Способ локации дефектных гирлянд изоляторов на воздушных линиях электропередачи высокого напряжения

Изобретение относится к электроэнергетике и может быть использовано для локации дефектных гирлянд изоляторов на воздушных линиях электропередачи высокого напряжения. Способ локации дефектных изоляторов заключается в том, что вдоль трассы линии электропередачи высокого напряжения прямолинейно перемещают на расстоянии друг от друга Lд два электромагнитных датчика и подключенные к ним электронные осциллографы. Расстояние между датчиками Lд вычисляют посредством глобальных GPS- или ГЛОНАСС навигационных систем. С помощью приемников временной синхронизации одновременно и с одинаковой скоростью горизонтальной развертки на электронные осциллографы записывают осциллограммы напряжения в течение времени распространения электромагнитного импульса от одного датчика до другого τд=Lд/ν, где ν - скорость распространения электромагнитного импульса. На каждой из записанных осциллограмм вычисляют время появления импульсов напряжения Δti (i=1…n, i - номер импульса, n - количество импульсов на первой осциллограмме) и (j=1…m, j - номер импульса, m - количество импульсов на второй осциллограмме), время появления импульсов на первой и второй осциллограммах поочередно попарно суммируют (k=1…n⋅m). Из всех времен tk выбирают то время tγ, которое равно времени τд, а соответствующие слагаемые, формирующие сумму tγ, обозначают как ΔtA и . На основе известного расстояния до первого электромагнитного датчика xд1 и времени ΔtA определяют расстояние до места расположения дефектной гирлянды изоляторов хдеф по выражению: Техническим результатом является повышение точности локации дефектной гирлянды изоляторов. 3 ил.

 

Изобретение относится к электроэнергетике и может быть использовано для локации дефектов в изоляции воздушных линий электропередачи (ЛЭП) высокого и сверхвысокого напряжений, например «нулевых» изоляторов в поддерживающих и натяжных гирляндах.

Известен способ локации дефектных гирлянд изоляторов на воздушных линиях электропередачи высокого напряжения, основанный на измерении интенсивности электромагнитного излучения в видимой части спектра (Левичев В.Ю., Овсянников А.Г., Сибиряков В.Г. Электронно-оптический дефектоскоп «Филин-3» // Приборы и техника эксперимента. - 1987, №2). Для этого в темное время суток измеряют интенсивность свечения, создаваемого короной на дефектной изоляции высоковольтных воздушных линий электропередачи и сопоставляют с интенсивностью свечения на неповрежденной изоляции.

Недостаток такого способа - трудоемкость диагностики, требующая обхода всей линии электропередачи, а также необходимость выполнения измерений в темное время суток.

Известен также способ локации дефектных гирлянд изоляторов на воздушных линиях электропередачи высокого напряжения (прототип), в котором дефекты диагностируются и локализуются путем измерения интенсивности электромагнитного излучения в области частот от сотен кГц до десятков МГц путем вдольтрассового облета линий электропередачи (Дикой В.П., Овсянников А.Г. Электромагнитная аэроинспекция воздушных линий электропередачи. - Электрические станции, №3, 1999). Локация повреждений изоляции (дефектов в гирляндах изоляторов) выполняется путем сопоставления (привязки) одновременно выполняемой записи видеоизображения линии электропередачи с участком осциллограммы, где наблюдается повышенная интенсивность электромагнитного излучения. Измеряемое действующее значение интенсивности электромагнитного излучения в широком спектре частот зависит от удаленности источников излучения и начальной амплитуды электромагнитной волны, которая в общем случае случайна в различные моменты времени. При передвижении вдоль трассы средняя интенсивность электромагнитного излучения, определяемая множеством различных дефектов (т.е. суммируемая от всех источников излучения), может слабо изменяться от опоры к опоре, не позволяя явно определить максимум излучения и точно локализовать дефект в изоляции.

Недостатком этого способа является низкая точность локации дефектов линейной изоляции (дефектных гирлянд).

Задачей изобретения (техническим результатом) является повышение точности локации дефектных линейных изоляторов на воздушных линиях электропередачи высокого напряжения.

Эта задача достигается тем, что в известном способе локации дефектных гирлянд изоляторов на воздушных линиях электропередачи высокого напряжения, основанном на регистрации электрических импульсов с помощью электромагнитного датчика и подключенного к нему электронного осциллографа (ЭО), вдоль трассы линии электропередачи на расстоянии друг от друга Lд прямолинейно перемещают два электромагнитных датчика (ЭМД1 и ЭМД2) и подключенные к ним записывающие электронные осциллографы. Расстояние между датчиками Lд вычисляют с помощью GPS- или ГЛОНАСС навигационных систем. Посредством приемников временной синхронизации (ПВС) одновременно и с одинаковой скоростью горизонтальной развертки на осциллографы записывают осциллограммы напряжения в течение времени распространения электромагнитного импульса от одного датчика до другого τд-Lд/ν, где ν - скорость распространения электромагнитного импульса по воздушной линии электропередачи. На каждой из записанных осциллограмм выполняют измерение времен появления импульсов Δti (i=1…n, i - номер импульса, n - количество импульсов на первой осциллограмме) и (j=1…m, j - номер импульса, m - количество импульсов на второй осциллограмме). Времена появления импульсов на первой и второй осциллограммах поочередно попарно суммируют . Из всех времен tk выбирают ту сумму времен ( - времена распространения электромагнитного импульса от дефектного изолятора до первого и второго электромагнитных датчиков), которая равна времени τд. Исходя из расстояния до первого электромагнитного датчика хд1 и времени ΔtA определяют расстояние до места расположения дефектной гирлянды изоляторов xдеф по выражению

xдеф=xд1-ΔtАν.

На фиг.1 показано устройство, реализующее предлагаемый способ; на фиг. 2 представлены осциллограммы импульсов напряжения, наводимых электрическими разрядами в дефектной изоляции (дефектных гирляндах) в электромагнитных датчиках и записываемых электронными осциллографами; на фиг. 3 поясняется синхронизация горизонтальной развертки электронных осциллографов посредством приемников временной синхронизации (ПВС) и спутниковой глобальной системы навигации.

Устройство (фиг. 1) содержит воздушную линию электропередачи высокого напряжения (1) с дефектами линейной изоляции (2 и 3), на которой реализуется предлагаемый способ. Дефектная гирлянда с дефектным/нулевым изолятором (дефект под номером 2) находится между электромагнитными датчиками (4), расположенными совместно с электронными осциллографами (5) вдоль линии электропередачи на некотором расстоянии Lд. В качестве электромагнитных датчиков могут применяться антенны различных конструкций, например рамочные.

Способ осуществляется следующим образом. Над линией электропередачи перемещают (например, с помощью беспилотных летательных аппаратов) электромагнитные датчики ((4) - фиг. 1), к которым подключены ЭО ((5) - фиг. 1), горизонтальные развертки которых запускают одновременно с помощью ПВС (6) - фиг. 3 [Филимонов С.Н. О некоторых проблемах синхронизации точного времени сигнала ГЛОНАСС // T-Comm. 2013, №7, с. 130-132]. ПВС синхронизируются спутником (7) (фиг. 3) или системой спутников. На каждой осциллограмме (записи электромагнитных импульсов) измеряют времена начала/появления импульсов Δt: для сигналов первого ЭМД1 и, соответственно, на первой осциллограмме эти времена обозначают как Δti, для - второго ЭМД2 и второй осциллограммы - . Путем поочередного парного сложения времен появления импульсов на разных осциллограммах выбирают ту сумму времен tk, которая равна времени распространения импульса от одного электромагнитного датчика до другого - τд. Время τд=Lд/ν определяют на основе расстояния между электромагнитными датчиками Lд=((X2-X1)2+(Y2-Y1)2+(Z2-Z1)2)0.5. Пространственные координаты датчиков {X1,Y1,Z1} и {X2,Y2,Z2} измеряют и записывают одновременно с осциллограммами во время движения посредством GPS- или ГЛОНАСС навигаторов, устанавливаемых на летательные аппараты. Скорость распространения электромагнитной волны в воздухе принимают равной ν≅300 м/мкс. Обозначая времена появления импульсов от первого датчика Δti (i=1…n - номер импульса на первой осциллограмме), а от второго - , (k=1…n⋅m) - номер импульса на первой второй), рассчитывают времена (k=1…n⋅m). Из всех времен tk выбирают то, которое равно τд, и обозначают его как tγ, а слагаемые, входящие в tγ, как ΔtA и . На основе известного положения первого ЭМД1д1) определяют место расположения дефектной гирлянды изоляторов по выражению:

На фиг. 2 показаны импульсы напряжения, формируемые тремя дефектами в линии электропередачи ((2-3) - фиг. 1), один из которых (2) расположен между электромагнитными датчиками (4). Расстояние между электромагнитными датчиками Lд=3000 м. На первой осциллограмме, полученной от первого ЭМД1 (фиг. 2, а), расположенного на расстоянии хд1 от условного начала линии, времена появления импульсов составляют: первого импульса напряжения (u1)-Δt1=1,67 мкс, второго (u2)-Δt2=6,7 мкс. На осциллограмме, полученной путем измерения напряжений на втором ЭМД2 (фиг. 2, б), времена появления сигналов ( и ) соответственно равны: и . Все суммы времен появления сигналов на обеих осциллограммах равны (в мкс):; ; ; . Одна из сумм времен распространения сигналов (t3) равна времени пробега электромагнитной волны по диагностируемому участку (τд=10 мкс), поэтому внутри этого участка имеется дефект. Определяем (ΔtA=Δt2, ). Координата расположения дефекта (2) определяется по импульсам u2 и (фиг. 2). Расстояние до дефектной гирлянды равно xдеф=xд1-ΔtA⋅ν=xд1-6,7⋅300 (м).

Таким образом, увеличение точности определения координат дефектной гирлянды изоляторов осуществляется на основе измерения времен появления импульсов напряжения (ΔtA=Δt2 или ), формируемых электрическим разрядом в дефектной гирлянде изоляторов, на двух одновременно записываемых осциллограммах, посредством электромагнитных датчиков и осциллографов, расположенных вдоль трассы воздушной линии электропередачи на расстоянии Lд. По известным координате первого электромагнитного датчика хд1, расстоянию между обоими датчиками Lд, времени ΔtA и скорости распространения электромагнитной волны ν рассчитывается расстояние до дефектной гирлянды изоляторов xдеф.

Способ локации дефектных гирлянд изоляторов на воздушных линиях электропередачи высокого напряжения, заключающийся в регистрации электрических импульсов вблизи линии электропередачи высокого напряжения с помощью электромагнитного датчика и подключенного к нему осциллографа, отличающийся тем, что вдоль трассы линии электропередачи высокого напряжения прямолинейно перемещают на расстоянии друг от друга Lд два электромагнитных датчика и подключенные к ним электронные осциллографы, расстояние между датчиками Lд вычисляют с помощью глобальных GPS- или ГЛОНАСС навигационных систем; посредством приемников временной синхронизации одновременно и с одинаковой скоростью горизонтальной развертки на электронные осциллографы записывают осциллограммы напряжения в течение времени распространения электромагнитного импульса от одного электромагнитного датчика до другого τд=Lд/ν, где ν - скорость распространения электромагнитного импульса по линии электропередачи; на каждой из записанных осциллограмм выполняют измерение времен появления импульсов напряжения Δti (i=1…n, i - номер импульса, n - количество импульсов на первой осциллограмме) и Δt'j (j=1…m, j - номер импульса, m - количество импульсов на второй осциллограмме), времена появления импульсов на первой и второй осциллограммах поочередно попарно суммируют и получают набор tk=Δti+Δt'j) (k=1…n⋅m), из всех времен tk выбирают то время tγ, которое равно времени τд, а соответствующие слагаемые, формирующие сумму tγ, обозначают как ΔtA и Δt'B; на основе известного расстояния до первого электромагнитного датчика хд1 и времени ΔtA определяют расстояние до места расположения дефектной гирлянды изоляторов хдеф по выражению

хдефд1-ΔtAν.



 

Похожие патенты:

Изобретение относится к области электротехники, а именно средствам обработки информации в электротехнике, и может быть использовано для определения места обрыва на воздушной линии электропередачи (ЛЭП).

Использование: в области электротехники. Технический результат - расширение функциональных возможностей и повышение достоверности способа локации повреждений.

Изобретение относится к электротехнике и предназначено для решения технической проблемы, касающейся определения мест повреждений разветвленной воздушной линии электропередачи (ЛЭП) в виде появления гололеда на проводах с точностью до участка ЛЭП.

Изобретение относится к электротехнике и предназначено для решения технической проблемы, касающейся определения мест повреждений разветвленной воздушной линии электропередачи (ЛЭП) в виде появления гололеда на проводах с точностью до участка ЛЭП.

Изобретение относится к области электротехники, а именно к средствам обработки информации в электротехнике, и может быть использовано для определения места короткого замыкания на воздушной линии электропередачи (ЛЭП).

Изобретение относится к электроэнергетике и предназначено для диагностики состояния и пространственного положения следующих элементов: грозозащитного троса, силовых проводов, элементов конструкции опоры, подвесного зажима и анкерного крепежа грозозащитного троса, крепежа изоляторов, гирлянды изоляторов, гасителей вибрации и другого оборудования.

Изобретение относится к области электроизмерительной техники. Способ измерения расстояния до места замыкания на землю в высоковольтных электрических сетях содержит следующие этапы.

Предлагаемое изобретение относится к электроэнергетике и направлено на решение задачи по созданию технологий, позволяющих повысить эффективность электроснабжения.

Изобретение относится к электроэнергетике и может быть использовано для дистанционного определения места однофазного замыкания на землю (ОЗЗЗ) на ЛЭП, находящихся под рабочим напряжением, в распределительных электрических сетях 6-35 кВ, работающих с изолированной нейтралью, компенсацией емкостных токов или заземлением нейтрали через высокоомный резистор, имеющих радиальную структуру.

Использование: в области электротехники. Технический результат – повышение точности определения места короткого замыкания в тяговой сети многопутного участка.

Изобретение относится к области защиты подземных металлических сооружений от коррозии, вызванной блуждающими токами. Способ идентификации источника блуждающего тока заключается в следующем: отключают средства электрохимической защиты трубопровода и синхронно измеряют разности потенциалов «труба-земля» по меньшей мере в двух точках обследуемого участка трубопровода. Анализируют график изменения разности потенциалов во времени по признакам единства источника блуждающего тока, действующего на обследуемый участок, отсутствия в измеренной разности потенциала переменной составляющей с частотами, кратными промышленной частоте сети переменного тока, идентифицируют источник блуждающего тока. При этом определяют точки-экстремумы на графике изменения разности потенциалов во времени, определяют скорость нарастания разности потенциалов до установления экстремального значения, определяют коэффициент корреляции между массивами значений экстремумов и скорости нарастания разности потенциалов. Далее выполняют спектральный анализ графика разности потенциалов, при значении определяемого коэффициента корреляции по модулю более 0,9 и при частоте колебаний с наибольшей амплитудой от 0,0001 Гц до 0,001 Гц считают, что источник блуждающего тока связан с воздействием геомагнитных вариаций. Достигаемый технический результат - повышение достоверности способа идентификации источника блуждающего тока. 4 ил.

Изобретение относится к электроизмерительной технике и может быть использовано в кабельной промышленности для контроля и ремонта эмалевой изоляции проводов. Технический результат - увеличение точности обнаружения дефектных участков в изоляции провода и их протяженности с дальнейшим ремонтом, а также повышение эффективности ремонта. Способ контроля и ремонта изоляции обмоточных проводов включает обнаружение дефекта изоляции движущегося провода средствами контроля и измерение его протяженности. Далее при прохождении дефектного участка под узлом нанесения эмали на выявленный дефект наносится электростатически заряженный эмалировочный лак. При этом для обмоточных проводов марки ПЭТВ, эмалевая изоляция которых выполнена из лака ПЭ-939, предварительно подготавливают состав для электростатического нанесения пленкообразующего на дефектный участок, для чего в жидкий лак марки ПЭ-939 марки В добавляют диоксан и при этом контролируют коэффициент поверхностного натяжения. Затем, при достижении указанным коэффициентом значений (4÷5)⋅106 Н/см, разбавление лака диоксаном прекращают и в полученный состав добавляют 1%-ный нашатырный спирт, измеряя при этом удельное сопротивление получаемой смеси. Добавление нашатырного спирта прекращают при достижении составом значения удельного сопротивления, лежащего в диапазоне (10-5÷10-6) Ом-1 м-1. После этого указанную смесь электростатически заряжают путем пропускания через сопло, на которое подают импульс отрицательного высоковольтного потенциала в диапазоне (-2÷-4) кВ, длительность которого равна времени прохождения дефектного участка под соплом. После нанесения жидкой эмалевой пленки на дефектный участок снимают излишки эмали, затем дефектный участок с нанесенной на него жидкой эмалью подвергают запечке и сушке. 2 ил.

Изобретение относится к релейной защите высоковольтных линий электропередачи, которые работают в режиме с глухозаземленной нейтралью, в частности к распознаванию поврежденных фаз. Техническим результатом является упрощение и повышение распознающей способности способа фазовой селекции. Способ распознавания поврежденных фаз линий электропередачи при неполнофазном замыкании на землю включает этапы наблюдения токов и напряжений в начале линии, преобразования их в комплексные замеры, отображения каждого замера на комплексной плоскости соответствующего распознающего модуля, обучения распознающих модулей с использованием имитационных моделей линии электропередачи, воспроизводящих различные типы коротких замыканий. Для достижения технического результата формируют фазные и междуфазные замеры. Каждый фазный замер подают на такое число распознающих модулей, которое равно числу различных типов коротких замыканий, по одному модулю на каждый тип. Каждый междуфазный замер подают на такое число распознающих модулей, которое равно числу различных типов двухфазных замыканий. Каждый модуль обучают распознавать один из типов замыканий. Модули, относящиеся к одному и тому же типу замыкания, объединяют по схеме И в общий модуль, распознающий замыкание этого типа. Из всех общих модулей составляют для каждой фазы линии электропередачи две группы - блокирующую и разрешающую. В блокирующую группу собирают общие модули тех типов замыканий, в которых данная фаза не повреждена, а в разрешающую группу - общие модули остальных типов замыканий, в которых данная фаза повреждена. Далее констатируют замыкание в данной фазе при условии, что не сработал ни один из общих модулей блокирующей группы и сработал хотя бы один из общих модулей разрешающей группы. Дополнительно используют передающую модель неповрежденной линии электропередачи, преобразующую наблюдаемые в начале линии токи и напряжения в напряжения в конце линии, и определяют замеры как отношения одноименных напряжений на выходе и на входе передающей модели. 1 з.п. ф-лы, 16 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано для контроля сопротивления изоляции многофазных разветвленных сетей переменного тока с изолированной нейтралью, находящихся под напряжением. Техническим результатом является осуществление избирательного контроля утечки или замыкания фазы на землю в разветвленной системе электроснабжения с изолированной нейтралью, выявление элемента с поврежденной изоляцией до появления аварийного режима. Устройство контроля изоляции сети электроснабжения с изолированной нейтралью содержит высоковольтные провода подключения, контактор измерительной цепи, контактор заземления. Параллельно контактам контактора заземления подключен диодный мост с модулятором поискового тока. При этом обеспечивается возможность подключения фазы сети электроснабжения через коммутационный переключатель, токоограничивающий конденсатор, контакт контактора измерительной цепи и контакт контактора заземления к контуру заземления. 1 з.п. ф-лы, 2 ил.

Изобретение относится к электротехнике и может использоваться в электрических сетях и системах для контроля нормальных и аварийных режимов. Способ основан на вычислении зависимости суммы токов прямой, обратной и нулевой последовательностей, вычисленных через соответствующие токи и напряжения со стороны конца участка линии без короткого замыкания, от расстояния, задаваемого от нуля до длины линии. Искомое расстояние до места разрыва определяют, когда сумма токов прямой, обратной и нулевой последовательностей равна нулю. При этом за особенную фазу, относительно которой определяются токи и напряжения прямой, обратной и нулевой последовательностей, принимается фаза с разрывом и коротким замыканием на ней. Технический результат заключается в повышении точности. 5 ил.

Изобретение относится к электроэнергетике и предназначено для диагностики состояния и пространственного положения следующих элементов грозозащитного троса: силовых проводов, элементов конструкции опоры, подвесного зажима и анкерного крепежа грозозащитного троса, крепежа изоляторов, гирлянды изоляторов, гасителей вибрации и другого оборудования. Заявляемое устройство содержит летательный аппарат вертолетного типа, систему управления, блоки контроля воздушных линий электропередач и источник питания, размещенное в корпусе средство перемещения, состоящее из двигателя, связанного с ходовыми роликами, и прижимного ролика с приводом, служащего для прижатия исследуемого троса к ходовым роликам, причем на боках корпуса закреплены направляющие, облегчающие совмещение ходовых роликов с исследуемым тросом, направляющие в узкой части выполнены прямолинейными, привод прижимного ролика закреплен на корпусе так, что вертикальная плоскость перемещения прижимного ролика размещена перпендикулярно к исследуемому тросу, а корпус снабжен взаимодействующим с приводом прижимного ролика подвесным подпружиненным крюком, низ которого выполнен скошенным. Технический результат - упрощены направляющие, уменьшен размер корпуса и его вес, полностью предотвращен сброс устройства с троса при резкой посадке. 2 з.п. ф-лы, 5 ил.

Изобретение относится к электроэнергетике и предназначено для диагностики состояния и пространственного положения следующих элементов: грозозащитного троса, силовых проводов, элементов конструкции опоры, подвесного зажима и анкерного крепежа грозозащитного троса, крепежа изоляторов, гирлянды изоляторов, гасителей вибрации и другого оборудования. Устройство для диагностики воздушных линий электропередач содержит летательный аппарат вертолетного типа, систему управления, блоки контроля воздушных линий электропередач и источник питания, размещенное в корпусе средство перемещения, состоящее из двигателя, связанного с ходовыми роликами, и прижимного ролика с приводом, служащего для прижатия исследуемого троса к ходовым роликам, направляющие, облегчающие совмещение ходовых роликов с исследуемым тросом. При этом в середине корпуса установлена ось, проходящая через стенки корпуса и охватывающую корпус вилку, в верхней части которой закреплены направляющие и летательный аппарат. Технический результат заявленного изобретения состоит в том, что при отклонении исследуемого троса от горизонтали на плюс минус 30 градусов центр тяжести всего устройства не отклоняется от своего устойчивого вертикального положения. 6 з.п. ф-лы, 6 ил.

Изобретение относится к электроэнергетике и предназначено для диагностики состояния и пространственного положения следующих элементов: грозозащитного троса, силовых проводов, элементов конструкции опоры, подвесного зажима и анкерного крепежа грозозащитного троса, крепежа изоляторов, гирлянды изоляторов, гасителей вибрации и другого оборудования. Технический результат - упрощение технологии изготовления направляющих и устранение нежелательных боковых колебаний троса и всего устройства при его посадке и взлете с троса. Для этого устройство содержит летательный аппарат 2 вертолетного типа, систему управления, блоки контроля 3, 4 воздушных линий электропередач и источник питания 5, размещенное в корпусе 6 средство перемещения, состоящее из двигателя 7, связанного с ходовыми роликами 8, и прижимного ролика 9 с приводом 10, служащего для прижатия исследуемого троса 11 к ходовым роликам 8, при этом на боках корпуса 6 закреплены направляющие 12, облегчающие совмещение ходовых роликов 8 с исследуемым тросом 11. Направляющие 12 в узкой их части выполнены прямолинейными, а привод 10 прижимного ролика 9 закреплен на корпусе 6 под углом, так, чтобы плоскость перемещения прижимного ролика 9 в верхнем его положении совпадала с исследуемым тросом 11, а в нижнем его положении оказывалась за пределами створа направляющих. 1 з.п. ф-лы, 3 ил.

Группа изобретений относится к устройствам для перемещения по канату и может быть использовано, в частности, для перемещения устройства для диагностики состояния воздушных линий электропередач (ВЛ) по силовому проводу или грозозащитному тросу. По первому варианту изобретения устройство для перемещения по канату представляет собой ролик, содержащий щечки и канавку под канат по окружности, согласно изобретению ролик выполнен из магнитопроводящего материала, а внутри ролика установлено магнитное кольцо. По второму варианту изобретения устройство для перемещения по канату представляет собой ролик, содержащий основу, вмонтированные в нее кронштейны с осями, на которых размещены с возможностью вращения тела качения, образующие реборды ролика, при этом оси тел качения перпендикулярны оси вращения ролика. По третьему варианту изобретения устройство для перемещения по канату представляет собой ролик, содержащий основу, вмонтированные в нее кронштейны с осями, на которых размещены с возможностью вращения тела качения, образующие реборды ролика, при этом оси тел качения перпендикулярны оси вращения ролика, ролик выполнен из магнитопроводящего материала, а внутри ролика установлено магнитное кольцо. Технический результат - повышение устойчивости роликов на канате за счет предотвращения закручивания их от вертикали, в том числе по завивке каната. 3 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к подаче электроэнергии к электрическим сетям, контактирующим с токоприемниками транспортных средств. Способ частично неселективной защиты тяговой сети переменного тока заключается в том, что проверяется отсутствие короткого замыкания в аварийно отключенной контактной сети посредством устройства контроля короткого замыкания по наведенному напряжению, и при отсутствии короткого замыкания подается команда на включение аварийно отключенной питающей линии с минимальной выдержкой времени автоматическим повторным включением. Тяговая сеть переменного тока содержит пост секционирования с выключателями, трансформаторами напряжения и тока на каждую питающую линию контактной сети и интеллектуальные терминалы с устройством защиты и автоматическим повторным включением аварийно отключенной питающей линии контактной сети поста секционирования. Причем основные защиты выполняются с нулевой выдержкой времени. Технический результат изобретения заключается в существенном снижении времени восстановления напряжения в контактной сети в аварийных ситуациях. 1 ил.

Изобретение относится к электроэнергетике и может быть использовано для локации дефектных гирлянд изоляторов на воздушных линиях электропередачи высокого напряжения. Способ локации дефектных изоляторов заключается в том, что вдоль трассы линии электропередачи высокого напряжения прямолинейно перемещают на расстоянии друг от друга Lд два электромагнитных датчика и подключенные к ним электронные осциллографы. Расстояние между датчиками Lд вычисляют посредством глобальных GPS- или ГЛОНАСС навигационных систем. С помощью приемников временной синхронизации одновременно и с одинаковой скоростью горизонтальной развертки на электронные осциллографы записывают осциллограммы напряжения в течение времени распространения электромагнитного импульса от одного датчика до другого τдLдν, где ν - скорость распространения электромагнитного импульса. На каждой из записанных осциллограмм вычисляют время появления импульсов напряжения Δti и, время появления импульсов на первой и второй осциллограммах поочередно попарно суммируют. Из всех времен tk выбирают то время tγ, которое равно времени τд, а соответствующие слагаемые, формирующие сумму tγ, обозначают как ΔtA и. На основе известного расстояния до первого электромагнитного датчика xд1 и времени ΔtA определяют расстояние до места расположения дефектной гирлянды изоляторов хдеф по выражению: Техническим результатом является повышение точности локации дефектной гирлянды изоляторов. 3 ил.

Наверх