Способ работы поршневого компрессора с автономным жидкостным охлаждением и устройство для его осуществления

Изобретение относится к области энергетики и может быть использовано при создании экономичных поршневых компрессоров малой и средней производительности с автономным жидкостным охлаждением. Способ работы компрессора заключается в том, что величину дополнительного объема, напрямую соединенного с полостью нагнетания машины и частично заполненного охлаждающей жидкостью, уменьшают при увеличении давления нагнетания и наоборот увеличивают - при уменьшении давления нагнетания. Компрессор состоит из цилиндра 1 с поршнем 2, рабочей камеры 4, полостей всасывания 6 и нагнетания 9 с клапанами 5 и 8. Полость нагнетания 9 соединена каналом 16 с дополнительным объемом 14, который через нагнетательный клапан 12 соединен с рубашкой охлаждения 11 и через всасывающий клапан 18 - с питающей емкостью 20. При повышении давления нагнетания сверх нормативного плунжер 24 опускают в объем 14 и наоборот. Достигается максимально возможное движение жидкости через систему охлаждения на всех режимах работы машины, что повышает отвод теплоты от цилиндра 1 и повышает экономичность работы компрессора. 2 н. и 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к области энергетики и может быть использовано при создании экономичных поршневых компрессоров малой и средней производительности с автономным жидкостным охлаждением цилиндропоршневой группы.

Известен способ работы поршневых компрессоров с жидкостным охлаждением, заключающийся в периодическом изменении рабочей полости цилиндра и в прокачке через рубашку, окружающую цилиндр, охлаждающей жидкости (см., например, книгу Б.С. Фотин, И.Б. Пирумов, И.К. Прилуцкий, П.И. Пластинин. «Поршневые компрессоры». - Л.: Машиностроение, 1987, стр. 185-185, рис. 6.32).

Известен также способ работы поршневого компрессора с автономным жидкостным охлаждением, заключающийся в периодическом изменении рабочей полости цилиндра, и в прокачке через рубашку, окружающую цилиндр, охлаждающей жидкости, причем прокачку жидкости осуществляют за счет колебаний давления в частично заполненном жидкостью дополнительном объеме, верхняя часть которого напрямую соединена с полостью нагнетания машины, а нижняя - с рубашкой охлаждения через нагнетательный клапан и с питающей емкостью через всасывающий клапан (см. патент РФ №2578748, МПК F04B 39/06. «Поршневой компрессор с автономным жидкостным охлаждением», опубл. 27.03.2016, Бюл. №9). Данный способ является наиболее близким к заявляемому по технической сущности и достигаемому положительному эффекту.

К недостатку известного способа следует отнести его недостаточную эффективность при работе поршневого компрессора на режиме с переменным давлением нагнетания, в то время как именно этот режим является самым распространенным при питании компрессором нескольких потребителей одновременно.

Так, если включены все потребители, то давление нагнетания компрессора становится минимально необходимым для поддержания их рабочих функций, а при включении только части потребителей давление нагнетания компрессора возрастает до максимума, ограниченного, например, предохранительным клапаном или реле давления, установленным на ресивере машины.

Реально, например, давление одноступенчатого компрессора общепромышленного назначения может колебаться от 4-6 бар при включении всех потребителей и до 8-10 бар при включении одной трети питаемого компрессором пневматического оборудования или инструмента.

В то же время при изменении давления нагнетания меняется и характер пульсации давления в полости нагнетания и, соответственно, - в дополнительном объеме. Чем выше давление нагнетания, тем на меньший промежуток времени открывается нагнетательный клапан компрессора и тем короче становится время, в течение которого давление в полости нагнетания и в дополнительном объеме превышает давление в линии нагнетания компрессора. Это приводит к тому, что расход жидкости через рубашку охлаждения становится меньше, что негативно сказывается на температуре деталей цилиндропоршневой группы и, соответственно, на экономичности компрессора.

Технической задачей изобретения является повышение экономичности работы поршневого компрессора с автономным жидкостным охлаждением при работе с переменным давлением потребителя.

Указанная задача решается тем, что в способе работы поршневого компрессора с автономным жидкостным охлаждением, заключающемся в периодическом изменении рабочей полости цилиндра и в прокачке через рубашку, окружающую цилиндр, охлаждающей жидкости, причем прокачку жидкости осуществляют за счет колебаний давления в частично заполненном жидкостью дополнительном объеме, верхняя часть которого напрямую соединена с полостью нагнетания машины, а нижняя - с рубашкой охлаждения через нагнетательный клапан и с питающей емкостью через всасывающий клапан, согласно изобретению дополнительный объем уменьшают при увеличении давления нагнетания и наоборот увеличивают - при уменьшении давления нагнетания.

Поршневой компрессор с автономным жидкостным охлаждением, содержащий цилиндр с размещенным в нем поршнем с образованием рабочей камеры, соединенной с источником газа через всасывающий клапан, полость всасывания и линию всасывания и с потребителем сжатого газа через нагнетательный клапан, полость нагнетания и линию нагнетания, причем вокруг цилиндра имеется жидкостная рубашка охлаждения, в своей верхней части соединенная через нагнетательный клапан с нижней частью дополнительного объема, верхняя часть которого соединена с полостью нагнетания, и в своей нижней части соединенная с частично заполненной жидкостью питающей емкостью, которая через всасывающий клапан соединена с нижней частью дополнительного объема, согласно изобретению дополнительный объем снабжен плунжером с возможностью его погружения в этот объем.

Плунжер может быть соединен с подпружиненным поршнем, размещенным в дополнительном цилиндре, причем со стороны, противоположной расположению плунжера, полость этого цилиндра соединена с линией нагнетания, а со стороны плунжера - с источником газа.

Реализация способа и конструкции машины поясняется чертежами.

На фиг. 1 и фиг. 2 схематично показано продольное сечение цилиндропоршневой группы поршневого компрессора с автономным жидкостным охлаждением с ручным управлением величиной дополнительного объема при разном положением плунжера.

На фиг. 3 и фиг. 4 схематично показано продольное сечение поршневого компрессора с автономным жидкостным охлаждением с автоматической регулировкой величины дополнительного объема.

Поршневой компрессор с автономным жидкостным охлаждением содержит (фиг. 1 и фиг. 2) цилиндр 1 с размещенным в нем поршнем 2 со штоком 3 с образованием рабочей камеры 4, соединенной с источником газа через всасывающий клапан 5, полость всасывания 6 и линию всасывания 7 и с потребителем сжатого газа через нагнетательный клапан 8, полость нагнетания 9 и линию нагнетания 10.

Вокруг цилиндра 1 имеется жидкостная рубашка охлаждения 11, которая в своей верхней части соединена через нагнетательный клапан 12 с нижней частью 13 дополнительного объема 14, верхняя часть 15 которого напрямую соединена с полостью нагнетания 9 каналом 16.

Нижняя часть 13 дополнительного объема 14 соединен через теплообменник 17 и всасывающий клапан 18 с нижней частью 19 частично заполненной жидкостью питающей емкости 20, имеющей также верхнюю часть 21.

В своей нижней части рубашка 11 соединена с нижней частью 19 питающей емкости 20 через канал 22. Винтовой выступ 23 в рубашке 11 способствует полноценному обтеканию жидкостью цилиндра 1.

Дополнительный объем 14 снабжен плунжером 24 с возможностью его погружения в этот объем за счет резьбового соединения, имеющего гайку 25, закрепленную на верхнем торце емкости 14, и резьбовой штырь 26, жестко соединенный с плунжером 24, имеющим рифленую головку 27.

Рядом с головкой 27 на верхнем торце емкости 14 смонтирована вертикальная шкала 28 с делениями, показывающими положение плунжера 24. Манометр 29 показывает давление в нагнетательном трубопроводе линии нагнетания 10.

В варианте компрессора, изображенного на фиг. 3 и фиг. 4, плунжер 24 жестко соединен с подпружиненным пружиной 30 поршнем 31, размещенным в дополнительном цилиндре 32, причем со стороны, противоположной расположению плунжера 24, полость 33 этого цилиндра 32 соединена каналом 34 с линией нагнетания 10, а со стороны плунжера через отверстие 35 - с источником газа, которым в данном примере является атмосфера.

Поршневой компрессор с автономным жидкостным охлаждением работает следующим образом (фиг. 1 и фиг. 2).

При возвратно-поступательном движении поршня 2 в цилиндре 1 объем рабочей камеры 4 изменяется, в связи с чем газ всасывается через линию всасывания 7 в полость 6 (поршень 2 идет вниз) и через клапан 5 поступает в камеру 4, где при ходе поршня 2 вверх сжимается и нагнетается потребителю через клапан 8, полость 9 и линию нагнетания 10.

В процессе нагнетания газа давление в полости 9 превышает номинальное давление потребителя, и это повышенное давление имеет место также в верхней части 15 дополнительного объема 14. Это давление давит на жидкость, находящуюся в нижней части 13 объема 14, в результате чего клапан 12 открывается и жидкость из части 13 объема 14 проталкивается в рубашку 11, проходит по ней сверху вниз и поступает в нижнюю часть 19 питающей емкости 20. При этом давление в верхней части 21 емкости 20 повышается. Течению жидкости из части 13 объема 14 в теплообменник 17 и далее к емкости 20 препятствует закрытый клапан 18, т.к. на него со стороны теплообменника 17 действует непосредственно давление жидкости, находящейся в части 13 объема 14, а со стороны рубашки 11 - это же давление, но за вычетом гидравлического сопротивления клапана 12.

По окончании процесса нагнетания поршень 2 движется вниз, клапан 8 закрывается и открывается клапан 5, начинается процесс всасывания газа. При этом давление в полости 9 падает до давления потребителя. Соответственно до давления потребителя падает и давление в объеме 14.

Так как в части 21 емкости 20 газ находится под давлением, которое выше давления потребителя (то есть выше давления в объеме 14), на клапане 18 возникает перепад давления в сторону теплообменника 17, этот клапан открывается и жидкость из части 19 емкости 20 движется через теплообменник 17, отдавая в нем теплоту, отобранную у цилиндра 1, и далее - в нижнюю часть 13 объема 14. Этот процесс протекает до тех пор, пока давления в объеме 14 и в емкости 20 не станут равными друг другу, и по достижении этого равновесия клапан 18 закрывается.

Далее цикл работы повторяется.

Как следует из приведенного выше описания работы компрессора, длительность процесса течения жидкости из объема 14 в емкость 20 и затем из емкости 20 в объем 14 зависит от времени, в течение которого между ними имеется перепад давления. В то же время, наличие этого перепада зависит и от величины объема части 15, которая непосредственно соединена каналом 16 с полостью нагнетания 9. Чем дольше длится процесс нагнетания (чем дольше в полости 9 имеется повышенное по сравнению с потребителем давление), тем большую величину должна иметь часть 15 объема 14, чтобы обеспечить его максимальное использование для организации перекачки жидкости по всей системе охлаждения. И наоборот - чем короче по времени процесс нагнетания, тем меньше должен быть объем части 15.

Продолжительность процесса нагнетания при одной и той же частоте возвратно-поступательного движения поршня 2 зависит от степени повышения давления газа ε=р21, где p1 - давление всасывания (давление источника газа), а р2 - давление нагнетания (давление потребителя газа). Чем больше величина ε (чем выше давление нагнетания газа по сравнению с давлением всасывания), тем короче время процесса нагнетания и тем меньше должен быть объем части 15 и наоборот.

Для контроля оператором давления нагнетания р2 в устройстве поршневого компрессора служит манометр 29, а для изменения объема части 15 дополнительного объема 14 служит плунжер 24, который может погружаться в часть 15 при вращении жестко соединенного с плунжером резьбового штыря 26. Вращение штыря 26 осуществляет оператор, используя для этого головку 27. При выборе положения плунжера 24 оператор ориентируется на показания манометра и положение головки 27 относительно шкалы 28, которая проградуирована в единицах давления нагнетания.

Таким образом, оператор уменьшает дополнительный объем 14 путем погружения плунжера 24 в часть 15 этого объема при увеличении давления нагнетания и наоборот (фиг. 2).

В конструкции, изображенной на фиг. 3 и фиг. 4, перемещение плунжера 24 для изменения величины дополнительного объема 14 происходит автоматически при изменении давления нагнетания. Плунжер 24 находится в равновесии под действием сил давления на его нижний торец со стороны части 15 и пружины 30 с одной стороны и силы давления на поршень 33 с другой стороны. В связи с тем, что площадь поршня 31 больше, чем площадь нижнего торца плунжера 24, увеличение давления нагнетания приводит к перемещению поршня 31 и вместе с ним плунжера 24 вниз и наоборот.

Таким образом, независимо от давления нагнетания, т.е. давления потребителя сжатого газа, система охлаждения цилиндропоршневой группы компрессора обеспечивает максимально возможную циркуляцию жидкости в системе и максимально возможный отвод теплоты от деталей, непосредственно соприкасающихся с газом. Это позволяет на всех режимах работы снизить показатель политропы процесса сжатия и повысить индикаторный КПД рабочего цикла и вместе с ним - общую экономичность поршневого компрессора.

Таким образом, следует сделать вывод о том, что поставленная техническая задача полностью выполнена.

1. Способ работы поршневого компрессора с автономным жидкостным охлаждением, заключающийся в периодическом изменении рабочей полости цилиндра и в прокачке через рубашку, окружающую цилиндр, охлаждающей жидкости, причем прокачку жидкости осуществляют за счет колебаний давления в частично заполненном жидкостью дополнительном объеме, верхняя часть которого напрямую соединена с полостью нагнетания машины, а нижняя - с рубашкой охлаждения через нагнетательный клапан, и с питающей емкостью через всасывающий клапан, отличающийся тем, что дополнительный объем уменьшают при увеличении давления нагнетания и наоборот увеличивают - при уменьшении давления нагнетания.

2. Поршневой компрессор с автономным жидкостным охлаждением для осуществления способа работы по п. 1, содержащий цилиндр с размещенным в нем поршнем с образованием рабочей камеры, соединенной с источником газа через всасывающий клапан, полость всасывания и линию всасывания и с потребителем сжатого газа через нагнетательный клапан, полость нагнетания и линию нагнетания, причем вокруг цилиндра имеется жидкостная рубашка охлаждения, в своей верхней части соединенная через нагнетательный клапан с нижней частью дополнительного объема, верхняя часть которого соединена с полостью нагнетания, и в своей нижней части соединенная с частично заполненной жидкостью питающей емкостью, которая через всасывающий клапан соединена с нижней частью дополнительного объема, отличающийся тем, что дополнительный объем снабжен плунжером с возможностью его погружения в этот объем.

3. Поршневой компрессор с автономным жидкостным охлаждением по п. 2, отличающийся тем, что плунжер соединен с подпружиненным поршнем, размещенным в дополнительном цилиндре, причем со стороны, противоположной расположению плунжера, полость этого цилиндра соединена с линией нагнетания, а со стороны плунжера - с источником газа.



 

Похожие патенты:

Изобретение относится к энергетическим машинам и может быть использовано при создании высокоэкономичных автономно работающих двухступенчатых компрессоров и гибридных машин - насос-компрессоров с жидкостным охлаждением компрессорных полостей первой и второй ступени.

Изобретение относится к области машиностроения и может использоваться в компрессорной технике. Поршневой компрессор содержит цилиндрический корпус 1 с двумя оппозитно установленными в нем компрессорным и приводным цилиндрами 2 и 3.

Изобретение относится к поршневым компрессорам с охлаждением, работающим без смазки рабочей полости и предназначенным для сжатия и перемещения газов. Поршневой компрессор содержит цилиндр, крышку с всасывающим и нагнетательным клапанами.

Изобретение относится к области компрессоростроения и может быть использовано при создании поршневых компрессоров, к которым предъявляются высокие требования по ресурсу работы, надежности и экономичности.

Изобретение относится к области компрессоростроения и может быть использовано в поршневых компрессорах с автономным охлаждением цилиндропоршневой группы. Компрессор содержит цилиндр 1 с дифференциальным поршнем 2 и двумя рабочими объемами 4 и 5.

Изобретение относится к области компрессоростроения и может быть использовано в поршневых компрессорах с автономным жидкостным охлаждением цилиндропоршневой группы.

Изобретение относится к области компрессоростроения и может быть использовано при создании экономичных поршневых машин для сжатия газа с независимым активным жидкостным охлаждением.

Изобретение относится к области энергетики и компрессоростроения и может быть использовано при создании поршневых компрессоров. Поршневая машина содержит цилиндр 1 с поршнем 2 с образованием рабочего объема 4, клапанную коробку 5 с полостью всасывания 6, линию всасывания 7, всасывающий клапан 8, полость нагнетания 11, линию нагнетания 12, нагнетательный клапан 13.

Изобретение относится к области компрессоростроения и может быть использовано при создании экономичных поршневых машин для сжатия газа с индивидуальным жидкостным охлаждением цилиндропоршневой группы.

Изобретение относится к области машин объемного действия поршневого типа. Способ заключается в том, что при возвратно-поступательном движении поршня происходит всасывание, сжатие и нагнетание газа потребителю с одновременным сжатием смазочно-охлаждающей жидкости в картере машины при ходе поршня вниз и ее подача в зазор между поршнем и цилиндром через питающие круговые щели в цилиндре и в сам цилиндр в конце хода всасывания и начале хода сжатия.

Изобретение относится к области энергетических машин и касается поршневых машин и систем их охлаждения, и может быть использовано при создании поршневых компрессоров с повышенной экономичностью за счет организации автономной энергосберегающей системы охлаждения цилиндропоршневой группы. Компрессор состоит из цилиндров 1, 2 с рубашкой охлаждения 14, поршней 15, 16, которые приводятся в движение коленчатым валом 19 через шатуны 17, 18. Газ всасывается в полости 7, 8 цилиндров 1, 2 через линию всасывания 12, общую для цилиндров полость всасывания 9 и обратные самодействующие клапаны 3, 4, сжимается и нагнетается потребителю через обратные самодействующие клапаны 5, 6, полости нагнетания 10, 11 и линию нагнетания 13. Рубашка 14 соединена через теплообменники 28, 29 и обратные клапаны 26, 27 с герметичной емкостью 24, соединенной каналом 25 с полостью 9, а также через канал 30 с емкостью 1, сообщенной с атмосферой отверстием 32. Повышается экономичность компрессора без дополнительных затрат энергии. 3 з.п. ф-лы, 5 ил.
Наверх