Способ испытания балок на действие сосредоточенного изгибающего момента

Изобретение относится к способам испытания балок. Сущность: изготавливается рычажная установка привариванием к металлической стойке металлических кронштейнов, на концах кронштейнов вырезаются овальные отверстия и устанавливаются валы со шкивами, рычажная установка жестко закрепляется в основании. Изготавливается испытываемый образец с устроенным в одном конце стержнем плеча пары сил, зафиксированным хомутом, другой конец образца защемлен в устройстве для защемления балочного момента. К стержню плеча пары сил прикрепляются тросы, а к тросам, перекинутым через шкивы, подвешиваются горизонтальные площадки, на которые укладываются грузы для создания сосредоточенного изгибающего момента. Технический результат: возможность определить несущую способность балок на сосредоточенный изгибающий момент и обеспечить постоянство действующего момента во времени при деформациях испытываемых элементов. 1 ил.

 

Известна методика создания сосредоточенной нагрузки с помощью подвешивания грузов [1].

Наиболее близким по технической сущности является установка для создания сосредоточенной нагрузки с помощью домкратов [2].

Поставленная задача решается тем, что сосредоточенный момент на балку создается плечом пары сил, создаваемых подвешиванием грузов к стальным тросам. Для подвески грузов к нижним концам стальных тросов крепятся горизонтальные площадки. Для предотвращения перемещения в вертикальном направлении жесткий стержень плеча пары сил у верхней грани балки зафиксирован хомутом. Усилие от грузов к жесткому стержню плеча пары сил, вызывающее изгибающий момент в балке, передается по тросам через вращающиеся шкивы вокруг валов, закрепленных к кронштейнам рычажной установки.

На фиг. 1 показан стенд для способа испытания балки 1 на действие сосредоточенного изгибающего момента с помощью рычажной установки 2, состоящей из защемленной металлической стойки, к которой приварены два кронштейна на разных отметках по высоте, на концах которых проделаны отверстия для устройства валов 3 со шкивами 4. Изгибающий момент создается с помощью грузов 5 и тросов 6, передающих усилие через шкивы к стержню плеча пары сил 7, устроенном в одном конце балки и зафиксированном хомутом 8. Другой конец балки защемлен (известными способами) в устройстве 9 для защемления балочного момента.

Для осуществления способа испытания балки на действие сосредоточенного изгибающего момента необходимо изготовить следующие элементы: рычажную установку с кронштейнами (можно из 2-х швеллеров или уголков замкнутого сечения сплошных стержней, трубчатого сечения и т.д.); вал (из металлических стержней); шкивы; тросы (можно из каната); жесткий стержень плеча пары сил (из металлического стержня); хомут (из металлической проволоки); устройство для защемления балочного момента (из металлических профилей). Сборка стенда для способа испытания балок на действие сосредоточенного изгибающего момента с помощью рычажной установки производится следующим образом. Вначале изготавливается устройство для защемления конца балки (с жестким закреплением у основания известными способами). Затем изготавливается рычажная установка привариванием к металлической стойке металлических кронштейнов. На концах кронштейнов вырезаются овальные отверстия и устанавливаются валы со шкивами. После этого рычажная установка жестко закрепляется в основание. Изготавливается испытываемый образец с устроенным в одном конце стержнем (зафиксированным хомутом) плеча пары сил. В следующую очередь на верх устройства для защемления балочного момента укладывается испытываемый образец с защемлением (известными способами). Далее, к стержню плеча пары сил прикрепляются тросы. К тросам, перекинутым через шкивы, подвешиваются горизонтальные площадки, на которые укладываются грузы для создания сосредоточенного изгибающего момента.

Для экспериментальной проверки показан стенд для способа испытания балок на действие сосредоточенного изгибающего момента с применением рычажной установки (см. фиг. 1).

Применение заявленного способа испытания балок позволит: определить несущую способность балок на сосредоточенный изгибающий момент, обеспечить постоянство действующего момента во времени при деформациях испытываемых элементов.

Литература

1. Аронов Р.И. Испытание сооружений: Учеб., пособ. для вузов. - М.: Высшая школа, 1974. - 187 с.

2. Обследование и испытание сооружений: Учеб. для вузов / О.В. Лужин, А.Б. Злачевский, И.А. Горбунов, В.А. Волохов. М.: Стройиздат, 1987. - 263 с.

Способ испытания балок на действие сосредоточенного изгибающего момента, отличающийся тем, что изготавливается рычажная установка привариванием к металлической стойке металлических кронштейнов, на концах кронштейнов вырезаются овальные отверстия и устанавливаются валы со шкивами, рычажная установка жестко закрепляется в основании, изготавливается испытываемый образец с устроенным в одном конце стержнем плеча пары сил, зафиксированным хомутом, другой конец образца защемлен в устройстве для защемления балочного момента, к стержню плеча пары сил прикрепляются тросы, а к тросам, перекинутым через шкивы, подвешиваются горизонтальные площадки, на которые укладываются грузы для создания сосредоточенного изгибающего момента.



 

Похожие патенты:

Изобретение относится к области строительства и предназначено для испытаний плоских и пространственных рамно-стержневых конструктивных систем на живучесть. Сущность: в проектное положение закрепляют неподвижные и выключающуюся центральную несущие стойки конструктивной системы, затем на них устанавливают ригели, монтируют нагрузочные устройства.

Изобретение относится к области метрологии, а именно к средствам получения чистого изгиба эталонной балки для испытаний тензодатчиков. Устройство содержит основание, эталонную балку постоянного сечения с системой измерения деформаций и механическую систему нагружения балки, включающую два симметрично расположенных рычага, шарнирно связанных с движителем.

Изобретение относится к области измерительной техники и может быть использовано для определения в натурных условиях деформационных и прочностных характеристик ровного ледяного покрова при изгибе.

Изобретение относится к исследованиям остаточных напряжений в детали. Сущность: осуществляют закрепление детали в первой точке и во второй точке на расстоянии от первой точки, выполнение первой операции съема материала в третьей точке, расположенной между первой и второй точками, освобождение детали во второй точке, измерение первой деформации детали, определение остаточных напряжений в детали на основе измерения первой деформации.

Изобретение относится к способам определения механических характеристик материалов, конкретно - к способу определения модуля упругости, предела прочности и предельной деформации.

Изобретение относится к измерительной технике для промышленности и может быть применено для испытаний продольных и поперечных образцов основного металла труб, образцов со сварными швами, в том числе ремонтным сварным швом, для изучения свойств напыленных материалов, органических покрытий, для оценки сталей к сульфидному растрескиванию под напряжением.

Изобретение относится к измерительной технике для промышленности и может быть применено для испытаний продольных и поперечных образцов основного металла труб, образцов со сварными швами, в том числе ремонтным сварным швом, для изучения свойств напыленных материалов, органических покрытий, для оценки сталей к сульфидному растрескиванию под напряжением.

Изобретение относится к области испытательной техники, а именно к установкам для испытаний образцов и фрагментов пространственных коробчатых (сварных, клеесварных, клепанных или клееклепанных) конструкций.

Изобретение относится к технологии напыления теплозащитных керамических покрытий, а более точно касается определения времени теплового воздействия, необходимого для релаксации остаточных напряжений в покрытии, а также энергии, требующейся для релаксации.

Изобретение относится к области эксплуатации нефтедобывающего оборудования, а именно, к способу и устройству, применяемым для контроля состояния насосных штанг нефтедобывающих скважин.

Изобретение относится к испытательной технике и может быть использовано для испытаний стальных обетонированных труб больших диаметров для магистральных газо- и нефтепроводов. Стенд содержит опоры и гидравлическую систему для нагружения испытуемой трубы изгибом. Стенд снабжен измерительной системой, содержащей 2n жидкостных индикаторов изменения положения испытуемой трубы и n жидкостных индикаторов перемещения испытуемой трубы, подключенных к линии подачи жидкости, на которой последовательно установлены n запорных кранов. Индикаторы изменения положения испытуемой трубы связаны гидравлически и механически попарно, каждая из пар упомянутых индикаторов закреплена на испытуемой трубе симметрично относительно ее оси и гидравлически сообщена с одним из соответствующих индикаторов перемещения испытуемой трубы. Испытуемая труба размещена на двух фундаментных и двух домкратных опорах, а гидравлическая система для нагружения испытуемой трубы изгибом включает насос высокого давления и два манометра. Насос высокого давления через манометры подключен параллельно к двум домкратным опорам. Технический результат: упрощение конструкции при одновременном повышении достоверности результатов испытаний, а также расширение арсенала технических средств для проведения испытаний обетонированных труб. 4 ил.

Изобретение относится к конструкции стенда, который обеспечивает возможность проведения испытаний на механическую прочность конструкции летательного аппарата. Устройство содержит оснастку для фиксации испытываемой конструкции и систему нагружения. Система нагружения размещена под зоной установки указанной конструкции и включает приводную траверсу, связанную с силовым приводом, установленным на основании, и смонтированные на ней распределительные траверсы. Распределительные траверсы служат для передачи нагрузки на испытываемую конструкцию через распределительные балки, каждая пара которых связана посредством тяг с соответствующей распределительной траверсой. На стойке установлена вертикально перемещающаяся вдоль нее каретка. На каретке закреплена консоль, расположенная над распределительными балками. Перемещаясь вверх, консоль поднимает распределительные балки в верхнее положение, при котором осуществляется монтаж частей стенда. При движении консоли вниз балки синхронно опускаются в нижнее положение, при котором обеспечивается контакт балок с испытываемой конструкцией. Технический результат заключается в упрощении обслуживания стенда, создании нагрузки на испытываемую конструкцию в широком диапазоне и обеспечении бесступенчатой регулировки нагрузки. 6 з.п. ф-лы, 4 ил.

Изобретение относится к области усталостных испытаний материалов на изгиб и предназначено для охлаждения образцов в процессе подготовки и проведения усталостных испытаний на изгиб. Предложено автоматизированное устройство для охлаждения образцов при усталостных испытаниях на изгиб при пониженных температурах, согласно которому процесс охлаждения осуществляется комбинированно, как за счет передачи холода по хладопроводу, так и за счет подачи охлажденного воздуха в криокамеру. При этом процессы, описанные выше, полностью автоматизированы за счет регулирования температуры посредством открытия/закрытия заслонки камеры и нагревания до необходимой (устойчивой) температуры зажима хладопровода. Кроме этого, дополнительно непосредственно на образце устанавливается датчик акустической эмиссии, а на приводное устройство - счетчик количества циклов с выходом на ЭВМ для оценки степени разрушения образца в ходе испытаний и выявления зависимостей количества циклов испытания от напряжения, возникающего в опасном сечении образца. Технический результат - ускорение и автоматизация процесса охлаждения образцов в процессе проведения испытаний на усталость и процесса построения диаграмм изменения параметров акустической эмиссии в зависимости от количества циклов нагружения. 1 ил.

Изобретение относится к испытательной технике, а именно к способам испытаний плоских образцов на изгиб. Сущность: концы образцов закрепляют на опоре, изгибают и определяют величину прогиба в условиях сложного изгиба. Опора выполняется в виде замкнутой рамы с двумя подвижными распорками, а нагружение осуществляется посредством нагружающего гидроцилиндра, передающего давление на сжимающий или разжимающий гидроцилиндр, осуществляющий деформирование опоры в горизонтальной плоскости. В образце и распорной конструкции создается уровень номинальных напряжений, пропорциональный поперечной нагрузке на образец. Технический результат: возможность испытания образцов в условиях сложного изгиба с переменным в процессе нагружения уровнем номинальных напряжений и, соответственно, коэффициентом распора, зависящим от величины поперечной нагрузки, приложенной к образцу. 2 ил.

Изобретение относится к способам испытания балок. Сущность: изготавливается рычажная установка привариванием к металлической стойке металлических кронштейнов, на концах кронштейнов вырезаются овальные отверстия и устанавливаются валы со шкивами, рычажная установка жестко закрепляется в основании. Изготавливается испытываемый образец с устроенным в одном конце стержнем плеча пары сил, зафиксированным хомутом, другой конец образца защемлен в устройстве для защемления балочного момента. К стержню плеча пары сил прикрепляются тросы, а к тросам, перекинутым через шкивы, подвешиваются горизонтальные площадки, на которые укладываются грузы для создания сосредоточенного изгибающего момента. Технический результат: возможность определить несущую способность балок на сосредоточенный изгибающий момент и обеспечить постоянство действующего момента во времени при деформациях испытываемых элементов. 1 ил.

Наверх