Способ определения полной и остаточной объемной деформации сосуда (баллона)

Заявленное решение используется для определения полной и остаточной объемной деформации сосудов (баллонов) под действием пробного давления. Техническая задача заключается в уменьшении трудоемкости и в устранении сложных расчетов для определения полной и остаточной объемной деформации. Предлагаемый способ осуществляется следующим образом. Внутри рубашки или снаружи на выносных элементах устанавливается преобразователь линейного перемещения поплавкового типа, который определяет уровень воды в рубашке. При погружении баллона в водяной рубашке устанавливается начальный уровень воды, который принимается за нулевой (Но). Затем в сосуд подается вода до величины пробного давления, уровень воды водяной рубашки увеличивается, а преобразователь линейного перемещения показывает уровень воды в момент полной объемной деформации сосуда (Нп). После необходимой выдержки сосуда и сброса давления преобразователем линейного перемещения фиксируется уровень воды в водяной рубашке, который соответствует остаточной объемной деформации сосуда (Ност).

 

Заявленное техническое решение относится к области измерительной техники и используется для определения полной и остаточной объемной деформации сосудов (баллонов) под действием пробного давления.

Известны два способа определения полной и остаточной объемной деформации сосудов (баллонов) [ГОСТ 51753-2001 п. 7.10 «Испытание баллонов пробным давлением»].

Первый способ заключается в погружении баллона в емкость, заполненную водой (водяную рубашку), и определением объема воды, вытесненного из водяной рубашки при расширении баллона под действием пробного внутреннего давления (полная объемная деформация), а также в определении объема воды, который не возвратился в водяную рубашку после снятия давления (остаточная объемная деформация).

Недостаток аналога - значительная трудоемкость, связанная с временем ожидания на устранение волнения в рубашке, на перетекание воды в мерную емкость и обратно, а также необходимость применения приборов измерения массы или объема высокой точности с большим измерительным диапазоном.

Второй способ, принятый за прототип, заключается в определении объема воды, закаченной в баллон для достижения пробного давления (полная объемная деформация), и объема воды, вытесненного из баллона при снижении давления до атмосферного. Остаточную объемную деформацию определяют по разности объемов воды. При измерениях учитывают сжимаемость воды при температуре окружающей среды.

Недостаток данного метода - это сложность учета сжимаемости воды при температуре окружающей среды (необходимость проведения расчетов), при этом возникает необходимость выдерживания баллона для выравнивания температуры воды, баллона и окружающего воздуха, что ведет к увеличению трудоемкости.

Техническая задача заключается в уменьшении трудоемкости и в устранении сложных расчетов для определения полной и остаточной деформации.

Технический результат достигается тем, что в способе определения полной и остаточной объемной деформации сосуда (баллона) методом погружения баллона в емкость, заполненную водой (водяную рубашку), и определением объема воды, вытесненного из водяной рубашки при расширении баллона под действием пробного внутреннего давления (полная объемная деформация) и объема воды, который не возвратился в водяную рубашку после снятия давления (остаточная объемная деформация), новое в том, что внутри рубашки или снаружи на выносных элементах устанавливается преобразователь линейного перемещения поплавкового типа, который в текущий момент времени определяет уровень воды в рубашке.

Заявляемый способ осуществляется следующим образом.

Внутри рубашки или снаружи на выносных элементах устанавливается преобразователь линейного перемещения поплавкового типа, который в текущий момент времени определяет уровень воды в рубашке. При погружении баллона в водяной рубашке устанавливается начальный уровень воды, который принимается за нулевой (Но). Затем в сосуд (баллон) подается вода до величины пробного давления, уровень воды водяной рубашки увеличивается, а преобразователь линейного перемещения показывает уровень воды в момент полной объемной деформации сосуда (баллона) (Нп). После необходимой выдержки сосуда (баллона) и сброса давления преобразователем линейного перемещения фиксируется уровень воды в водяной рубашке, который соответствует остаточной объемной деформации сосуда (баллона) (Ност). Определение полной и остаточной объемной деформации проводится (Нп-Но)×S и (Ност-Но)×S, где (Нп-Но) приращение уровня воды при полной объемной деформации, (Ност-Но) приращение уровня воды при остаточной объемной деформации, a S площадь зеркала воды, которая равна площади внутреннего сечения водяной рубашки за вычетом площади элементов подачи воды (трубопроводов и переходников).

Таким образом, применение преобразователя линейного перемещения поплавкового типа, установленного внутри или снаружи рубашки на выносных элементах, который в текущий момент времени определяет уровень воды в рубашке, в совокупности с известными существенными признаками заявленного технического решения, позволило упростить учет сжимаемости воды при температуре окружающей среды, а следовательно, уменьшить трудоемкость для определения полной и остаточной объемной деформации.

Способ определения объемной полной и остаточной деформации сосуда (баллона) методом погружения (сосуда) баллона в емкость, заполненную водой (водяную рубашку), и определением объема воды, вытесненного из водяной рубашки при расширении баллона под действием пробного внутреннего давления (полная объемная деформация) и объема воды, который не возвратился в водяную рубашку после снятия давления (остаточная объемная деформация), отличающийся тем, что внутри (снаружи) водяной рубашки установлен преобразователь линейного перемещения поплавкового типа, который в текущий момент времени определяет уровень воды в рубашке.



 

Похожие патенты:

Изобретение относится к технике испытаний изделий внешним гидростатическим давлением и может быть использовано в областях техники, где используются соответствующие изделия, например, подводные аппараты.

Изобретение относится к исследованию деформационных и прочностных свойств грунтов при инженерно-геологических изысканиях в строительстве. Способ включает деформирование образца грунта природного или нарушенного сложения в условиях трехосного осесимметричного гидростатического и последующего девиаторного нагружения, дающих возможность ограниченного бокового расширения образца грунта, близкого к реальным условиям, затем после установления условной стабилизации при статическом режиме достижением скорости деформирования образца, соответствующей условной стабилизации деформации образца на данной ступени деформирования, переходят поочередно на следующие ступени испытания, а по окончании испытаний, по конечным результатам, полученным на каждой из ступеней испытания, строят график зависимости относительной осевой деформации от осевых напряжений и определяют искомые характеристики грунта, причем после стабилизации деформаций гидростатического нагружения выполняют контролируемое девиаторное нагружение, первая часть которого - дозированное кинематическое нагружение с управляемой скоростью деформации и ограничением по приращению осевых напряжений, а вторая часть - стабилизация напряженно-деформированного состояния образца в режиме ползучести - релаксации напряжений по условной стабилизации модуля общей деформации, многократно повторяя нагружения и стабилизацию до достижения предельного напряженного состояния, а далее продолжают (при необходимости) только кинематическое нагружение до величины предельной относительной осевой деформации.

Изобретение относится к области испытаний соединения полимерных труб, полученного посредством сварки с использованием накладной муфты. Сущность: вырезают из муфтового сварного соединения образец, содержащий части соединяемых полимерных труб и перекрывающую их и приваренную к ним часть муфты.

Изобретение относится к устройствам, предназначенным для исследования процесса резания материалов рабочими органами измельчителей, преимущественно сочных кормов (корнеклубнеплоды, бахчевые культуры).

Изобретение относится к технике наземных испытаний элементов летательных аппаратов и может быть использовано в процессе контроля тонкостенных стеклопластиковых оболочек.

Изобретение относится к испытательной технике и может быть использовано для испытаний элементов глубоководной техники при давлениях, соответствующих предельным глубинам Мирового океана – более 100 МПа.

Изобретение относится к испытательной технике и может быть использовано для оценки и исследования прочности керамических оболочек при наземных испытаниях в составе обтекателей.

Изобретение относится к области физики материального контактного взаимодействия, а именно к способам определения удельного сцепления и угла внутреннего трения материальной связной среды, воспринимающей давление свыше гравитационного.Способ 1 определения физических параметров прочности материальной среды плоским жестким штампом заключается в установлении при лабораторном сдвиге образцов, например, грунта и торфа ненарушенной структуры в условиях компрессии угла внутреннего трения и удельного сцепления С=Сстр среды при построении графика Кулона-Мора предельного состояния среды под давлением pi, где τi - напряжение сдвига среды под давлением сжатия pi, определении расчетного удельного веса среды ненарушенной и нарушенной структуры и , ее расчетного угла внутреннего трения с нарушенной структурой , расчетного бытового давления , на глубине h, определении уточненного значения:1) удельного сцепления подтопленной среды , , гравитационного давления , , удельного веса при , рб>0 и отсутствии атмосферного давления;2) удельного сцепления среды при уточненных значениях , , , - при , рб=0 и доступе атмосферного давления ратм=1,033 (кГ/см2);3) удельного сцепления среды , и уточняют значения: удельного веса среды , и уточняют значения удельного веса среды , и гравитационного давления , , рб.<0 и доступе атмосферного давления ратм=1,033 (кГ/см2).Способ 2 определения физических параметров прочности материальной среды сферическим штампом включает нагружение сухой среды усилием Р диаметром D с замером текущей осадки St до момента ее стабилизации во времени t, разгрузку сферы, определение ее контактной осадки So и по результатам испытаний - длительного сцепления Сдл, сферу в среду погружают не менее трех раз через динамометрический упругий элемент на заданную глубину St1<St2<Stk, величину которых поддерживают постоянной во времени t стабилизации соответствующих усилий P1, P2, Pk, после чего сферу разгружают с замером диаметра отпечатка диаметром dk.

Изобретение относится к испытательной технике и может быть использовано для контроля и исследования прочности керамических оболочек типа тел вращения. Сущность: осуществляют приложение статической нагрузки с помощью камеры из эластичного материала, помещенной внутрь испытуемой оболочки и соединенной с источником давления.

Изобретение относится к строительству, механике грунтов, инженерной геологии, горному делу, в частности к лабораторным испытаниям грунтов для определения их физико-механических свойств.

Изобретение относится к контролируемому соединению компонентов, ветроэнергетической установке, имеющей такое соединение, и способу мониторинга соединения компонентов.

Изобретение относится к обнаружению утечек в топливной системе транспортных средств. В способе эксплуатации топливной системы транспортного средства, во время испытания на утечку в топливной системе прерывают испытание при обнаружении случайного временного закрывания клапана, соединенного с топливным баком.

Изобретение относится к диагностике технического состояния систем контроля технологических процессов. Предложен способ проверки работоспособности системы контроля течи трубопровода, который включает воспроизведение системой параметров эталонного имитатора измеряемых системой физических величин, сравнение воспроизведенных параметров с заданными параметрами эталонного имитатора и выработку заключения о работоспособности системы.

Изобретение относится к испытательной технике и может быть использовано для измерения герметичности, т.е. утечек из полых изделий при испытании их на прочность внутренним избыточным давлением, например при испытаниях фюзеляжей летательных аппаратов.

Изобретение относится к испытательной технике и может быть использовано для измерения степени герметичности, т.е. утечек из полых изделий при испытании их на прочность внутренним избыточным давлением, например, фюзеляжей летательных аппаратов.

Изобретение может быть использовано в двигателях внутреннего сгорания. Предложен способ обнаружения блокировки клапана продувки (4) адсорбера паров бензина (3) для двигателя внутреннего сгорания (1), включающий в себя, по меньшей мере, одну последовательность следующих этапов: этап управления открыванием и закрыванием клапана продувки (4); этап измерения, по меньшей мере, одного рабочего параметра двигателя внутреннего сгорания (1), связанного со смесью, поданной в упомянутый двигатель (1); этап вычисления показателя путем статистической обработки, по меньшей мере, в одном измеренном параметре сигнала и сравнения данного показателя с предварительно установленной величиной.

Изобретение может быть использовано в топливных системах двигателей внутреннего сгорания транспортных средств. Транспортное средство содержит топливную систему (31), имеющую топливный бак (32) и бачок (30), диагностический модуль, имеющий контрольное отверстие (56), датчик (54) давления, клапан-распределитель (58), насос (52) и контроллер.

Изобретение относится к области контроля герметичности и может быть использовано для контроля герметичности крупногабаритных объектов. Сущность: устройство контроля герметичности, располагаемое в полости контролируемого объекта (1), содержит два баллона (6, 7), дифманометр (12), соединительные линии (13, 14) и вентили (9-11, 15, 16, 18).

Изобретение относится к области испытания устройств на герметичность и может быть использовано для оценки герметичности корпуса сервопривода. Сущность: устройство (1) оценки герметичности корпуса (3) сервопривода (4) включает: сервопривод (4), имеющий электродвигатель (11), предназначенный для создания движения механической составляющей, устройство (12) определения положения механической составляющей, сменным образом присоединенное к соединителю (15), механическое устройство (13), сменным образом присоединенное к соединителю (16); средство (2) всасывания потока, соединенное с сервоприводом (4) через отверстие в корпусе (3), закрываемое посредством пробки (8); средство (6) предотвращения прохождения потока между средством (2) всасывания газа и корпусом (3) в направлении, обратном направлению всасывания; средство (7) измерения давления внутри корпуса.

Изобретение может быть использовано в системе продувки паров, присоединенной к двигателю внутреннего сгорания в транспортном средстве с электрическим гибридным приводом.

Изобретение относится к аналитическому приборостроению и может найти применение в лабораторных или пилотных установках моделирования процессов крекинга, гидрокрекинга и гидроочистки нефтепродуктов.

Заявленное решение используется для определения полной и остаточной объемной деформации сосудов под действием пробного давления. Техническая задача заключается в уменьшении трудоемкости и в устранении сложных расчетов для определения полной и остаточной объемной деформации. Предлагаемый способ осуществляется следующим образом. Внутри рубашки или снаружи на выносных элементах устанавливается преобразователь линейного перемещения поплавкового типа, который определяет уровень воды в рубашке. При погружении баллона в водяной рубашке устанавливается начальный уровень воды, который принимается за нулевой. Затем в сосуд подается вода до величины пробного давления, уровень воды водяной рубашки увеличивается, а преобразователь линейного перемещения показывает уровень воды в момент полной объемной деформации сосуда. После необходимой выдержки сосуда и сброса давления преобразователем линейного перемещения фиксируется уровень воды в водяной рубашке, который соответствует остаточной объемной деформации сосуда.

Наверх