Пневматическая система для плотной загрузки катализатора в байонетные трубы обменного реактора парового реформинга с использованием вспомогательной трубы для введения твердых частиц

Изобретение относится к загрузке катализатора в байонетные трубы обменного реактора парового реформинга с помощью потока газа, движущегося в направлении, противоположном падению частиц. Устройство загрузки включает, по меньшей мере, одну жесткую вспомогательную трубу (7), разделенную на множество секций, располагаемых торцом друг к другу в начале загрузки, внутреннюю трубу (5), установленную внутри внешней трубы (6), центральный загрузочный бункер (1), загружающий частицы на вибрационный или ленточный конвейер, питающий вспомогательную трубу (7) через воронку (3). Через трубу (7), расположенную внутри пространства (4), вводят твердые частицы катализатора. Загрузка осуществляется путем свободного падения, пересекаемого противоточным движением газа, вводимого через внутреннюю трубу (5) для замедления падения частиц. По мере заполнения, трубу (7) поднимают посредством извлечения секций, сохраняя расстояние относительно поверхности слоя. Изобретение обеспечивает плотную и равномерную загрузку катализатора в каждой из байонетных труб обменного реактора. 2 н. и 1 з.п. ф-лы, 1 ил., 1 табл.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к области загрузки каталитических труб, используемых в трубчатых реакторах, предназначенных для высокоэндотермических или высокоэкзотермических реакций. Таким образом, настоящее изобретение является особенно подходящим для реакторов парового реформинга природного газа или разнообразных углеводородных фракций в целях изготовления смеси CO и H2, известной как синтез-газ.

Можно выделить два основных семейства реакторов парового реформинга: реакторы, в которых тепло подается рядом горелок, расположенных внутри реактора, и реакторы, в которых тепло обеспечивается теплопередающей текучей средой, как правило, газообразными продуктами горения, причем вышеупомянутое горение, разумеется, происходит снаружи реактора парового реформинга.

В некоторых реакторах последнего типа, которые далее называются термином «обменные реакторы», используются простые трубы. В других реакторах используются концентрические трубы с двойными стенками, которые также известны как байонетные трубы. Байонетная труба может быть определена как внутренняя труба, которую окружает внешняя труба, проходящая коаксиально по отношению к внутренней трубе, причем межтрубное пространство между внутренней трубой и внешней трубой, как правило, заполнено катализатором. В остальной части текста термин «межтрубное пространство» или «каталитическое пространство» будет использоваться, чтобы обозначать вышеупомянутое межтрубное пространство, которое определяют байонетные трубы.

В контексте настоящего изобретения, природный газ или, более типично, исходный углеводород, вводится через межтрубное пространство в потоке сверху вниз, а продукты реакции собираются в центральной части внутренней трубы и выходят в потоке снизу вверх.

Реакция парового реформинга природного газа с образованием водорода является высокоэндотермической и, таким образом, она осуществляется, как правило, в печах или в обменных реакторах, как определено выше.

Реакция происходит при очень высоких температурах, как правило, при 900°C, и при давлениях, которые обычно составляют от 20 до 30 бар (от 2 до 3 МПа). В таких условиях, вследствие механических свойств материалов, реакция может осуществляться только в экономически обоснованных условиях, если она происходит внутри труб.

Таким образом, каталитические обменные реакторы составляют множество труб, как правило, приблизительно от 200 до 350 труб, для блоков, производящих 100000 Нм3/ч водорода, причем данное множество труб, заключает в себе оболочка, которая принимает горячую текучую среду, и это означает возможность обеспечения тепла, необходимого для реактора парового реформинга.

Эта горячая текучая среда или теплопередающая текучая среда, как правило, состоит из газообразных продуктов горения, которое происходит снаружи обменного реактора.

Таким образом, катализатор необходимо помещать во все трубы реактора парового реформинга равномерным образом при переходе от одной трубы к другой, чтобы обеспечивать одинаковый перепад давления от одной трубы к другой.

Это условие является очень важным для гарантии надлежащего распределения реагентов во множестве каталитических труб и для предотвращения недостаточной загрузки одной трубы, что могло бы привести, например, к значительному перегреву составляющего трубу материала, а такой перегрев существенно сокращает срок службы трубы.

Аналогичным образом, очень важно, чтобы в трубе отсутствовали пустоты, т.е. области, в которых катализатор отсутствует или присутствует в недостаточном количестве, потому что при этом в трубе также может происходить местный перегрев вследствие отсутствия каталитический реакции внутри нее. Кроме того, любое неравномерное распределение катализатора в реакционном пространстве может приводить к неравновесному потоку реакционной текучей среды или текучих сред.

Таким образом, задача устройства согласно настоящему изобретению заключается в том, чтобы обеспечивать загрузку, которая является плотной и равномерной в каждой из
байонетных труб, составляющих часть обменного реактора.

Уровень техники

Настоящее исследование ограничивается только загрузочными устройствами пневматического типа.

Во французском патенте №2950822 заявитель настоящего изобретения описывает решение задачи загрузки байонетных труб через загрузочные трубы с помощью механических тормозов или пневматического торможения. Этот способ загрузки можно использовать для осуществления плотной равномерной загрузки байонетных труб. Этот способ относится к типу «по зернышку» и, таким образом, является чрезмерно медленным и неудовлетворительным для использования в реакторах промышленного масштаба, которые состоят из нескольких сотен труб.

Европейский патент №1374985 описывает загрузочную систему со съемной трубой для введения в противоположном направлении потока воздуха, который тормозит падающие частицы. Эта система является применимой к традиционным трубам реактора парового реформинга природного газа, но не может выполнять определенные требования для байонетных труб.

Ни один из документов не описывает применение для байонетных труб, когда межтрубное пространство является загруженным.

Таким образом, устройство согласно настоящему изобретению можно определить как пневматическое устройство для плотной загрузки катализатора в межтрубное пространство байонетных труб, установленных в обменном реакторе парового реформинга, причем данное устройство используется для обеспечения равномерной плотности загрузки в каждой из труб обменного реактора в течение периода времени, который является совместимым с требованиями пуска реактора промышленного масштаба.

Кроме того, в некоторых случаях устройство согласно настоящему изобретению должно быть пригодным для приспособления к изменениям внутреннего диаметра внешней трубы 6, вызываемым механическими и термическими напряжениями, которые изменяются на протяжении трубы, и, таким образом, изменяют размеры межтрубного пространства. Ни одно из устройств предшествующего уровня техники не учитывает это дополнительное условие.

Краткое описание чертежей

Фиг. 1 представляет устройство согласно настоящему изобретению и иллюстрирует состоящую из секций вспомогательную трубу 7, которую можно использовать для введения твердых частиц в межтрубное пространство (кольцевую зону) 4, а также систему для ее подъема.

Краткое описание изобретения

Настоящее изобретение можно определить как пневматическое устройство для плотной загрузки катализатора в обменный реактор парового реформинга, состоящий из множества байонетных труб, заключенных в оболочку, где каждая байонетная труба содержит межтрубное пространство, которое, по меньшей мере, частично заполнено катализатором. Вышеупомянутый катализатор составляют твердые частицы, занимающие, по меньшей мере, часть межтрубного пространства 4, заключенного между внутренней трубой 5 и внешней трубой 6, причем узел из этих двух труб составляет байонетную трубу, ширина вышеупомянутого межтрубного пространства составляет от 30 мм до 80 мм, а его высота составляет от 10 до 20 м.

Частицы катализатора, как правило, присутствуют в форме цилиндров, у которых высота составляет приблизительно от 10 мм до 20 мм, и диаметр составляет приблизительно от 5 мм до 20 мм.

Согласно основному варианту осуществления настоящего изобретения, данное устройство составляют:

жесткая вспомогательная труба 7, разделенная на множество секций и проникающая внутрь межтрубного пространства 4, сохраняя расстояние от поверхности слоя, составляющее от 50 мм до 150 мм, причем через вышеупомянутую трубу твердые частицы поступают в межтрубное пространство 4, перемещаясь в направлении, противоположном потоку тормозящего газа, который вводится через внутреннюю трубу 5,

вышеупомянутая жесткая вспомогательная труба 7 может разбираться на секции, длина которых составляет от 50 см до 200 см, и частицы катализатора содержат:

центральный загрузочный бункер 1, который направляет частицы на ленточный конвейер или вибрационный конвейер 2, питающий вспомогательную трубу 7 через

воронку 3, через которую частицы перемещаются внутрь вспомогательной трубы 7.

Можно использовать две или три параллельно работающие одинаковые жесткие трубы 7 в зависимости от скорости потоков загружаемых твердых частиц. Таким образом, в остальной части настоящего текста термин «жесткая вспомогательная труба 7» следует понимать как означающий жесткую вспомогательную трубу или трубы 7.

Это множество параллельно работающих жестких труб 7 можно загружать через один загрузочный бункер.

Настоящее изобретение также предлагает способ загрузки катализатора с использованием устройства, описанного выше, причем данный способ можно описать как следующий ряд стадий:

сначала состоящая из секций жесткая вспомогательная труба 7 находится снаружи байонетной трубы, а загрузочный бункер 1 заполнен твердыми частицами;

жесткая вспомогательная труба 7 постепенно вводится в межтрубное пространство 4 через его верхнюю часть с добавлением секций до тех пор, пока ее нижний конец не будет находиться от дна трубы на расстоянии, составляющем от 50 см до 100 см;

постоянный поток газа, который вводится через центральную трубу 5, проходит в межтрубное пространство и поднимается внутри вспомогательной трубы, причем скорость потока газа является такой, что ей соответствует скорость внутри вспомогательной трубы, составляющая от 8 м/с до 14 м/с;

включается ленточный конвейер или вибрационный конвейер 2, таким образом, что обеспечивается поток твердых частиц со скоростью, составляющей от 150 кг/ч до 500 кг/ч и предпочтительно от 250 кг/ч до 500 кг/ч, причем данный поток твердых частиц вводится во вспомогательную трубу 4 через воронку 3;

твердые частицы замедляются внутри вспомогательной трубы и падают на поверхность образующегося слоя, который заполняет межтрубное пространство 4;

по мере того, как заполняется межтрубное пространство 4, жесткая вспомогательная труба 7 поднимается в межтрубном пространстве 4 посредством извлечения секций таким образом, что сохраняется постоянным расстояние по отношению к поверхности постепенно образующегося слоя, причем вышеупомянутое расстояние всегда находится в интервале от 50 см до 150 см;

жесткая вспомогательная труба 7 извлекается со скоростью, равной скорости загрузки трубы и составляющей от 0,1 м/мин до 0,4 м/мин и предпочтительно от 0,2 м/мин до 0,4 м/мин;

когда байонетная труба оказывается загруженной, и загрузочная система извлекается, загрузочная система перемещается, чтобы загружать следующую трубу.

Когда используется множество параллельно работающих жестких труб 7, это множество труб 7 перемещается для заполнения другого множества байонетных труб.

Как правило, газ, используемый для осуществления способа согласно настоящему изобретению, представляет собой воздух или азот.

Подробное описание изобретения

Настоящее изобретение можно определить как устройство для плотной загрузки катализатора в межтрубное пространство 4 байонетных труб, причем у каждой байонетной трубы высота составляет от 10 м до 20 м, диаметр внешней трубы 6 составляет от 250 мм до 150 мм, и внешний диаметр внутренней трубы 5 составляет от 10 до 40 мм.

Таким образом, межтрубное пространство (кольцевая зона) 4, в котором содержится катализатор, имеет характерную ширину, составляющую приблизительно 50 мм. На практике, в зависимости от конкретного случая, характерная ширина межтрубного пространства (кольцевая зона) 4 может составлять от 30 мм и 80 мм.

Кроме того, в некоторых случаях внешняя труба 6 имеет диаметр, который уменьшается сверху вниз по секциям, и это означает, что характерная ширина межтрубного пространства 4 также уменьшается сверху вниз.

Устройство согласно настоящему изобретению можно очень легко приспосабливать к изменениям характерной ширины, сохраняя ее эксплуатационные параметры для всего ряда секций.

Частицы катализатора, как правило, присутствуют в форме цилиндров, у которых высота составляет приблизительно от 10 мм до 20 мм, диаметр составляет от 5 мм до 20 мм.

Одну из основных проблем, возникающих при их загрузке в трубы, длина которых составляет более чем 10 м, представляет собой риск разрушения этих частиц в том случае, если они просто будут свободно падать при отсутствии каких-либо мер предосторожности; решение этой проблемы предшествующего уровня техники представляет собой осуществление плотной загрузки. Как правило, риск разрушения частиц становится высоким при падении с высоты одного метра.

Другие проблемы связаны с геометрией самого межтрубного каталитического пространства, которая препятствует введению традиционных загрузочных систем.

В контексте настоящего изобретения, зачастую должна быть установлена внутренняя труба 5, которая проходит сквозь внешнюю трубу 6 в верхней части межтрубного пространства 4, чтобы обеспечивать выпуск, в котором полностью отсутствуют выходящие продукты реакции.

Наконец, как показывает предшествующий уровень техники, риск перекрывания усиливается, когда соотношение между диаметром трубы и максимальным размером частиц составляет менее чем 8, что часто имеет место в контексте настоящего изобретения, поскольку типичная ширина межтрубного пространства (50 мм) приблизительно в 4 раза превышает характерный диаметр частиц катализатора.

Основная проблема, которую также должно решить загрузочное устройство, заключается в том, что загрузка труб осуществляется по очереди, и, таким образом, она должна быть достаточно быстрой для применения в промышленности, поскольку реактор парового реформинга, предназначенный для производства приблизительно 100000 Нм3/ч водорода, содержит приблизительно от 200 до 350 байонетных труб.

Настоящее изобретение описывает систему для загрузки байонетной трубы посредством потока газа, как правило, воздуха, который движется в направлении, противоположном падению частиц, и, таким образом, замедляет падение вышеупомянутых частиц, в результате чего предотвращается их разрушение, и, следовательно, обеспечивается равномерная загрузка без закупоривания.

Конечная скорость рассматриваемых частиц во время падения составляет приблизительно 14 м/с. Чтобы предотвратить разрушение частиц, скорость падения частиц должна составлять менее чем 3 м/с и предпочтительно менее чем 2 м/с.

Скорость газа, который движется в направлении, противоположном падению частиц, должна составлять от 11 м/с до 13 м/с, чтобы замедлять падение частиц. Для достижения такой скорости потока во всем межтрубном пространстве 4 требуется очень высокая скорость потока газа. Введение газа при такой скорости потока через внутреннюю трубу 5, диаметр которой составляет, как правило, от 30 мм до 50 мм, может создавать очень высокие скорости внутри данной трубы, и в результате этого может возникать даже поток со звуковой скоростью.

Согласно настоящему изобретению, поток газа, который требуется, чтобы замедлять частицы соответствующим образом, вводится полностью через внутреннюю трубу 5, но твердые частицы поступают в межтрубное пространство (кольцевую зону) 4 через жесткую вспомогательную трубу 7, диаметр которой составляет от 0,5 до 0,9 ширины межтрубного пространства 4, точнее наименьшего из межтрубных пространств 4 в случае трубы с изменяющимся внутренним диаметром внешней трубы 6. Эта жесткая вспомогательная труба 7 разделена на несколько секций таким образом, что обеспечивается ее опускание на дно кольцевой зоны 4, когда начинается загрузка, а затем ее постепенное извлечение в процессе загрузки вышеупомянутой кольцевой зоны 4.

Поток газа внутри внутренней трубы 5 является таким, что:

с одной стороны, скорость, создаваемая в жесткой вспомогательной трубе 7 находится в интервале от 8 м/с до 14 м/с и предпочтительно в интервале от 11 м/с до 13 м/с;

с другой стороны, скорость восходящего потока, создаваемого в межтрубном пространстве, составляет менее чем минимальная скорость псевдоожижения твердых частиц, составляя от 3 м/с до 4 м/с, чтобы сохранять образующийся слой частиц в состоянии неподвижного слоя, но уносить мелкие частицы, которые могут образовываться в процессе загрузки.

Загрузка осуществляется путем свободного падения через верхнее отверстие вспомогательной трубы или труб, когда загружается загрузочный бункер 1 и вибрационный конвейер или ленточный конвейер 2.

Между вибрационным конвейером 2 и жесткой вспомогательной трубой 7 используется гибкое соединение 3, чтобы направлять частицы катализатора и при этом препятствовать передаче вибрации в жесткую вспомогательную трубу.

Поток газа, который выходит из жесткой вспомогательной трубы 7, загруженной мелкими частицами, проходит через фильтр 9, который задерживает пыль и выпускает чистый газ 12. Уплотнительная система 8 обеспечивает, чтобы только газ проходил через систему для загрузки твердых частиц и фильтрации 9.

Изменения сечения межтрубного пространства 4 не производят какого-либо дополнительного воздействия на скорость потока воздуха, вводимого через внутреннюю трубу 5, которая остается постоянной в течение всего процесса загрузки, и это означает, что устройство согласно настоящему изобретению является особенно хорошо приспособленным к геометриям трубы с изменением размеров кольцевой зоны 4.

Пример изобретения

Исследование загрузки осуществляли, используя пневматическое устройство согласно настоящему изобретению, установленное в экспериментальной колонне высотой 1 м, которую составляли внутренняя труба 5, имеющая внешний диаметр 42 мм и внутренний диаметр 32,2 мм, а также внешняя труба 6, имеющая внутренний диаметр 128,1 мм.

Загружаемые твердые частицы имели форму мелких цилиндров высотой 1,5 см и диаметром 0,8 см.

Полная длина вспомогательной загрузочной трубы 7 составляла 6,2 м, а ее диаметр составлял 5 см.

Расстояние между нижним концом жесткой вспомогательной трубы 7 и поверхностью образующегося слоя в процессе загрузки сохранялось на постоянном уровне, составляющем 50 см.

Поток воздуха со скоростью 76,3 м3/ч поступал через внутреннюю трубу байонетной системы и обеспечивал скорость загрузки внутри жесткой вспомогательной трубы 7 на уровне 10,8 м/с.

Скорость внутри внутренней трубы 5 байонетной системы составляла 26 м/с.

Скорость восходящего потока через слой твердых частиц составляла 2 м/с, т.е. была меньше минимальной скорости псевдоожижения.

Пневматическое устройство непрерывно поднималось со скоростью 0,2 м/мин.

Когда слой оказывался загруженным, измеряли перепад давления ΔP при потоке воздуха 130 Нм3/ч.

После выгрузки из партии удаляли разрушенные частицы. Степень их разрушения была очень низкой, составляя приблизительно 0,7%.

Результаты загрузки представлены ниже в таблице 1.

Загрузка, обеспечиваемая данной системой, была весьма удовлетворительной и демонстрировала превосходную воспроизводимость в отношении перепада давления (среднеквадратическое отклонение составляло приблизительно ±3%).

Скорость загрузки составляла от 5 до 6 мин/м, чему соответствовала продолжительность загрузки, составляющая приблизительно 66 минут для трубы длиной 12 м (при скорости потока твердых частиц, составляющей приблизительно 180 кг/ч).

Плотность загрузки составляла приблизительно 970 кг/м3 и удовлетворительно воспроизводилась для всех загрузок.

Таблица 1
Результаты загрузки с помощью пневматической системы со вспомогательной загрузочной трубой для однометровой модели
Продолжительность загрузки (мин) Высота твердого материала (см) Плотность загрузки (кг/м3) Перепад давления (мм вод. ст.) Среднеквадратическое отклонение Степень разрушения частиц
5,00,, 98 968 260 0,5% 0,76%
5,42,, 97 978 266 2,8% 0,78%
6, 98 968 250 -3,3% 0,68%

Средний перепад давления 258,6

1. Пневматическое устройство для плотной загрузки катализатора в обменный реактор парового реформинга, состоящий из множества байонетных труб, заключенных в оболочку, причем катализатор составляют частицы, занимающие, по меньшей мере, часть межтрубного пространства (4), заключенного между внутренней трубой (5) и внешней трубой (6), узел из этих двух труб составляет байонетную трубу, ширина вышеупомянутого межтрубного пространства находится в интервале от 30 мм до 80 мм, его высота находится в интервале от 10 до 20 м, частицы катализатора присутствуют в форме цилиндров, у которых высота составляет приблизительно от 10 мм до 20 мм, и диаметр составляет приблизительно от 5 мм до 20 мм, и данное устройство состоит из:

по меньшей мере, одной жесткой трубы (7), которая расположена внутри межтрубного пространства (4) на расстоянии от 50 мм до 150 мм от поверхности образующегося слоя, диаметр которой составляет от 0,5-0,9 ширины межтрубного пространства (4), вышеупомянутая жесткая вспомогательная труба (7) обеспечивает введение твердых частиц, подлежащих загрузке в межтрубное пространство (4) и пересекаемых противоточным движением газа, вводимого через внутреннюю трубу (5);

вышеупомянутая жесткая вспомогательная труба (7) разделена на множество секций, имеющих длину в интервале от 50 см до 200 см, которые располагаются торцом друг к другу в начале загрузки, а затем постепенно извлекаются по мере того, как образуется слой частиц, таким образом, что сохраняется требуемое расстояние по отношению к поверхности слоя, и частицы катализатора содержатся в:

центральном загрузочном бункере (1), который загружает частицы на вибрационный конвейер или ленточный конвейер (2), питающий вспомогательную трубу (7) через:

воронку (3), через которую частицы перемещаются внутрь межтрубного пространства (4).

2. Способ загрузки катализатора с использование устройства по п. 1, отличающийся следующим рядом стадий:

сначала жесткая вспомогательная труба (7) разделяется на секции и находится снаружи байонетной трубы, причем загрузочный бункер (1) наполняют твердыми частицами;

жесткую вспомогательную трубу (7) постепенно вводят в межтрубное пространство (4) посредством расположения необходимого числа секций торцом друг к другу таким образом, что ее нижний конец находится на расстоянии, составляющем от 50 см до 100 см относительно дна межтрубного пространства (4);

подходящий поток газа полностью вводят во внутреннюю трубу (5);

ленточный конвейер или вибрационный конвейер (2) включают таким образом, что обеспечивается поток твердых частиц в диапазоне от 150 кг/ч до 500 кг/ч и предпочтительно в диапазоне от 250 кг/ч до 500 кг/ч, причем вышеупомянутые твердые частицы вводят в межтрубное пространство (4) через жесткую вспомогательную трубу (7);

по мере того, как заполняется межтрубное пространство (4), жесткую вспомогательную трубу (7) поднимают из межтрубного пространства (4) посредством извлечения секций с помощью внешней подъемной системы таким образом, что сохраняется расстояние относительно поверхности слоя, которое постепенно становится постоянным, причем вышеупомянутое расстояние всегда находится в диапазоне от 50 см до 150 см;

извлекают жесткую вспомогательную трубу (7) со скоростью, равной скорости загрузки трубы и находящейся в диапазоне от 0,1 м/мин до 0,4 м/мин и предпочтительно от 0,2 до 0,4 м/мин;

когда байонетная труба оказывается загруженной, и загрузочная система извлекается, жесткую вспомогательную трубу (7) перемещают, чтобы загружать следующую трубу.

3. Способ загрузки катализатора по п. 2, в котором используемый газ представляет собой воздух или азот.



 

Похожие патенты:

Изобретение относится к реакционному устройству для получения легких олефинов из метанола и/или диметилового эфира. Реакционное устройство содержит реактор с плотнофазным псевдоожиженным слоем (2), циклонный сепаратор (3), стриппер (5), подъемную трубу (7), регенератор с плотнофазным псевдоожиженным слоем (10), циклонный сепаратор (11), стриппер (13) и подъемную трубу (15).

Изобретение относится к улучшенным системам и способам для хранения суспензий и работы с ними. Расходная резервуарная система для хранения суспензии, включающей углеводороды и катализатор, содержит резервуар для хранения, имеющий первый конец, наклоненный в направлении впуска для рециркуляции, второй конец и, по меньшей мере, одну стенку, окружающую внутренний объем между первым и вторым концами; впуск для суспензии в сообщении по текучей среде с внутренним объемом, причем впуск для суспензии расположен между первым концом и вторым концом упомянутого резервуара; выпуск в сообщении по текучей среде с внутренним объемом, причем выпуск расположен между первым концом и впуском для суспензии; упомянутый впуск для рециркуляции в сообщении по текучей среде с внутренним объемом у первого конца резервуара для хранения, причем впуск для рециркуляции расположен в нижней точке и/или в самой нижней точке наклонного дна; насос, имеющий всасывающую линию в сообщении по текучей среде с выпуском; клапан рециркуляции в сообщении по текучей среде с выпускной линией насоса и впуском для рециркуляции; выпускной клапан в сообщении по текучей среде с выпускной линией насоса; и дефлектор потока во внутреннем объеме упомянутого резервуара, расположенный так, чтобы перенаправлять поток между впуском для суспензии и впуском для рециркуляции.

Изобретение относится к усовершенствованному реактору с тороидальным слоем и способу обработки материала в виде частиц. Устройство для обработки материала в виде частиц содержит рабочую камеру с одним или несколькими впускными отверстиями для впуска обрабатываемого материала и одним или несколькими выпускными отверстиями для обработанного материала, при этом рабочая камера имеет кольцевую зону обработки и множество впускных отверстий для текучего обрабатывающего состава в основании кольцевой зоны, сконфигурированных таким образом, что в процессе применения струи текучего обрабатывающего состава поступают в кольцевую зону и образуют в ней спиральный поток материала.

Изобретение относится к способу и устройству для смешивания потоков регенерированного и карбонизированного катализаторов. Способ смешивания двух потоков катализатора, включающий подачу первого потока катализатора в пространство между стенкой лифт-реактора и стенкой камеры, размещенной в указанном лифт-реакторе; подачу второго потока катализатора в указанный лифт-реактор; прохождение указанного первого потока катализатора из указанного пространства в отверстие в указанной камере и прохождение указанных первого потока катализатора и второго потока катализатора вверх в указанном лифт-реакторе; включающий прохождение указанного первого потока катализатора вдоль указанной стенки указанной камеры перед поступлением указанного первого потока в указанное отверстие.

Изобретение относится к способу и устройству для смешения потоков зауглероженного и регенерированного катализатора. Способ смешения двух потоков катализатора, включающий подачу первого потока катализатора, который представляет собой поток регенерированного катализатора, в камеру; подачу второго потока катализатора, который представляет собой поток зауглероженного катализатора, в вертикальный стояк; пропускание катализатора из указанной камеры в указанный вертикальный стояк; и пропускание указанного первого потока катализатора и указанного второго потока катализатора вверх по указанному вертикальному стояку.

Изобретение относится к способу получения продукта из газообразного реагента в суспензии. Способ включает подачу газообразного реагента в качестве газообразного сырья или части газообразного сырья при приведенной скорости газа на входе по меньшей мере 0.5 м/с в сосуд, содержащий расширенный суспензионный слой твердых частиц катализатора, суспендированных в суспензионной жидкости, так что газообразный реагент может барботировать наверх через суспензионный слой, причем суспензионный слой содержит загрузку катализатора, составляющую по меньшей мере 20 об.% от откачанной суспензии, каталитическую реакцию газообразного реагента при давлении выше атмосферного по мере того, как пузырьки газообразного реагента барботируют наверх через суспензионный слой с образованием продукта, и отвод из сосуда продукта и непрореагировавшего газообразного реагента.

Изобретение относится к способу получения гранулята, содержащего одну или несколько солей комплексообразователя общей формулы (I), из исходного водного раствора, содержащего одну или несколько солей комплексообразователя в концентрации от 10 до 80 мас.% в пересчете на общую массу этого исходного водного раствора.

Изобретение относится к способу и устройству для смешивания потоков карбонизированного и регенерированного катализатора. Способ включает подачу первого потока катализатора в лифт-реактор, подачу второго потока катализатора в лифт-реактор, прохождение первого потока катализатора вокруг вставки, размещенной в лифт-реакторе, и смешивание с вторым потоком катализатора, прохождение второго потока катализатора вокруг вставки, размещенной в лифт-реакторе, смешивание с первым потоком катализатора, и прохождение первого потока катализатора и второго потока катализатора вокруг вставки и вверх в лифт-реакторе.

Изобретение относится к суспензионному аппарату и способу его работы. Способ эксплуатации суспензионного аппарата включает подачу одного или нескольких газообразных реагентов в суспензию твердых частиц, суспендированных в суспензионной жидкости в сосуде со свободным пространством над суспензией, причем один или несколько газообразных реагентов подают в суспензию через газораспределитель, который имеет направленные вниз выходы для газа, и подают на непроницаемую для жидкости перегородку, перекрывающую сосуд ниже газораспределителя, причем перегородка делит сосуд на объем суспензии над перегородкой и придонный объем ниже перегородки, и поддержание перепада давления над перегородкой в заданных пределах путем варьирования давления в придонном объеме или давая ему измениться с помощью канала переноса давления, устанавливающего поток или связь давлений между придонным объемом и свободным пространством над суспензией.

Изобретение относится к получению синтетического газа и может быть использовано в химической промышленности. Способ получения синтетического газа включает введение метана и углекислого газа в реакционную камеру.

Изобретение относится к загрузке материала в виде частиц катализатора в трубчатый реактор. .

Изобретение относится к способу и устройству (10) для проведения каталитического крекинга в псевдоожиженном слое и включает инжектирование углеводородного сырья в реакторный стояк (20) в различных точках по радиусу стояка, по меньшей мере, два распределителя (12), установленные в различном радиальном положении; при этом каждый из указанных, по меньшей мере, двух распределителей имеет, по меньшей мере, одно отверстие (14); по меньшей мере, одно отверстие в каждом из, по меньшей мере, двух распределителей имеет различное радиальное расположение в реакторном стояке; и, по меньшей мере, одно отверстие, по меньшей мере, двух распределителей расположено в указанном реакторном стояке в различном радиальном положении, и, по меньшей мере, одно отверстие, по меньшей мере, одного из указанных, по меньшей мере, двух распределителей отделено от окружной стенки расстоянием, равным, по меньшей мере, 10% от указанного диаметра и отсчитываемым от самого близко расположенного участка стенки.

Изобретение относится к способам транспортировки твердых частиц из зоны одного давления в зону с другим давлением. .

Изобретение относится к технологии каталитической обработки нефти или нефтепродуктов, в частности к способу их каталитического риформинга в сочетании с крекингом.

Изобретение относится к способу переработки нефтехимического сырья, включающего нафту, содержащую углеводороды от С5 до С9+, в котором осуществляют каталитический крекинг исходного сырья, содержащего тяжелые углеводороды с образованием потока сырья, включающего нафту, посредством контакта потока исходного сырья тяжелых углеводородов с катализатором крекинга углеводородов в реакционной зоне с псевдоожиженным слоем с получением выходящего потока ряда углеводородных продуктов, включающих легкие олефины; ввод сырья, включающего нафту, содержащую углеводороды от С5 до С9+, в разделительную колонну с разделительной перегородкой и разделение указанного сырья на легкую фракцию, включающую соединения, содержащие от пяти до шести атомов углерода, промежуточную фракцию с соединениями, содержащими от семи до восьми атомов углерода, и тяжелую фракцию с соединениями, содержащими более восьми атомов углерода, и крекинг, по меньшей мере, части соединений легкой фракции, содержащих от пяти до шести атомов углерода с образованием выходящего потока крекированных олефинов, включающих олефины С2 и С 3.

Изобретение относится к аппаратам для проведения физико-химических процессов при наличии газа, жидкости и частиц мелкодисперсного катализатора и может быть использовано, в частности, для синтеза гидроксиламинсульфата.

Изобретение относится к способу проведения гетерогенных каталитических экзотермических реакций в адиабатических и неадиабатических условиях. .

Изобретение относится к регенерации мономерных сложных эфиров замещенной или незамещенной акриловой кислоты или стиролсодержащих мономеров, а именно к устройству для регенерации мономерных сложных эфиров замещенной или незамещенной акриловой кислоты или стиролсодержащих мономеров из содержащего соответствующие структурные единицы полимерного материала, включающему обогреваемый реактор для генерирования содержащего мономер газа из полимерного материала и передвигающее устройство для приведения в движение содержащегося в реакторе передвигаемого продукта, которое скомбинировано с реактором или является частью реактора, причем передвигаемый продукт содержит полимерный материал и теплоноситель.

Изобретение относится к области технологического оборудования для осуществления газофазных каталитических процессов, которые сопровождаются выделением тепловой энергии, и может быть использовано в химической, нефтехимической, газоперерабатывающей и других отраслях промышленности.

Изобретение относится к загрузке катализатора в байонетные трубы обменного реактора парового реформинга с помощью потока газа, движущегося в направлении, противоположном падению частиц. Устройство загрузки включает, по меньшей мере, одну жесткую вспомогательную трубу, разделенную на множество секций, располагаемых торцом друг к другу в начале загрузки, внутреннюю трубу, установленную внутри внешней трубы, центральный загрузочный бункер, загружающий частицы на вибрационный или ленточный конвейер, питающий вспомогательную трубу через воронку. Через трубу, расположенную внутри пространства, вводят твердые частицы катализатора. Загрузка осуществляется путем свободного падения, пересекаемого противоточным движением газа, вводимого через внутреннюю трубу для замедления падения частиц. По мере заполнения, трубу поднимают посредством извлечения секций, сохраняя расстояние относительно поверхности слоя. Изобретение обеспечивает плотную и равномерную загрузку катализатора в каждой из байонетных труб обменного реактора. 2 н. и 1 з.п. ф-лы, 1 ил., 1 табл.

Наверх