Способ повышения теплотехнической однородности трёхслойной ограждающей конструкции здания и устройство для его осуществления

Изобретение относится к области строительства и касается тепловой эффективности ограждающей конструкции здания (наружной стены). Предлагается способ повышения теплотехнической однородности, заключающийся в том, что, с целью предотвращения нежелательного теплового потока по шпонке, в месте примыкания шпонки к внутреннему несущему слою осуществляется нагрев шпонки мощностью, соответствующей тепловому потоку, проходящему по шпонке. Также описано устройство для осуществления способа, характеризующееся тем, что в месте примыкания шпонки к внутреннему несущему слою расположен нагревательный элемент, например, электрический мощностью, равной проектному значению максимального теплового потока, соединенный с управляющим его мощностью контроллером, который подключен к датчикам температуры, один из которых установлен в зоне расположения шпонки, а другой в теплотехнически однородной области, на половине расстояния до соседней шпонки. 2 н. и 1 з.п. ф-лы, 6 ил.

 

Изобретение относится к области строительства и касается тепловой эффективности ограждающей конструкции здания (наружной стены).

В настоящее время все большее внимание уделяется вопросам энергосбережения в строительстве. Широкое распространение получили многослойные, в частности трехслойные, наружные ограждающие конструкции зданий.

Например, известна конструкция ОАО "ДСК-1", содержащая внутренний и наружный железобетонный слои и расположенный между ними слой тепловой изоляции, при этом внутренний и наружный слои соединены между собой железобетонными шпонками, фрагмент которой приведен на фотографии фигуры 1.

Недостатком этой конструкции являются нежелательные тепловые потоки между наружным и внутренним слоями, идущие через шпонки, что ухудшает теплотехнические характеристики конструкции, ее сопротивление теплопередаче и теплотехническую однородность.

На фигуре 2 приведена термограмма внутренней поверхности трехслойной железобетонной панели, на которой наблюдается падение температуры, вызванное шпонкой.

Согласно ГОСТ 31310-2005 «Панели стеновые трехслойные железобетонные с эффективным утеплителем» номинальные размеры железобетонных перемычек (шпонок) следует принимать не менее 60 мм. При этом рекомендуется соблюдать условие, согласно которому значение коэффициента теплотехнической однородности панелей, определяемого в соответствии со СП 23-101-2004 «Проектирование тепловой защиты зданий» и учитываемого в расчетах сопротивления теплопередаче, должно быть не менее 0,6.

Авторами выполнено математическое моделирование теплового состояния типичной трехслойной конструкции следующих параметров.

Наружный слой железобетона толщиной 0,07 м, внутренний толщиной 0,1 м. Слой утеплителя (пенополистирол с коэффициентом теплопроводности 0,039 Вт/мК) толщиной 0,15 м. Железобетонная шпонка толщиной 0,06 м, одна на 1 м2 стены.

Результаты моделирования показывают, что сопротивление теплопередаче такой конструкции без учета тепловых потоков по шпонкам равно RO=4,09 м2К/Вт.

Шпонка является теплопроводным включением («мостиком холода») и снижает сопротивление теплопередаче до величины RO=2,18 м2К/Вт, тогда коэффициент теплотехнической однородности r=2,18/4,09=0,53, что меньше значения этой величины, регламентируемой ГОСТ 31310-2005.

Результаты математического моделирования распределения температурных полей в модели трехслойной конструкции панели представлены на фигуре 3.

Известно также техническое решение по авторскому свидетельству СССР №1392225, согласно которому обеспечивается, в соответствии с описанием, «заданная температура на внутренней поверхности панели».

Однако это техническое решение, основанное на увеличении площади контакта шпонки и внутреннего слоя трехслойной панели, лишь приводит к некоторому уменьшению плотности теплового потока и соответствующему повышению температуры на внутренней поверхности панели, что способствует некоторому повышению коэффициента теплотехнической однородности.

Результаты математического моделирования данного технического решения показывают, что оно приводит к уменьшению плотности теплового потока, проходящего через шпонку, и увеличению коэффициента теплотехнической однородности не более чем на 9%.

Предлагается способ повышения теплотехнической однородности, заключающийся в том, что, с целью предотвращения теплового потока по шпонке, в месте примыкания шпонки к внутреннему несущему слою осуществляется нагрев шпонки мощностью, соответствующей тепловому потоку, проходящему по шпонке.

Авторами выполнено двухмерное математическое моделирование предлагаемого технического решения.

Результаты показывают, что при мощности нагревателя 30 Вт сопротивление теплопередаче на внутренней поверхности образца равно RO=4,01 м2К/Вт, коэффициент теплотехнической однородности r=4,01/4,09=0,98, что превышает нормируемый показатель.

В графическом виде результаты математического моделирования распределения температурных полей в модели трехслойной железобетонной панели с нагревателем представлены на фигуре 4.

Поскольку разность температур внутренней и наружной стенок ограждения меняется в процессе эксплуатации в зависимости от температуры окружающего воздуха, с целью экономии энергии, мощность нагрева шпонки регулируется по минимизации разности температур в зоне расположения шпонки и вне зоны теплового влияния шпонки.

Устройство для осуществления способа заключается в том, что в месте примыкания шпонки к внутреннему несущему слою расположен нагревательный элемент, например, электрический, мощностью, равной проектному значению максимального теплового потока, соединенный с управляющим его мощностью контроллером, который подключен к датчикам температуры, один из которых установлен в зоне расположения шпонки, а другой в теплотехнически однородной области, на половине расстояния до соседней шпонки.

Устройство поясняется на фигуре 5.

Трехслойная ограждающая конструкция, состоящая из наружного 1 и внутреннего 2 несущих слоев, соединенных шпонкой 3, с расположенным между ними слоем тепловой изоляции 4 снабжена нагревателем 5, например, электрическим, подключенным к контроллеру 6, к которому, в свою очередь, подключены датчики температуры 7 и 8, установленные на внутренней поверхности внутреннего несущего слоя, один из которых расположен в зоне расположения шпонки 3, а другой на половине расстояния до соседней шпонки.

Устройство работает следующим образом.

При включении контроллера 6 последний начинает измерять разность температур между показаниями датчика 7 (более холодного) и датчика 8. Если разность показаний выходит за пределы заданного диапазона, включается на минимальную мощность нагреватель 5, и контроллер увеличивает его мощность до тех пор, пока разность температур по показаниям датчиков 7 и 8 не снизится до заданной уставки, после чего контроллер фиксирует достигнутую мощность. Если из-за изменения температуры наружного воздуха тепловой поток по шпонке изменяется, и разность температур по показаниям датчиков 7 и 8 выходит за пределы заданного диапазона, контроллер 6 соответствующим образом изменяет мощность нагревателя 5 (увеличивает или уменьшает в зависимости от характера изменения температуры наружного воздуха).

На фигуре 6 приведено расчетное подтверждение эффективности работы нагревателя в виде графиков изменения температуры на внутренней поверхности панели в области шпонки и плотности теплового потока при разных значениях мощности нагревателя, регулируемой контроллером по разности температуры между двумя датчиками.

Предлагаемое техническое решение пресекает тепловой поток с теплой стороны и позволяет достичь высокую степень теплотехнической однородности ограждающей конструкции.

1. Способ повышения теплотехнической однородности трехслойной ограждающей конструкции здания, содержащей внутренний и наружный несущие слои с расположенным между ними слоем тепловой изоляции, связанные между собой дискретно расположенными крепежными элементами - шпонками, отличающийся тем, что в месте примыкания шпонки к внутреннему несущему слою осуществляется нагрев шпонки мощностью, соответствующей тепловому потоку по шпонке.

2. Способ по п. 1, отличающийся тем, что регулирование мощности нагрева осуществляется по разности температур в зоне расположения шпонки и вне зоны теплового влияния шпонки.

3. Устройство для осуществления способа по пп. 1 и 2, отличающееся тем, что в месте примыкания шпонки к внутреннему несущему слою расположен нагревательный элемент, например, электрический мощностью, равной расчетному значению максимального теплового потока по шпонке, соединенный с управляющим мощностью нагревателя контроллером, который подключен к датчикам температуры, один из которых установлен в зоне расположения шпонки, а другой на половине расстояния до соседней шпонки.



 

Похожие патенты:

Изобретение относится к способам сооружения стеновой конструкции, в частности к способам, позволяющим осуществлять безрастворную кладку стен, путем соединения с помощью крепежных элементов, обеспечивая жесткую фиксацию блоков.

Изобретение относится к строительным конструкциям, а именно к элементам и узлам, используемым в подобных конструкциях при образовании строительных стен. .

Изобретение относится к строительству, а именно к мелкоштучным конструкциям наружных стен с вертикальными прослойками, ширина которых между слоями обеспечивает возможность установки в них эффективных утеплителей Технический результат: обеспечение связи слоев стен друг с другом для совместной работы как единой конструкции.

Изобретение относится к области строительства и может быть использовано для устройства каменных стен методом сухой кладки. .

Изобретение относится к стеновым строительным блокам из бетона. .

Изобретение относится к строительным элементам фасонной формы , предусматривающим повторное использование после разборки построек, Техническая сущность: строительный блою имеет два ряда непрерывных по периметру трапециевидных пазое и выступов, а также встроенный в тело блока стальной каркас, удерживающий упругую стальную пластину с продольной прорезью, прижимаемую Т- образным выступом другого блока при продольном вдвигании одного блока в другой .

Представлена и описана изолированная конструкция здания, в частности изолированная конструкция крыши и/или стены здания, включающая по меньшей мере один теплоизоляционный слой.

Изобретение относится к области строительства. Предлагаемый способ получения отражающей тепловое излучение наружной конструкции (1) здания включает образование наружной поверхности (4) здания из изоляционного слоя (11), который одновременно является пароизоляционным слоем (12), и коэффициент поглощения которого ε>0,6, крепление дистанционных элементов (7) к наружной поверхности (4) здания, подготовку опорного слоя (2), содержащего слой (3) с отражающим тепловое излучение материалом, крепление опорного слоя к первому месту на дистанционных элементах (7), натяжение вручную опорного слоя (2), крепление натянутого опорного слоя (2) на других местах или поверхностях дистанционных элементов (7) таким образом, чтобы опорный слой был полностью натянут по дистанционным элементам (7) со сторон и параллельно наружной поверхности (4) здания, причем внутренняя сторона (5) опорного слоя (2), содержащая слой с отражающим тепловое излучение материалом, обращена к наружной поверхности (4) здания, при этом между опорным слоем (2) и наружной поверхностью (4) здания, а также между дистанционными элементами (7) образуется воздушная прослойка (6).

Изобретение относится к способу теплоизоляции здания. Предлагается способ теплоизоляции здания, имеющего одну или несколько существующих наружных стен (2) и существующую конструкцию (4) крыши, поддерживаемую стенами; способ включает в себя сооружение первой наружной конструкции (24a) обшивки, которая покрывает наружную поверхность по меньшей мере одной наружной стены, при этом указанная конструкция обшивки расположена на расстоянии от наружной поверхности стены для создания пустоты (28) в стене между наружной стеной и конструкцией обшивки.

Изобретение относится к строительству, в частности к устройствам для крепления изоляции к стене, предназначенное как для изоляции из пенополистирола, так и для изоляции из минеральной ваты.

Изобретение относится к строительству, в частности к устройству для крепления изоляции к стене, предназначенному как для изоляции из пенополистирола, так и для изоляции из минеральной ваты.

Изобретение относится к теплоизолирующему внешнему покрытию для сооружений. Система для противопожарной защиты сооружений включает наружные стены, по меньшей мере частично покрытые изоляционными плитами, выполненными из горючего термопластичного изоляционного материала, в частности жесткими пеноблоками, выполненными из полистирола, полиуретана и т.п., которые присоединены к стене сооружения посредством склеивания и/или анкеровки.

Изобретение относится к многослойному изоляционному материалу, содержащему изоляционный слой с высокой сжимаемостью. Многослойный изоляционный материал (1) содержит слой ваты (4) на основе полиэфирного волокна, помещенный между двумя воздушно-пузырьковыми пленками (2).

Настоящее изобретение относится к теплоизоляционному устройству, содержащему по меньшей мере одну панель (100), содержащую две стенки (110, 120), разделенные внешней основной распоркой (102) и образующие газонепроницаемую камеру (104), и по меньшей мере две гибкие пленки (150, 160), расположенные внутри указанной камеры (104) и выполненные с возможностью избирательного перехода между двумя состояниями, причем каждая пара соседних пленок (150, 160) ограничивает герметичные ячейки (158): теплопроводящим состоянием, в котором указанные гибкие пленки (150, 160) по меньшей мере частично находятся в контакте друг с другом, и теплоизолирующим состоянием, в котором гибкие пленки (150, 160) отделены одна от другой, под влиянием разных давлений внутри указанной герметичной камеры (104), создаваемых средством (170) управления текучей средой.

Изобретение относится к области строительства. Строительный модуль сборной ограждающей конструкции здания включает теплообменный блок каналов рекуперации газовоздушных выбросов, а также содержит плоский конструкционный элемент из стекломинерального листового композита с цементным связующим, конструкционный утеплитель, в качестве которого применен пено-газобетон с холодным (неавтоклавным) отверждением, и слои легкого утеплителя с малым удельным весом, например маты из каменной ваты.

Изобретение относится к многослойной теплоизоляционной плите для фасадов зданий. Теплоизоляционная плита включает высокоэффективный изолирующий слой, расположенный по меньшей мере на одной стороне с облицовкой, и базовый слой, расположенный по меньшей мере на одной из поверхностей облицовки, в которой базовый слой выполнен на основе полиизоцианата, при этом высокоэффективный изолирующий слой представляет собой жесткую полиуретановую или полиизоциануратную пену, а облицовка выполнена из алюминия или бумаги.

Изобретение относится к дюбелю для закрепления слоя материала на конструкции, включающему в себя тарелку (12) и приформованный к ней полый стержень (14) для размещения крепежного винта, причем в полом стержне предусмотрено ступенчатое отверстие (16), причем ступенчатое отверстие (16) включает в себя, по меньшей мере, две ступени (28) между по меньшей мере тремя областями (18; 30), причем полый стержень (14) на внешней поверхности исполнен, по меньшей мере частично, конически низбегающим, причем полый стержень (14) обеспечен радиально расширяемыми элементами и причем расширяемые элементы исполнены с внешней стороны в исполненной конически низбегающей части полого стержня (14) как осевые выемки (40). Согласно изобретению предлагается, чтобы выемки (40) соответственно в основании выемок были обеспечены, по меньшей мере частично, тонким, путем расширения растягиваемым или разрываемым дном. Настоящее изобретение относится, кроме того, к крепежному элементу, включающему в себя соответствующий изобретению дюбель и крепежный винт. Изобретение позволяет повысить устойчивость дюбеля независимо от крепежного винта. 2 н. и 10 з.п. ф-лы, 13 ил.

Изобретение относится к области строительства и касается тепловой эффективности ограждающей конструкции здания. Предлагается способ повышения теплотехнической однородности, заключающийся в том, что, с целью предотвращения нежелательного теплового потока по шпонке, в месте примыкания шпонки к внутреннему несущему слою осуществляется нагрев шпонки мощностью, соответствующей тепловому потоку, проходящему по шпонке. Также описано устройство для осуществления способа, характеризующееся тем, что в месте примыкания шпонки к внутреннему несущему слою расположен нагревательный элемент, например, электрический мощностью, равной проектному значению максимального теплового потока, соединенный с управляющим его мощностью контроллером, который подключен к датчикам температуры, один из которых установлен в зоне расположения шпонки, а другой в теплотехнически однородной области, на половине расстояния до соседней шпонки. 2 н. и 1 з.п. ф-лы, 6 ил.

Наверх