового кольца, уравновешивает в случае раскрытия стыка между металлическим уплотнительным кольцом и наружным кольцом подшипника гидравлическое давление, действующее на металлическое уплотнительное кольцо со стороны наружного кольца подшипника, а внутренний диаметр резьбы втулки, закрепленной на цапфе, равен или больше наружного диаметра внутреннего кольца подшипника, а само резьбовое соединение уплотнено резиновым уплотнительным кольцом, размещенным в кольцевых расточках втулки и кольца, и между кольцом и лабиринтным кольцом установлено разрезное упругое кольцо, в свободном состоянии сцентрированное по пояску лабиринтного кольца, цилиндрические поверхности двух графитовых колец, вставленных друг в друга, по которым они контактируют, выполнены с эксцентриситетом по отношению к цилиндрической поверхности внутреннего кольца этой пары, по которой оно контактирует с кольцом, навернутым на втулку, и в качестве пружин, прижимающих сегменты графитовых уплотнительных колец к контактирующему с ними кольцу, применены два кольцевых многослойных гофрированных пакета, набранных «гофр в гофр» из шлифованных стальных нагартованных лент или лент, изготовленных из закаленной нержавеющей стали, причем стыки концов лент равномерно распределены по вершинам гофров, каждый пакет гофрированных лент с радиальным натягом по вершинам гофров, созданным одинаковым одновременным сжатием всех гофров пакета в радиальных направлениях, вставлен в кольцевой зазор между корпусом сегментного контактного уплотнения и тем графитовым уплотнительным кольцом, на которое он опирается, до упора друг в друга и в стенку этого корпуса так, что его вершины располагаются в ответных полукруглых сегментных выемках, выполненных в контактирующих с пакетами деталях, и сегментное контактное уплотнение со стороны предмасляной полости опоры закрыто крышкой и уплотнено резиновыми уплотнительными кольцами, расположенными в кольцевых канавках крышки, и крышка и корпус сегментного уплотнения изготовлены из стали одинаковой марки или бронзы БрС30, причем кольцевой зазор между корпусом сегментного уплотнения и крышкой также меньше 0,1 мм, и в крышке выполнен несквозной паз, в который с суммарным зазором по боковым сторонам паза, меньшим 0,1 мм, входит упор, герметично частью с конической трубной резьбой закрепленный в корпусе сегментного уплотнения и законтренный упругим кольцом, и крышка упругими силами, созданными упругим разрезным кольцом, размещенным в кольцевой канавке корпуса сегментного уплотнения, и давлением воздуха, поступающего в предмасляную полость опоры через отверстия в трубе, цапфе и лабиринтном кольце, прижата полированным торцом к ответным полированным торцам графитных уплотнительных колец, а в бурте корпуса подшипника выполнено дроссельное отверстие, сообщающееся с зазором по периметру паза, выполненного в металлическом уплотнительном кольце.

Изобретение относится к титановым лопаткам большого размера последних ступеней паротурбинных двигателей. Лопатка содержит сплав на основе титана и имеет переднюю кромку, включающую оксид титана, содержащий поры и верхний герметизирующий слой, заполняющий поры, выбранный из группы, состоящей из хрома, кобальта, никеля, полиимида, политетрафторэтилена и сложного полиэфира.

Изобретение относится к способу ремонта металлической детали. Осуществляют наплавку поврежденных частей детали порошком металла на упомянутую деталь.

Изобретение относится к многослойному теплозащитному покрытию на детали горячего тракта энергетических газотурбинных установок большой мощности. Многослойное теплозащитное покрытие включает основной металлический подслой, выполненный из сплава на основе никеля, верхний керамический теплозащитный слой и дополнительный металлический жаростойкий подслой между основным подслоем и керамическим слоем.

Изобретение относится к области турбомашиностроения, а именно к конструкции лопатки турбомашины, в частности осевого компрессора газотурбинного двигателя. Лопатка турбомашины выполнена в виде пера с прикрепленными к нему входной и выходной кромками, выполненными из материала с пористой структурой.

Способ образования детали из композиционного материала с керамической матрицей заключается в нанесении барьерного слоя во внутреннем канале керамического элемента, чтобы закрыть внутренний канал с образованием формы, содержащей полость.

Турбомашина содержит ротор, определяющий продольную ось турбомашины, и лопатку, соединенную с ротором, и упрочняющую полосу. Упрочняющая полоса соединена с лопаткой и выполнена с возможностью противодействия расслоению лопатки путем приложения сжимающей нагрузки к лопатке турбомашины.

Защитная накладка композитной лопатки турбинного двигателя, предназначенная для адгезионного сцепления с передней кромкой упомянутой лопатки и имеющая по всей высоте сечения лопатки форму латинской буквы V.

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионностойким сплавам на основе никеля, и может быть использовано для изготовления литьем сопловых (направляющих) лопаток газотурбинных установок с равноосной и монокристаллической структурами, работающих в агрессивных средах при температурах 700-1000°С.

Изобретение относится к способу и оснастке для осаждения из паровой фазы металлического покрытия на детали из жаропрочного сплава и может быть использовано для нанесения такого покрытия на детали турбомашин, подвижные лопатки или лопатки статора газотурбинного двигателя.

Металлическая усиливающая деталь турбомашины для установки на переднюю кромку или заднюю кромку композитной лопатки турбомашины, такой как лопатка вентилятора турбореактивного или турбовинтового двигателя самолета, содержит усилительные средства, расположенные на сердцевине металлической усиливающей детали в полостях соединительных поверхностей двух металлических усилительных листов.

Компонент газотурбинного двигателя содержит внутренний бандаж, наружный бандаж и направляющие лопатки, выполненные из композиционного материала, имеющего переплетенное волоконное армирование, уплотненное матрицей.

Направляющий лопаточный венец, предназначенный для последней ступени паровой турбины и содержащий направляющие лопаточные узлы, которые ограничивают кольцевую камеру и каждый из которых содержит удлиненную лопаточную часть.
Изобретение относится к области металлургии, а именно к составам для защиты лопаток паровых турбин от ударно-капельной эрозии. Сплав на основе кобальта для наплавки на лопатки паровой турбины содержит: B 1,5-5, C 0,5-1, Cr 15-18, Fe 10-12, Ni 5-10, Mo 2-4, Si 2-4, Mn 5-8, Cu 2-5, W 10-12, Co - остальное.

Роторная машина содержит статор и ротор, выполненный с возможностью вращения относительно статора и имеющий металлический вал, композитное рабочее колесо и по меньшей мере первое металлическое кольцо, закрепляющее композитное рабочее колесо на указанном металлическом валу. Композитное рабочее колесо содержит соединенные друг с другом композитную часть и металлическую крепежную часть, имеющую втулку и проходящую радиально часть, которая проходит радиально наружу от втулки. Металлическое кольцо имеет первую поверхность взаимодействия с металлической крепежной частью композитного рабочего колеса и вторую поверхность взаимодействия с металлическим валом, таким образом, что сила, прикладываемая металлическим кольцом к металлической крепежной части композитного рабочего колеса, обеспечивает предотвращение перемещения между композитным рабочим колесом и металлическим валом. В другом варианте металлическое кольцо установлено на металлическую крепежную часть композитного рабочего колеса и металлический вал путем горячей посадки. При закреплении композитного рабочего колеса на металлическом валу роторной машины устанавливают на металлический вал композитное рабочее колесо и нагревают первое металлическое кольцо. Затем устанавливают металлическое кольцо на металлический вал и обеспечивают остывание и усадку металлического кольца для вхождения во взаимодействие с металлической крепежной частью композитного рабочего колеса и металлическим валом. Группа изобретений позволяет обеспечить крепление рабочего колеса, включающего композитную часть, на металлический вал и обеспечить защиту такого рабочего колеса от теплового излучения металлического крепежного кольца. 3 н. и 4 з.п. ф-лы, 12 ил.

Изобретение относится к области изготовления спрямляющей лопатки турбореактивного двухконтурного двигателя авиационного применения. Способ формования лопатки спрямляющего аппарата, содержащей верхнюю и нижнюю полки с размещенным между полками пером и выполненной из препрега на основе связующего с волоконным армированием из непрерывного, по всему объему лопатки, углеродного многослойного композиционного материала, включает отверждение лопатки. Отверждение осуществляют в накрытой технологическим пакетом пресс-форме в автоклаве. При отверждении создают вакуум в технологическом пакете с пресс-формой не более 0,02 МПа и поднимают температуру до 100±5°C со скоростью 1-5°Cмин. Затем выдерживают при температуре 100±5°C в течение 30-120 минут, поднимают давление до 0,20 МПа со скоростью 0,01-0,02 МПамин, после чего поднимают давление до 0,60±0,05 МПа. Затем поднимают температуру до 175±5°C со скоростью 1-5°Cмин и выдерживают при температуре 175±5°C в течение 120-480 минут, после чего охлаждают до 30°C со скоростью 1-5°Cмин и сбрасывают давление. Выдерживают в течение 5-50 минут и сбрасывают вакуум в технологическом пакете. Изобретение позволяет повысить надежность лопатки спрямляющего аппарата, снизить трудоемкость его изготовления и обеспечить стабильность прочностных и жесткостных характеристик, а также улучшить массовые характеристики спрямляющего аппарата. 2 ил.

Наверх