Способ определения угловых координат на источник направленного оптического излучения

Изобретение относится к области оптических измерений и касается способа определения угловых координат на источник направленного оптического излучения. Способ включает в себя привязку положения фоточувствительных элементов матричного фотоприемника оптико-электронного координатора к декартовой системе координат, прием излучения, выделение не менее шести фотоэлементов матричного фотоприемника, сигналы на выходе которых равны между собой, определение их координат и вычисление по их значениям угла места и азимута источника излучения. Кроме того, при проведении измерений определяют суммарный сигнал S1 выделенных шести фотоэлементов, осуществляют наклон плоскости матричного фотоприемника по углу места в направлении его увеличения, повторно определяют суммарный сигнал S2 выделенных шести фотоэлементов и сравнивают полученные значения сигналов S1 и S2. Если S1>S2, то устанавливают принадлежность источника оптического излучения верхнему полупространству диапазона углов от 0° до 90°. Если S1<S2, то устанавливают принадлежность источника оптического излучения верхнему полупространству диапазона углов от 90° до 180°. Технический результат заключается в снятии ограничений на неоднозначность определения угла места. 2 ил.

 

Изобретение относится к области оценки угловых координат источника оптического излучения и может быть использовано в системах обеспечения вхождения в связь, нацеливания оптических лучей, траекторных измерений.

Наиболее близким по технической сущности (прототипом) к заявляемому изобретению является способ определения направления на источник оптического излучения (ИОИ) по рассеянной в атмосфере составляющей (см., например, А.Ю. Козирацкий, Ю.Л. Козирацкий, В.В. Капитанов, П.Е. Кулешов и др. Способ определения угловых координат источника оптического излучения по рассеянной в атмосфере составляющей. Заявка патента на изобретение №2013129420 от 26.06.2013, Россия, G01S 17/06, бюллетень №1 от 27.01.2015), основанный на применении оптико-электронного координатора (ОЭК) с матричным фотоприемником (МФП), привязке положения фоточувствительных элементов МФП к декартовой системе координат, приеме излучения ИОИ ОЭК с МФП, выделении не менее шести фотоэлементов МФП, сигналы на выходе которых равны между собой, определении их координат и вычислении по их значениям угла места ε и азимута β ИОИ. Основным недостатком способа является невозможность определения принадлежности ИОИ верхним полупространствам, ограниченным плоскостью фоточувствительной поверхности (ФЧП) МФП и плоскостью, образованной малой осью эллипса изображения ИОИ и нормалью, проведенной из центра эллипса (справа, слева относительно малой оси эллипса изображения ИОИ).

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является снятие ограничений на неоднозначность определения угла места на ИОИ.

Технический результат достигается тем, что в известном способе определения угловых координат на ИОИ, основанном на применении ОЭК с МФП, привязке положения фоточувствительных элементов МФП к декартовой системе координат, принимают излучение ИОИ ОЭК с МФП, выделяют не менее шести фотоэлементов МФП, сигналы на выходе которых равны между собой, определяют их координаты, вычисляют по их значениям углы места ε и азимута β ИОИ, определяют суммарный сигнал S1 выделенных шести фотоэлементов МФП, осуществляют наклон плоскости МФП по углу места ε в направлении его увеличения, повторно определяют суммарный сигнал S2 выделенных шести фотоэлементов МФП, сравнивают полученные значения сигналов S1 и S2, если S1>S2, то устанавливают принадлежность ИОИ верхнему полупространству, ограниченному плоскостью ФЧП МФП диапазона углов от 0° до 90°, если S1<S2 - верхнему полупространству диапазона углов от 90° до 180°.

Сущность изобретения заключается в применении одного ОЭК с МФП, осуществляющим прием части основного оптического излучения. Угол места и азимут ИОИ определяются по значениям координат фотоэлементов МФП, сигналы на выходе которых равны между собой. Суммируют сигналы выделенных шести элементов МФП, осуществляют наклон ФЧП МФП в плоскости угла места и повторно определяют сумму значения сигналов выделенных шести элементов. Сравнивают полученные значения суммарных сигналов и по результатам сравнения определяют принадлежность угла места ИОИ одному из верхних полупространств, ограниченных плоскостью ФЧП МФП.

На фигуре 1 приведена схема, поясняющая способ (где обозначены: 1 - исходное положение ФЧП МФП, 2 - положение ФЧП МФП, имеющее наклон под углом ϕ в плоскости угла места, 3 - плоскость МФП, 4 - изображение оптического излучения на поверхности МФП, 5 - ИОИ, 6 - левое полупространство, 7 - правое полупространство). Оптический луч от ИОИ 5 падает на ФЧП МФП 3, при этом образуется изображение 4 оптического излучения с линиями равной интенсивности в виде части эллипса. Выходные сигналы фотоэлементов МФП сравнивают между собой. По результатам сравнения выбирают минимум шесть фотоэлементов МФП, имеющих равные значения выходных сигналов, суммируют значения полученных шести сигналов S1, определяют координаты этих фотоэлементов МФП, по которым вычисляют значения угловых координат (угол места ε и азимут β) ИОИ 5. Осуществляют наклон ФЧП в плоскости угла места ε на угол β, позволяющий отследить смещение изображения оптического излучения 4 на ФЧП МФП 3. Повторно определяют суммарный сигнал S2 выделенных шести фотоэлементов МФП. Сравнивают полученные значения сигналов S1 и S2, если S1>S2, то устанавливают принадлежность ИОИ верхнему полупространству, ограниченному плоскостью ФЧП МФП диапазона углов от 0° до 90°, если S1<S2 - верхнему полупространству диапазона углов от 90° до 180°.

На фигуре 2 приведена схема устройства, реализующего предложенный способ. Устройство включает МФП с формирующей оптикой (8), микроконтроллер (9), блок управления сканирующим устройством (10), сканирующее устройство (11).

Устройство функционирует следующим образом. Каждый элемент МФП 8 имеет координатную привязку в декартовой системе координат. На поверхности МФП 8 формируется изображение ИОИ в виде части эллипса. С выхода МФП 8 выходные сигналы фотоэлементов поступают в микроконтроллер 9, где происходит их сравнение между собой. По результатам сравнения определяются не менее шести фотоэлементов МФП 8, имеющих равные значения выходных сигналов, и определяются их координаты, по которым происходит вычисление (см., например, А.Ю. Козирацкий, Ю.Л. Козирацкий, В.В. Капитанов, П.Е. Кулешов и др. Способ определения угловых координат ИОИ по рассеянной в атмосфере составляющей. Заявка патента на изобретение №2013129420 от 26.06.2013, Россия, G01S 17/06, опубликована в бюллетене №1 от 27.01.2015) угловых координат (угол места ε и азимут β) ИОИ.

Для определения принадлежности угла места ИОИ одному из верхних полупространств, ограниченных плоскостью ФЧП МФП, микроконтроллер 9 вычисляет суммарный сигнал S1 выделенных шести фотоэлементов, а значение угла места передает в блок управления 10. Блок управления 10 формирует управляющий сигнал, который поступает на вход сканирующего устройства 11. Сканирующее устройство 11 осуществляет наклон ФЧП МФП 4 в плоскости угла места в направлении его увеличения на угол, позволяющий отследить смещение изображения оптического излучения на ФЧП МФП 8. С выхода МФП 8 с тех же самых выделенных фотоэлементов выходные сигналы поступают в микроконтроллер 9, где происходит их суммирование S2. Далее микроконтроллер 9 осуществляет сравнение значений полученных сумм сигналов S1 и S2 и по результатам сравнения устанавливает принадлежность угла места ИОИ одному из верхних полупространств.

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен способ определения угловых координат на ИОИ, основанный на применении ОЭК с МФП, привязке положения фоточувствительных элементов МФП к декартовой системе координат, приеме излучения ИОИ ОЭК с МФП, выделении не менее шести фотоэлементов МФП, сигналы на выходе которых равны между собой, определении их координат, вычислении по их значениям угла места ε и азимута β ИОИ, определении суммарного сигнала S1 выделенных шести фотоэлементов МФП, осуществлении наклона плоскости матричного фотоприемника по углу места ε в направлении его увеличения, повторном определении суммарного сигнала S2 выделенных шести фотоэлементов МФП, сравнении полученных значений сигналов S1 и S2, если S1>S2, то устанавливается принадлежность ИОИ верхнему полупространству, ограниченному плоскостью ФЧП МФП диапазона углов от 0° до 90°, если S1<S2 - верхнему полупространству диапазона углов от 90° до 180°.

Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы типовые оптические и радиотехнические узлы и устройства. Например, для вычисления угловых координат на ИОИ, могут быть использованы контроллеры, осуществляющие алгоритмы вычисления по поступающим данным о значениях координат фотоэлементов и их сигналов МФП. Наклон ФЧП МФП может осуществляться с использованием механических сканирующих платформ различного типа (см., например, Криксунов Л.З. Справочник по основам инфракрасной техники. - М.: Сов. радио, 1978, стр. 210).

Способ определения угловых координат на источник направленного оптического излучения, основанный на применении оптико-электронного координатора с матричным фотоприемником, привязке положения фоточувствительных элементов матричного фотоприемника к декартовой системе координат, приеме излучения источника оптического излучения оптико-электронным координатором с матричным фотоприемником, выделении не менее шести фотоэлементов матричного фотоприемника, сигналы на выходе которых равны между собой, определении их координат и вычислении по их значениям угла места ε и азимута β источника оптического излучения, отличающийся тем, что определяют суммарный сигнал S1 выделенных шести фотоэлементов матричного фотоприемника, осуществляют наклон плоскости матричного фотоприемника по углу места ε в направлении его увеличения, повторно определяют суммарный сигнал S2 выделенных шести фотоэлементов матричного фотоприемника, сравнивают полученные значения сигналов S1 и S2, если S1>S2, то устанавливают принадлежность источника оптического излучения верхнему полупространству, ограниченному плоскостью фоточувствительной поверхности матричного фотоприемника диапазона углов от 0° до 90°, если S1<S2 - верхнему полупространству диапазона углов от 90° до 180°.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к пеленгаторам. Предложено устройство для определения пеленга и дальности до источника сигнала, содержащее первую антенну, первый и второй микробарометры, а также пять аналого-цифровых преобразователей (АЦП), подключенных к персональной электронно-вычислительной машине (ПЭВМ), дополнительно содержащее блок системы единого времени и блок связи с абонентами, подключенные к ПЭВМ, последовательно соединенные первый усилитель, первый фильтр, второй усилитель, первый пороговый блок и схему ИЛИ, последовательно соединенные вторую антенну, третий усилитель, второй фильтр, четвертый усилитель и второй пороговый блок, последовательно соединенные третью антенну, пятый усилитель, третий фильтр, шестой усилитель и третий пороговый блок, последовательно соединенные седьмой усилитель, четвертый фильтр, восьмой усилитель, пятый фильтр, четвертый пороговый блок и первую схему И, последовательно соединенные первый цифроаналоговый преобразователь (ЦАП) и первый калибратор, последовательно соединенные второй ЦАП и второй калибратор, последовательно соединенные третий ЦАП и третий калибратор, последовательно соединенные четвертый ЦАП и четвертый калибратор, последовательно соединенные пятый ЦАП и первый формирователь, последовательно соединенные шестой ЦАП и второй формирователь, последовательно соединенные первый таймер, вторую схему И и первый счетчик, последовательно соединенные девятый усилитель, шестой фильтр, десятый усилитель, седьмой фильтр, пятый пороговый блок и третью схему И, последовательно соединенные седьмой ЦАП и пятый калибратор, последовательно соединенные восьмой ЦАП и третий формирователь, последовательно соединенные второй таймер, четвертую схему И и второй счетчик, а также первый тактовый генератор, подключенный ко вторым входам второй и четвертой схем И, третий и четвертый таймеры, последовательно соединенные аналоговые первый квадратор, сумматор, первый делитель, шестой пороговый блок и пятую схему И, последовательно соединенные пятый таймер, шестую схему И и третий счетчик, а также шестой АЦП, второй тактовый генератор, подключенный ко второму входу шестой схемы И, и аналоговые второй и третий квадраторы, подключенные входами, соответственно, ко второму и третьему фильтрам, а выходами подключенные, соответственно, ко второму входу сумматора и ко второму входу первого делителя, последовательно соединенные второй делитель, корректор нелинейности, первый блок вычисления модуля, блок вычитания, второй блок вычисления модуля, седьмой пороговый блок и инверсный вход седьмой схемы И, последовательно соединенные ключ, запоминающее устройство и третий блок вычисления модуля, подключенный ко второму входу блока вычитания, последовательно соединенные восьмую схему И и одновибратор, подключенный к управляющему входу ключа, а также седьмой АЦП и блок сравнения знаков, подключенный входами к корректору нелинейности и к запоминающему устройству, а выходом подключенный ко второму входу седьмой схемы И.

Изобретение относится к области оптического приборостроения и касается датчика направленности света. Датчик направленности света содержит фотоприемное устройство, состоящее из множества фоточувствительных элементов.

Изобретение относится к области двумерных телевизионных следящих систем. .

Изобретение относится к вычислительной технике. .

Способ однопозиционного определения угловых координат заключается в применении в качестве фотоприемного устройства матричного фотоприемника, осуществляющего прием суммарного излучения сигнальной волны и волны гетеродина.

Способ определения положения мобильной машины на плоскости основан на определении положения мобильной машины на плоскости путем использования электромагнитного излучения, полученного от передатчика и воспринимаемого принимающим устройством, установленным на движущейся мобильной машине, и определения координат мобильной машины.

Изобретение относится к способам определения местоположения источника оптического излучения по рассеянной в атмосфере составляющей. Согласно способу применяют два оптико-электронных координатора с перпендикулярными приемными плоскостями.

Изобретение относится к области противодействия оптико-электронным системам (ОЭС) различного назначения. Способ основан на согласовании ориентации каждого передающего канала помехового сигнала с ориентацией соответствующего пеленгационного канала.

Изобретение относится к системам с использованием отражения или вторичного излучения электромагнитных волн, иных, чем радиоволны, и может быть использовано для определения местоположения объекта наблюдения в автоматизированных системах транспортных средств для предупреждения столкновения.

Способ определения скорости движущихся объектов методом пассивной локации включает получение изображения самолета при помощи телевизионной системы с формированием видеокадров перемещения движущегося объекта в поле зрения оптической системы и их оцифровкой, определение величины перемещения изображения движущегося объекта на фотоприемной матрице по перемещению центра тяжести изображения.

Изобретение относится к области обнаружения, распознавания и определения координат малогабаритных беспилотных летательных аппаратов (МБЛА) и прицеливания по ним и может быть использовано в военной технике.

Устройство для реализации способа обнаружения оптических и оптико-электронных приборов посредством сканирования лоцируемого пространства содержит передающий блок, выполненный в виде канала подсветки с лазерным излучателем, оптически сопряженным с формирующим лазерное излучение телескопом.
Способ относится к оптическим стереоскопическим способам определения местонахождения объекта в окружающем пространстве. При реализации способа принимают и регистрируют опорное и сравниваемое изображения двумя идентичными оптическими системами.

Изобретение относится к области обнаружения в пространстве объектов, к способам и устройствам лазерной локации и может быть использовано в системах обнаружения и распознавания целей, в системах предупреждения столкновения транспортных средств, в навигационных устройствах и в системах охранной сигнализации.

Способ обнаружения объекта на удаленном фоне включает прием сигнала в ультрафиолетовом диапазоне волн на принимающие устройства. При этом днем используют фотоэлемент, ночью используют фотоэлектронный умножитель. Принимающее устройство поворачивают от одной линии горизонта к противоположной линии горизонта и обратно. Обработка сигнала заключается в выявлении уменьшения значений фототока. При этом по уменьшению значений фототока обнаруживают непосредственно сам объект либо в случае уменьшения освещённости уменьшение обнаруживают по инверсионному следу. 2 ил., 30 пр.

Активно-импульсный телевизионный прибор ночного видения содержит блок наблюдения, телевизионный канал, блок управления и синхронизации, импульсный инфракрасный осветитель и блок деления частоты. Также в прибор дополнительно введены последовательно соединенные лазерный дальномер и блок регулировки амплитуды тока накачки, блок предварительной установки задержки и блок регулировки длительности импульса строба. Технический результат заключается в сокращении времени поиска объекта наблюдения и повышении качества получаемого изображения за счет автоматического определения дальности до объекта при помощи лазерного дальномера. 1 ил.

Однозрачковая мультиспектральная оптическая система со встроенным лазерным дальномером содержит общий входной канал, спектроделительную пластинку, отражающую спектральный диапазон оптического канала и пропускающую спектральный диапазон тепловизионного канала. При этом отраженный канал выполнен телевизионным из двух компонентов, между которыми установлена вторая спектроделительная пластинка, отражающая спектральный диапазон телевизионного канала и пропускающая спектральный диапазон дальномерного канала, который содержит плоское зеркало с осевым отверстием, расположенное под углом к оптической оси, осуществляющее апертурное разделение для ветвей фотоприемника и полупроводникового лазерного излучателя. Технический результат заключается в упрощении конструкции, а также обеспечении возможности измерения дальности. 1 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к области оптических измерений и касается способа определения угловых координат на источник направленного оптического излучения. Способ включает в себя привязку положения фоточувствительных элементов матричного фотоприемника оптико-электронного координатора к декартовой системе координат, прием излучения, выделение не менее шести фотоэлементов матричного фотоприемника, сигналы на выходе которых равны между собой, определение их координат и вычисление по их значениям угла места и азимута источника излучения. Кроме того, при проведении измерений определяют суммарный сигнал S1 выделенных шести фотоэлементов, осуществляют наклон плоскости матричного фотоприемника по углу места в направлении его увеличения, повторно определяют суммарный сигнал S2 выделенных шести фотоэлементов и сравнивают полученные значения сигналов S1 и S2. Если S1>S2, то устанавливают принадлежность источника оптического излучения верхнему полупространству диапазона углов от 0° до 90°. Если S1<S2, то устанавливают принадлежность источника оптического излучения верхнему полупространству диапазона углов от 90° до 180°. Технический результат заключается в снятии ограничений на неоднозначность определения угла места. 2 ил.

Наверх