N-арил-4-(5-нитрофуран-2-ил)-пиримидин-5-амины, проявляющие антибактериальную активность, и способ их получения



N-арил-4-(5-нитрофуран-2-ил)-пиримидин-5-амины, проявляющие антибактериальную активность, и способ их получения
N-арил-4-(5-нитрофуран-2-ил)-пиримидин-5-амины, проявляющие антибактериальную активность, и способ их получения
N-арил-4-(5-нитрофуран-2-ил)-пиримидин-5-амины, проявляющие антибактериальную активность, и способ их получения
N-арил-4-(5-нитрофуран-2-ил)-пиримидин-5-амины, проявляющие антибактериальную активность, и способ их получения
N-арил-4-(5-нитрофуран-2-ил)-пиримидин-5-амины, проявляющие антибактериальную активность, и способ их получения
N-арил-4-(5-нитрофуран-2-ил)-пиримидин-5-амины, проявляющие антибактериальную активность, и способ их получения
N-арил-4-(5-нитрофуран-2-ил)-пиримидин-5-амины, проявляющие антибактериальную активность, и способ их получения
N-арил-4-(5-нитрофуран-2-ил)-пиримидин-5-амины, проявляющие антибактериальную активность, и способ их получения
N-арил-4-(5-нитрофуран-2-ил)-пиримидин-5-амины, проявляющие антибактериальную активность, и способ их получения

Владельцы патента RU 2642428:

Государственное бюджетное учреждение Свердловской области "Уральский научно-исследовательский институт дерматовенерологии и иммунопатологии" (RU)
Федеральное государственное бюджетное учреждение науки Институт органического синтеза им. И.Я. Постовского Уральского отделения Российской академии наук (ИОС УрО РАН) (RU)

Изобретение относится к новым N-арил-4-(5-нитрофуран-2-ил)-пиримидин-5-аминам общей формулы I и способу их получения, заключающемуся в том, что 5-бром-4-(5-нитрофуран-2-ил)пиримидин (6) смешивают с соответствующим ариламином, взятым в 1,5-кратном избытке, ацетатом палладия (II) и 1,1'-бис(дифенилфосфино)ферраценом, взятыми в каталитических количествах, и фосфатом калия, взятым в 2,5-кратном избытке, полученную смесь растворяют в дегазированном 1,4-диоксане и нагревают при 85°С и интенсивном перемешивании в течение не менее 15 часов, с последующим отгоном растворителя на роторном испарителе при пониженном давлении и полученный остаток подвергают хроматографическому разделению на колонке с силикагелем с соотношением компонентов в элюенте этилацетат:гексан, равном 1:3. Технический результат: предложен высокоэффективный способ получения 4-(5-нитрофуран-2-ил)-N-фенилпиримидин-5-амина, который обладает широким спектром антибактериальной активности в отношении кокковых инфекций, вызванных гонококками и/или золотистым стафилококком, а также гнойно-воспалительных инфекционных заболеваний кожи и слизистых оболочек, вызванных стафилококками и стрептококками. 2 н.п. ф-лы, 1 табл., 4 пр.

 

Область техники

Настоящее изобретение относится к области органического синтеза биологически активных соединений и касается N-арил-4-(5-нитрофуран-2-ил)-пиримидин-5-аминов, которые обладают широким спектром антибактериальной активности в отношении кокковых инфекций. Указанные соединения могут быть использованы в качестве антибактериальных агентов, в первую очередь для лечения больных с заболеваниями мочеполовой системы, вызванных гонококками и/или золотистым стафилококком, а также гнойно-воспалительных инфекционных заболеваний кожи и слизистых оболочек, вызванных стафилококками и стрептококками.

Уровень техники:

Сведения о способе синтеза, биологической активности и области применения N-арил-4-(5-нитрофуран-2-ил)-пиримидин-5-аминов общей формулы (I) в научно-технической и патентной литературе отсутствуют.

В литературе описан способ получения наиболее близких по структуре 2,5,6-тризамещенных производных 4-(5-нитрофуран-2-ил)пиримидинов (4), основанный на конденсации гидрохлорида соответствующего 2-замещенного амидина (1) с 1,2-дизамещенным 3-(фуран-2-ил)-3-оксопропионовый альдегидом (2), с последующим нитрованием получающегося 2,5,6-тризамещенного 4-(фуран-2-ил)пиримидина (3) дымящей азотной кислотой в смеси уксусного ангидрида и серной кислоты [Н. Berger, R. Gall, Н. Merdes, K. Stach, W. Voemel, W. Sauer. 4-(5-Nitrofuryl)pyrimidines. // Patent US 3704301 A, 1972].

,

где R1, R2, R3 - H, алкил-, алкокси-, амино- или ациламиногруппа.

Недостатками данного способа являются: 1) малая доступность исходных 2-замещенных амидинов (1) и 1,2-дизамещенных 3-(фуран-2-ил)-3-оксопропионовых альдегидов (2), вследствие чего необходим их предварительный трудоемкий многостадийный синтез; 2) низкий общий выход промежуточных 2,5,6-тризамещенного 4-(фуран-2-ил)пиримидина (3), составляющий в среднем 20-40%; 3) Необходимость проведения трудоемкой реакции нитрования, выход которой в среднем составляет 50-60%, каждый раз на стадии получения конечных 2,5,6-тризамещенных производных 4-(5-нитрофуран-2-ил)пиримидинов (4).

В литературе имеются сведения о наличии у 2,5,6-тризамещенных производных 4-(5-нитрофуран-2-ил)пиримидинов (4) антибактериальной активности в отношении шести штаммов бактерий, а именно: Staphylococcus aureus SG 511, Streptococcus pyogenes Aronson, Streptococcus faecalis, Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa [H. Berger, R. Gall, H. Merdes, K. Stach, W. Voemel, W. Sauer. 4-(5-Nitrofuryl)pyrimidines. // Patent US 3704301 A, 1972].

Таким образом, существующий способ является многостадийным, требует сложного предварительного синтеза исходных соединений и долгого времени протекания реакций.

Еще одним близким по структуре к N-арил-4-(5-нитрофуран-2-ил)-пиримидин-5-аминам (Ia-d) является соединение 5 - 4-(5-нитрофуран-2-ил)-5-фенилпиримидин, в структуре которого отсутствует промежуточная NH-группа между пиримидиновым циклом и фенильным заместителем в положении С(5).

В литературе описан способ получения соединения 5, который основан на использовании промотируемой микроволновым излучением реакции кросс-сочетания по Сузуки 5-бром-4-(5-нитрофуран-2-ил)пиримидин (1.0 ммоль) с фенилборной кислотой (1.2 ммоль) в смеси 1,4-диоксан - вода (4:3) при 80°С в течение 30 минут [E.V. Verbitskiy, S.A. Baskakova, N.A. Gerasimova, N.P. Evstigneeva, N.V. , N.V. Kungurov, M.A. Kravchenko, S.N. Skomyakov, M.G. Pervova, G.L. Rusinov, O.N. Chupakhin, V.N. Charushin. Synthesis and biological evaluation of novel 5-aryl-4-(5-nitrofuran-2-yl)-pyrimidines as potential anti-bacterial agents. // Bioorganic & Medicinal Chemistry Letters, 2017, DOI: 10.1016/j.bmcl.2017.05.013].

В литературе имеются сведения о наличии у 4-(5-нитрофуран-2-ил)-5-фенилпиримидина (5) антибактериальной активности в отношении некоторых штаммов кокковых бактерий, а именно: Neisseria gonorrhoeae NCTC12700/ATCC49226, NCTC 8375/АТСС19424 и клинического азитромицинрезистентного штамма Neisseria gonorrhoeae AzmR, а также Staphylococcus aureus АТСС 25923.

Задача изобретения: синтезировать соединения, обладающие высокой антибактериальной активностью широкого спектра действия в отношении кокковых инфекций из доступного сырья, в мягких условиях, с высоким выходом.

Поставленная задача решается тем, что N-арил-4-(5-нитрофуран-2-ил)-пиримидин-5-амин (Ia-d) получают реакцией 5-бром-4-(5-нитрофуран-2-ил)пиримидина (6) с ариламином (7a-d) в присутствии каталитической системы на основе ацетата палладия (II) и 1,1'-бис(дифенилфосфино)феррацена (dppf)2 и фосфата калия в качестве основания. Все реагенты растворяют в сухом дегазированном 1,4-диоксане, полученную смесь нагревают при 85°С при интенсивном перемешивании в течение 15 часов, растворитель отгоняют при пониженном давлении, полученный остаток подвергают хроматографическому разделению на силикагеле при соотношении в элюенте этилацетат-гексан 1:3. Исходный 5-бром-4-(5-нитрофуран-2-ил)пиримидин (6) получают согласно методике, описанной в литературе [E.V. Verbitskiy, S.A. Baskakova, N.A. Gerasimova, N.P. Evstigneeva, N.V. , N.V. Kungurov, M.A. Kravchenko, S.N. Skornyakov, M.G. Pervova, G.L. Rusinov, O.N. Chupakhin, V.N. Charushin. Synthesis and biological evaluation of novel 5-aryl-4-(5-nitrofuran-2-yl)-pyrimidines as potential anti-bacterial agents. // Bioorganic & Medicinal Chemistry Letters, 2017, DOI: 10.1016/j.bmcl.2017.05.013].

Проведение реакции 5-бром-4-(5-нитрофуран-2-ил)пиримидина (6) с полуторакратным избытком ариламина (7a-d) в сухом 1,4-диоксане осуществляют в температурном интервале 80÷85°С в течение не менее 15 часов, поскольку увеличение температуры ведет к разложению реакционной смеси и резкому уменьшению выхода целевого продукта Ia-d, в свою очередь уменьшение температуры ниже +80°С приводит к значительному увеличению времени протекания реакции. Время реакции не менее 15 часов достаточно для полного протекания реакции присоединения, тогда как его уменьшение также приводит к снижению выхода целевого продукта Ia-d.

Выделение продукта (Ia-d) осуществляют путем хроматографического разделения на силикагеле при соотношении в элюенте этилацетат: гексан=1:3. Увеличение данного соотношения в пользу гексана приведет к необоснованному расходу растворителя, тогда как при увеличении доли этилацетата в элюенте не происходит селективного отделения целевого продукта (I) от побочных примесей.

Анализ промежуточных и целевых соединений проводят с использованием ЯМР-спектроскопии [Спектры ЯМР 1Н и 13С измерены на спектрометре Bruker AVANCEIII-500 (500 и 126 МГц, соответственно) в растворе ДМСО-d6, внутренний стандарт ТМС] и элементного анализа на автоматическом анализаторе Perkin-Elmer РЕ-2400. ГЖХ/МС проведена на спектрометре Agilent GC 7890А MS 5975С Inert XL EI/CI с квадрупольным масс-спектрометрическим детектором и с кварцевой капиллярной колонкой HP-5MS Масс-спектры высокого разрешения записаны на спектрометре Bruker maXis Impact HD.

Пример 1

5-Бром-4-(5-нитрофуран-2-ил)пиримидин (6) 270 мг (1.0 ммоль) смешивают с анилином (7а) 137 мкл (1.5 ммоль), ацетатом палладия (II) 22 мг (0.1 ммоль), 1,1'-бис(дифенилфосфино)ферраценом 111 мг (0.2 ммоль) и фосфатом калия 531 мг (2.5 ммоль). Полученную смесь растворяют в 20 мл дегазированного 1,4-диоксана и нагревают при 85°С при интенсивном перемешивании в течение 15 часов. После этого растворитель отгоняют на роторном испарителе при пониженном давлении, полученный остаток подвергают хроматографическому разделению на колонке с силикагелем (элюент: этилацетат-гексан 1:3). В результате получают 4-(5-нитрофуран-2-ил)-N-фенилпиримидин-5-амин (Iа) в виде красного порошка. Выход 189 мг (67%).

Т. пл. 123-124°С.

Спектр ЯМР 1Н (500 МГц, DMSO-d6) δ (м.д.): 8.89 (с, 1Н), 8.82 (с, 1Н), 8.30 (с, 1H), 7.84 (д, J=4.0 Гц, 1Н), 7.47 (д, J=4.0 Гц, 1Н), 7.28 (м, 2Н), 7.05 (д, J=7.6 Гц, 2Н), 6.95 (м, 1Н).

Спектр ЯМР 13С (126 МГц, DMSO-d6) δ (м.д.): 151.8, 151.6, 151.1, 150.5, 141.8, 141.5, 135.00, 129.4, 121.7, 117.9, 116.2, 114.2.

Элементный анализ для C14H10N4O3 (282.26):

Вычислено (%): С, 59.57; Н, 3.57; N, 19.85.

Найдено (%): С, 59.69; Н, 3.50; N, 19.67.

ГЖХ: tR=26.40 мин. Масс-спектр: (ЭУ, 70 эВ), m/z (Iотн, %): 282 [М]+ (100).

Масс-спектр высокого разрешения: Найдено, m/z: 283.0826 [М+Н]+. C14H11N4O3.

Вычислено, m/z: 283.0822.

Пример 2

5-Бром-4-(5-нитрофуран-2-ил)пиримидин (6) 270 мг (1.0 ммоль) смешивают с пара-анилином (7b) 165 мкл (1.5 ммоль), ацетатом палладия (II) 22 мг (0.1 ммоль), 1,1'-бис(дифенилфосфино)ферраценом 111 мг (0.2 ммоль) и фосфатом калия 531 мг (2.5 ммоль). Полученную смесь растворяют в 20 мл дегазированного 1,4-диоксана и нагревают при 85°С при интенсивном перемешивании в течение 15 часов. После этого растворитель отгоняют на роторном испарителе при пониженном давлении, полученный остаток подвергают хроматографическому разделению на колонке с силикагелем (элюент: этилацетат-гексан, 1:3). В результате получают 4-(5-нитрофуран-2-ил)-N-(пара-толил)пиримидин-5-амин (Ib) в виде оранжевого порошка. Выход 198 мг (67%).

Т. пл. 174-176°С.

Спектр ЯМР 1Н (500 МГц, CDCl3) δ (м.д.): 8.73 (с, 1Н), 8.68 (с, 1H), 7.52 (д, J=3.9 Гц, 1Н), 7.50 (д, J=3.9 Гц, 1Н), 7.36 (с, 1Н), 7.23 (д, J=8.2 Гц, 2Н), 7.17 (д, J=8.2 Гц, 2Н), 2.38 (с, 3Н).

Спектр ЯМР 13С (126 МГц, CDCl3) δ (м.д.): 154.9, 151.6, 148.6, 145.9, 135.9, 135.5, 135.3, 130.6, 122.9, 113.7, 113.2, 20.9.

Элементный анализ для C15H12N4O3 (296.28):

Вычислено (%): С, 60.81; Н, 4.08; N, 18.91.

Найдено (%): С, 60.70; Н, 4.19; N, 18.77.

ГЖХ: tR=27.23 мин. Масс-спектр: (ЭУ, 70 эВ), m/z (Iотн, %): 296 [М]+ (100).

Масс-спектр высокого разрешения: Найдено, m/z: 297.0980 [М+Н]+. C15H13N4O3.

Вычислено, m/z: 297.0982.

Пример 3

5-Бром-4-(5-нитрофуран-2-ил)пиримидин (6) 270 мг (1.0 ммоль) смешивают с пара-анизидином (7с) 185 мг (1.5 ммоль), ацетатом палладия (II) 22 мг (0.1 ммоль), 1,1'-бис(дифенилфосфино)ферраценом 111 мг (0.2 ммоль) и фосфатом калия 531 мг (2.5 ммоль). Полученную смесь растворяют в 20 мл дегазированного 1,4-диоксана и нагревают при 85°С при интенсивном перемешивании в течение 15 часов. После этого растворитель отгоняют на роторном испарителе при пониженном давлении, полученный остаток подвергают хроматографическому разделению на колонке с силикагелем (элюент: этилацетат - гексан, 1:3). В результате получают N-(4-метоксифенил)-4-(5-нитрофуран-2-ил)-пиримидин-5-амин (Iс) в виде темно-красного порошка. Выход 72 мг (23%).

Т. пл. 182-183°С.

Спектр ЯМР 1Н (500 МГц, CDCl3) δ (м.д.):

8.67 (с, 1Н), 8.50 (с, 1H), 7.57 (д, J=3.9 Гц, 1Н), 7.55 (д, J=3.9 Гц, 1Н), 7.44 (с, 1Н), 7.22 (д, J=8.8 Гц, 2Н), 7.00 (д, J=8.8 Гц, 2Н), 3.86 (с, 3Н).

Элементный анализ для C15H12N4O4 (312.29):

Вычислено (%): С, 57.69; Н, 3.87; N, 17.94.

Найдено (%): С, 57.80; Н, 3.95; N, 17.88.

ГЖХ: tR=28.41 мин. Масс-спектр: (ЭУ, 70 эВ), m/z (Iотн, %): 312 [М]+ (100).

Масс-спектр высокого разрешения: Найдено, m/z: 313.0933 [М+Н]+. C15H13N4O4.

Вычислено, m/z: 313.0931.

Пример 4

5-Бром-4-(5-нитрофуран-2-ил)пиримидин (6) 270 мг (1.0 ммоль) смешивают с 3,5,7-триметоксианилином (7d) 275 мг (1.5 ммоль), ацетатом палладия (II) 22 мг (0.1 ммоль), 1,1''-бис(дифенилфосфино)ферраценом 111 мг (0.2 ммоль) и фосфатом калия 531 мг (2.5 ммоль). Полученную смесь растворяют в 20 мл дегазированного 1,4-диоксана и нагревают при 85°С при интенсивном перемешивании в течение 15 часов. После этого растворитель отгоняют на роторном испарителе при пониженном давлении, полученный остаток подвергают хроматографическому разделению на колонке с силикагелем (элюент: этилацетат-гексан, 1:3). В результате получают 4-(5-нитрофуран-2-ил)-N-(3,4,5-триметоксифенил)-пиримидин-5-амин (Id) в виде красного порошка. Выход 220 мг (59%).

Т. пл. 180-182°С.

Спектр ЯМР 1Н (500 МГц, CDCl3) δ (м.д.): 8.72 (с, 1Н), 8.68 (с, 1Н), 7.57 (д, J=3.9 Гц, 1H), 7.55 (д, J=3.9 Гц, 1H), 7.41 (с, 1Н), 6.50 (с, 2Н), 3.88 (с, 3Н), 3.87 (с, 6Н).

Элементный анализ для C17H16N4O6 (372.33):

Вычислено (%): С, 54.84; Н, 4.33; N, 15.05.

Найдено (%): С, 54.90; Н, 4.44; N, 15.00.

ГЖХ: tR=30.93 мин. Масс-спектр: (ЭУ, 70 эВ), m/z (Iотн, %): 372 [М]+ (100).

Масс-спектр высокого разрешения: Найдено, m/z: 373.1140 [М+Н]+. C17H17N4O6.

Вычислено, m/z: 373.1143.

Сведения, подтверждающие возможность осуществления изобретения

Список условных сокращений

АТСС - American Type Culture Collection (Американская коллекция типовых культур)

NCTC - National Collection of Type Cultures (Culture Collection of Public Health England)

ГКПМ - Государственная коллекция патогенных микроорганизмов, Россия

SPEC - Спектиномицин (Spectinomycin), антибиотик класса аминоциклитолов. Механизм действия - ингибирует синтез белка в бактериальной клетке, путем связывания с 30S субъединицей рибосомы. Может нарушать функции и структуру цитоплазматических мембран

МИК - минимальная ингибирующая концентрация, мкг/мл

Neisseria gonorrhoeae SpeS, AzmR - клинический штамм, чувствительный к Спектиномицину и резистентный к Азитромицину (МИК AZM 1,0 мкг/мл)

Neisseria gonorrhoeae SpeS, AzmS - клинический штамм, чувствительный к Спектиномицину и Азитромицину

Контрольные штаммы

Neisseria gonorrhoeae NCTC 12700/АТСС 49226; Neisseria gonorrhoeae NCTC 8375/ATCC 19424, чувствительные к применяемым в лечении гонококковой инфекции антимикробным препаратам.

Staphylococcus aureus MRSA NCTC 12493 - штамм золотистого стафилококка резистентный к Метициллину - бета-лактамному антибиотику, пенициллинового ряда.

Изучение антибактериальной активности in vitro заявляемых соединений Ia-d.

Оценку чувствительности микроорганизмов к антимикробным препаратам проводят методом последовательных микроразведений - референсным методом, регламентированным международным стандартом ISO 20776-1:2006. В Российской Федерации действует Национальный Стандарт ГОСТ Р ИСО 20776-1-2010, идентичный международному стандарту. Критерии интерпретации результатов: новые химические соединения рассматриваются перспективными для дальнейшего изучения, если значения МИК in vitro для контрольных штаммов не превышают 10-20 мкг/мл [Руководство по проведению доклинических исследований лекарственных средств. Часть первая / Под ред. А.Н. Миронова. - М.: Гриф и К, 2012. - 944 с. Порядок исследования при определении спектра антимикробного действия и активности нового соединения in vitro. С. 511-513].

Антибактериальную активность химических соединений в отношении облигатного патогена N. gonorrhoeae определяют методом двукратных серийных разведений в агаре (золотой стандарт). В качестве ростовой среды используют питательную среду - гонококковый агар с ростовой добавкой (например «Комплегон», Россия). Разведения химических соединений в агаре проводят в 24 луночных планшетах, рабочий объем лунки 2 мл. Для каждого химического соединения готовят не менее 12 точек с разведениями: 250 мкг/мл - 0,06 мкг/мл. Растворитель - ДМСО, разбавители дистиллированная стерильная вода (для инъекций), ростовая среда на агаровой основе. Посевная доза (конечная концентрация) инокулюма из суточной культуры N. gonorrhoeae - 105 КОЕ/мл. Инкубируют планшеты при условиях Т=37°С, [СО2=5%]. Оценку результатов проводят визуально через 18-24 часа [CLSI, 2014].

Антибактериальную активность химических соединений в отношении клиническизначимых патогенных и условно-патогенных микроорганизмов проводят методом последовательных микроразведений в бульоне Мюллера-Хинтон (Mueller Hinton Broth (например HiMedia, Индия). Разведения химических соединений проводят в стерильных 96-луночных планшетах. Растворитель - ДМСО, разбавители дистиллированная стерильная вода (для инъекций), ростовая среда бульон Мюллера-Хинтон. Готовят инокулюмы контрольных штаммов, в соответствии со стандартом 0,5 ЕД по МакФарланду (что соответствует 1,5×108 КОЕ/мл), затем разбавляют в 100 раз до концентрации 106 КОЕ/мл. В каждую лунку горизонтального ряда (в т.ч. и в контрольную) вносят по 50 мкл инокулюма соответствующего штамма. Инкубация планшета в термостате при 37°С 18-24 часа. Учет результатов проводят визуально. Последняя лунка с задержкой роста (прозрачный бульон) соответствует минимальной ингибирующей (бактериостатической) концентрации (МИК) в отношении данного штамма.

В качестве соединения сравнения используют лекарственный препарат Спектиномицин (Sigma-Aldrich, USA) формулы (SPEC):

Спектиномицин используют в медицинской практике для лечения острого гонококкового уретрита, простатита и проктита у мужчин, острого гонококкового цервицита и проктита у женщин, вызванных чувствительными штаммами Neisseria gonorrhoeae, при непереносимости или неэффективности бета-лактамных антибиотиков.

Для изучения антибактериальной активности соединений Ia-d проведено определение минимальных ингибирующих концентраций по отношению к контрольным штаммам Neisseria gonorrhoeae NCTC12700/ATCC49226, NCTC 8375/АТСС19424, клиническим штаммам Neisseria gonorrhoeae SpeS, AzmR и Neisseria gonorrhoeae SpeS, AzmS.

Кроме того, определены минимальные ингибирующие концентрации заявляемых соединений Ia-d в отношении контрольных штаммов патогенных и условно-патогенных микроорганизмов из международных коллекций АТСС и российской ГКПМ:

Грамотрицательные палочки (энтеробактерии):

Escherichia coli АТСС 8739

Citrobacter braakii АТСС 101/57

Shigella flexneri 1а8516

Proteus vulgaris ГКПМ 160125 (222)

Serratia marcescens АТСС 13880

Klebsiella pneumoniae ATCC 13883

Неферментатирующие грамотрицательные палочки:

Pseudomonas aeruginosa АТСС 9027

Грамположительные кокки:

Streptococcus piogenes АТСС 19615

Staphylococcus aureus АТСС 25923/NCTC 12981(F-49)

Staphylococcus aureus MRSA NCTC 12493

Н.о. - значение не определено.

Таким образом, нами впервые получены N-арил-4-(5-нитрофуран-2-ил)-пиримидин-5-амины, которые проявили широкий спектр антибактериальной активности в отношении кокковых инфекций, и предложен новый эффективный способ их получения. Преимуществами данного способа синтеза являются:

1. Доступность и дешевизна исходных реагентов.

2. Мягкие условия проведения реакций.

3. Высокий выход целевых продуктов (59-67%, за исключением продукта Iс, для которого выход не превысил 23%), в отличие от многостадийных (не менее 3-х стадий), описанных в литературе способов получения аналогичных продуктов с суммарным выходом не более 50%.

Полученные соединения, в сравнении с аналогичной активностью Спектиномицина, показали активность в отношении контрольных штаммов бактерий Neisseria gonorrhoeae NCTC12700/ATCC49226 и NCTC 8375/АТСС19424, превышающую в 8,4-35 раз; для клинических штаммов N. gonorrhoeae SpeS AzmR и N. gonorrhoeae SpeS AzmS - в 2 раза. В отношении же Staphylococcus aureus АТСС 25923/NCTC 12981(F-49) и Staphylococcus aureus MRSA NCTC 12493 заявляемые соединения с общей формулой I оказались более активнымы, чем препарат сравнения Спектиномицин в 2 - более 131 раз.

Кроме того, соединения общей формулой I проявили более широкий спектр антибактериальной активности в сравнении с ближайшим по структуре соединением 5, в частности, в отношении штаммов Escherichia coli АТСС 8739, Klebsiella pneumoniae АТСС 13883/NCTC9633, Citrobacter braakii АТСС 101/57, Shigella flexneri 1а8516, Staphylococcus aureus АТСС 25923/NCTC 12981(F-49) и Staphylococcus aureus MRSA ATCC/NCTC12493 в ряде случаев активность была выше от 2 до 8 раз. В отношении штаммов бактерий Neisseria gonorrhoeae NCTC12700/ATCC49226, Neisseria gonorrhoeae NCTC 8375/АТСС 19424 и клинического штамма N. gonorrhoeae SpeS AzmR соединения общей формулой I также оказались активнее ближайшего по структуре соединения 5 в 2-4 раза.

Заявляемые соединения по своим характеристикам превосходят свои структурные аналоги по действию и могут быть использованы в практической медицине для лечения больных с заболеваниями мочеполовой системы, вызванными гонококками и/или золотистым стафилококком, а также гнойно-воспалительных инфекционных заболеваний кожи и слизистых оболочек, вызванных стафилококками и стрептококками.

1. N-арил-4-(5-нитрофуран-2-ил)-пиримидин-5-амин общей формулы I (Ia-Id)

,

обладающий антибактериальной активностью.

2. Способ получения N-арил-4-(5-нитрофуран-2-ил)-пиримидин-5-аминов формулы (I), заключающийся в том, что 5-бром-4-(5-нитрофуран-2-ил)пиримидин (6) смешивают с соответствующим ариламином, взятым в 1,5-кратном избытке, ацетатом палладия (II) и 1,1'-бис(дифенилфосфино)ферраценом, взятыми в каталитических количествах, и фосфатом калия, взятым в 2,5-кратном избытке, затем полученную смесь растворяют в дегазированном 1,4-диоксане и нагревают при 85°С и интенсивном перемешивании в течение не менее 15 часов, затем растворитель отгоняют на роторном испарителе при пониженном давлении, полученный остаток подвергают хроматографическому разделению на колонке с силикагелем с соотношением компонентов в элюенте этилацетат:гексан, равном 1:3.



 

Похожие патенты:

Изобретение относится к производному фторхинолонкарбоновой кислоты, а именно 1-этил-6-фтор-4-оксо-7-(8-этокси-2-оксо-2Н-хромен-3-ил)-1,4-дигидрохинолин-3-карбоновой кислоте формулы (4), обладающей высокой противотуберкулезной активностью, в том числе по отношению к штаммам микобактерий с множественной лекарственной устойчивостью.

Изобретение относится к области органической химии, а именно к соединению формулы (I) или к его фармацевтически приемлемой соли, где X представляет собой O или S; R1 представляет собой гидрокси, галоген, (C1-C6)алкил, галоген(C1-C6)алкил, (C2-C6)алкенил, (C2-C6)алкинил, цикло(C3-C6)алкил, (C1-C6)алкокси, галоген(C1-C6)алкокси, гидрокси(C1-C6)алкил, циано, (R6)2N-(C=O)-, (C1-C6)алкил-S-, или фуранил; R2 представляет собой H или (C1-C6)алкил; R3 представляет собой H, (C1-C6)алкил, галоген(C1-C6)алкил или (C1-C6)алкокси(C1-C6)алкил; R4 представляет собой H или (C1-C2)алкил; R5 представляет собой H, гидрокси, галоген, (C1-C6)алкил или (C1-C6)алкокси; R6 представляет собой H; или R1 и R2 образуют вместе с атомами углерода кольца, к которым они присоединены, конденсированное 6- или 7-членное насыщенное или ненасыщенное карбоциклическое кольцо.

Изобретение относится к соединению формулы (I) или его фармацевтически приемлемым солям: , в которой J представляет собой группу формулы IIa, R1a представляет собой C1-С3алкил; Y1a представляет собой N или CRxa, где Rxa представляет собой Н, Х2а выбран из группы, состоящей из: Н, С1-С4алкила; Х1а выбран из группы, состоящей из: водорода, галогена, C1-С6алкила, С1-С4галогеналкила, -O-С1-С4алкила, -O-C1-С3алкилен-С3-С7циклоалкила, -O-С1-С4галогеналкила, -О-С1-С3алкилен(5-членного гетероциклоалкила с 1 гетероатомом, выбранным из О), -O-C1-С6алкилен-N(R10)2, -O-C1-С3алкилен-С(О)ОС1-С4алкила, -С2-С4алкенилен-С(О)-O-С1-С4алкила, -С(О)-С1-С4алкила, C(O)O-C1-С4алкила, C(O)NR10R12, -NR10-С1-С3алкилен-С(О)-С1-С4алкила, -SO2NR10R12 и любой из групп: ii) 6-членный гетероциклоалкенил, который может быть замещен 1 R2; iii) 5-6-членный гетероциклоалкил с 1-2 гетероатомами, выбранными из N, который может быть замещен 1-2 R3; iv) 5-6-членный гетероарил с 1-3 гетероатомами, независимо выбранными из N, О, 9-10-членный бициклический гетероарил с 1-3 гетероатомами, независимо выбранными из N, S, которые могут быть замещены 1-2 R4; v) фенил, который может быть замещен 1-2 R6; X3 представляет собой L-G, где L отсутствует или выбран из группы, состоящей из: -O-, -O-C1-С3алкилена; и G выбран из группы, состоящей из: фенила, 6-членного гетероарила с 1 гетероатомом, выбранным из N, 9-членного бициклического гетероарила с 2 гетероатомами, выбранными из N, С3-С7циклоалкила, 6-членного гетероциклоалкила с 1 гетероатомом, выбранным из N, О, где G может быть замещен 1-2 группами, А2 представляет собой CR18, и А1, А3 и А4 представляют собой CR19, значения остальных заместителей указаны в формуле изобретения.

Изобретение относится к гетероциклическому производному или его фармацевтически приемлемой соли, общей формулы [1], где кольцо А представляет собой группу, представленную общими формулами [2], [3] или [4], где X1 представляет собой NH, N-C1-6алкил или О; А1 представляет собой водород; А2 представляет собой i) водород; ii) галоген; iii) C1-6алкил, необязательно замещенный от одной до трех групп, выбранных из группы, состоящей из галогена, амино, моно(C1-6алкил)амино, ди(C1-6алкил)амино, карбамоила, моно(C1-6алкил)аминокарбонила, ди(C1-6алкил)аминокарбонила, насыщенного циклического аминокарбонила, где "насыщенная циклическая аминогруппа" части "насыщенного циклического аминокарбонила" представляет собой 1-пирролидинил, C1-6алкокси и C1-6алкокси-C1-6алкокси; iv) С3-6циклоалкил, необязательно замещенный C1-6алкилом, необязательно замещенным от одного до трех галогенами; vi) 4-5 членную насыщенную гетероциклическую группу, содержащую один атом азота или кислорода в цикле, необязательно замещенную C1-6алкилом, (C1-6алкилокси)карбонилом, (C1-6алкил)карбонилом или оксо; vii) C1-6алкилтио; viii) C1-6алкилсульфонил; ix) C1-6алкилсульфинил; x) группу –NR3R4, где R3 и R4 представляют собой одинаковые или различные группы, выбранные из а) водорода, b) необязательно замещенного C1-6алкила, или c) С3-6циклоалкила; или xi) насыщенного циклического амино, где "насыщенный циклический амино" представляет собой пиперидино, 1-пиперазинил или 4-морфолино, необязательно замещенного C1-6алкилом, амино, моно(C1-6алкил)амино, ди(C1-6алкил)амино, C1-6алкокси или гидроксилом; R1 представляет собой фенил, бензил, нафтил, С3-6циклоалкил, С3-6циклоалкилметил, гетероарил, где гетероарил представляет собой бензотиадиазолил, бензотиазолил, индолил, 1,1-диоксобензотиофенил, хинолил или 1,3-бензоксазол-2-ил, 1,2,3,4-тетрагидронафталин-5-ил, 1,2,3,4-тетрагидронафталин-6-ил, 2,3-дигидро-1Н-инден-4-ил, 2,3-дигидро-1Н-инден-5-ил или C1-6алкил, где указанный фенил, бензил, циклоалкил, циклоалкилметил и гетероарил необязательно замещены; R2 представляет собой фенил или пиридил, где указанный фенил и пиридил необязательно замещены.

Изобретение относится к соединению формулы I в любой из его стереоизомерных форм или его физиологически приемлемой соли, где А выбирают из группы, включающей C(R1) и N; D выбирают из группы, включающей C(R2) и N; Е выбирают из группы, включающей C(R3) и N; L выбирают из группы, включающей C(R4); где по крайней мере один и не более двух из A, D, Е или L является N; G выбирают из группы, включающей R71-O-C(О)-; R1 выбирают из группы, включающей водород, галоген; R2 выбирают из группы, включающей водород, галоген, (С1-С7)-алкил, Het2 и Ar-CsH2s-, где s равно 0; R3 выбирают из группы, включающей водород, Het2, R11-O-; R4 и R10 выбирают из группы, включающей водород, галоген; при условии, что один из R2, R3 является циклическим заместителем; R11 выбирают из группы, включающей водород, R14; R12 и R13 представляют собой водород; R14 является (C1-С10)-алкилом, необязательно замещенным одним заместителем, который представляет собой оксо группу; R30 выбирают из группы, включающей R31, R32-CuH2u-, где u равно 0; R31 является (C1-С10)-алкилом; R32 представляет собой фенил, где фенил необязательно замещен одним или более одинаковыми или разными заместителями, выбранными из группы, включающей галоген, (C1-С6)-алкил, (C1-С6)-алкил-О-, CF3-; R40, R50, R60 и R71 представляют собой водород; Ar, независимо от других групп Ar, выбирают из группы, включающей фенил и ароматический 5-членный или 6-членный моноциклический гетероцикл, который включает один, два или три одинаковых или разных гетероатомов кольца, выбранных из группы, включающей азот, кислород и серу, и связан через атом углерода кольца, где фенил и гетероцикл необязательно замещены одним или более одинаковыми или разными заместителями, выбранными из группы, включающей галоген, (C1-С6)-алкил, НО-(C1-С6)-алкил, Het4, (C1-С6)-алкил-О-, -CF3, -СО-(C1-С6)-алкил, -CO-NR12R13 и NC-; и где фенил может быть замещен -СН=СН-СН=СН-, -О-СН2-О-, -O-СН2-СН2-О-, -O-CF2-O- или -N((C1-С3)-алкил)-СН=СН-; Het2 является насыщенным 5-членным - 6-членным моноциклическим гетероциклом, который включает атом азота в кольце, через который Het2 присоединена, и необязательно один другой гетероатом кольца, выбранный из группы, включающей азот и кислород; Het4, независимо от других групп Het4, является насыщенным или ненасыщенным 4-членным - 5-членным моноциклическим гетероциклом, который включает от одного до трех гетероатомов кольца, выбранных из группы, включающей азот и кислород, который необязательно замещен одним или более одинаковыми или разными заместителями, выбранными из группы, включающей (С1-С4)-алкил, НО-, (С1-С4)-алкил-O-.

Изобретение описывает производные карбазола формулы (1), где Υ представляет собой в каждом случае, одинаково или различно, CR; X является выбранным из C(R1)2; которые характеризуются тем, что присутствует, по крайней мере, одна группа R, которая означает, одинаково или различно в каждом случае, группу следующей формулы (2), и/или тем, что присутствует, по крайней мере, одна группа R1, которая означает следующую группу формулы (3), в частности, для применения в качестве триплетных материалов матрицы в органических электролюминесцентных устройствах.

Изобретение относится к новым 2,6-дигалоген-5-алкокси-4-замещенные-пиримидинам формулы (I) и 2,6-дигалоген-5-алкокси-4-пиримидинкарбальдегидам формулы (II), которые могут быть использованы в качестве промежуточных соединений для получения гербицидов с широким спектром активности в борьбе с сорняками.

Изобретение относится к 5-арилзамещенным 4-(5-нитрофуран-2-ил)пиримидинам (Ia-d), а также к способу их получения с использованием промежуточного соединения (II). Полученные соединения (Ia-d и II) могут быть использованы для лечения больных с заболеваниями мочеполовой системы, вызванными золотистым стафилококком или гонококками.

Изобретение относится к амиду 5-(тетрагидрофуран-2-ил)-1,2,4-триазол-3-карбоновой кислоты, обладающему избирательной противовирусной активностью в отношении вируса гриппа А и вируса герпеса простого первого типа, имеющего структурную формулу .Изобретение также относится к способу получения амида.

Изобретение относится к соединениям формулы (I), его N-оксиду или его соли: причемА означает остаток, выбранный из группы, состоящей из А1, А2, А13 и А14: и R1 означает водород или алкил с 1-4 атомами углерода, R2 означает хлор, R3 означает водород, R4 означает водород, R5 означает водород, галоген, ОН, NH2, CN, алкил с 1-3 атомами углерода, алкокси с 1-3 атомами углерода, алкиламино с 1-3 атомами углерода или циклопропил, R6 означает водород, галоген, ОН, NH2, CN, алкил с 1-3 атомами углерода, алкокси с 1-3 атомами углерода, циклопропил или винил, R7 означает водород, галоген, алкил с 1-3 атомами углерода, алкокси с 1-3 атомами углерода, алкилтио с 1-3 атомами углерода, циклопропил, алкиламино с 1-3 атомами углерода или фенил, R8 означает водород, алкил с 1-3 атомами углерода, фенил или алкилкарбонил с 1-3 атомами углерода, X означает N, СН, CCl, CF или CBr, n означает 0, 1 или 2, применяемым в качестве гербицидов.

Изобретение относится к области органической химии, а именно к получению нового ранее не описанного 4-амино-3-метоксиметил-5-фенил-1Н-пиразола. 4-Амино-3-метоксиметил-5-фенил-1Н-пиразол, имеющий приведенную ниже формулу, получают в результате циклоароматизации изонитрозодикетона и восстановления нового, ранее не описанного промежуточного продукта - 4-нитрозо-3-метоксиметил-5-фенил-1Н-пиразола.

Группа изобретений относится к медицине и может быть использована для лечения бактериальной инфекции у животного. Для этого вводят инъецируемую ветеринарную композицию, содержащую хинолон и цефалоспорин или их фармацевтически приемлемые соли с пропиленгликоля дикаприлокапратом и/или глицерилкаприлокапратом в масляной суспензии.

Изобретение относится к новому полусинтетическому производному гликопептидного антибиотика эремомицина, представляющему собой тетраметиленимид эремомицина формулы 2 и его фармацевтически приемлемым солям.
Изобретение относится к медицине, в частности к травматологии и ортопедии, и может быть использовано для комплексной эмпирической антибактериальной терапии имплантат-ассоциированных ортопедических инфекций.
Изобретение относится к медицине, а именно к лекарственным средствам, используемым в оториноларингологии. Описана антимикробная композиция для использования в оториноларингологии, содержащая гидроксиметилхиноксалиндиоксид, поливинилпирролидон и дексаметазон при следующем соотношении компонентов, мас.%: поливинилпирролидон 45,0-55,0, гидроксиметилхиноксалиндиоксид раствор 10 мг/мл 30,0-33,0, дексаметазон раствор 4 мг/мл 12,0-25,0.

Изобретение относится к фармацевтической промышленности, а именно к комбинации для лечения инфекций, вызванных грамотрицательными бактериями, положительными в отношении NDM-1, продуцирующими карбапенемазу.

Изобретение относится к фармацевтической промышленности, а именно к биологически активной субстанции для подавления активности роста штаммов Staphylococcus aureus АТСС 25923, Escherichia coli АТСС 25922, Proteus vulgaris ATCC 4636, Pseudomonas aeruginosa ATCC 27853, Bacillus subtilis ATCC 6633 и Candida albicans ATCC 653/885.

Настоящее изобретение относится к новому трициклическому бензоксабороловому соединению, представленному химической формулой 1, его изомеру или их фармацевтически приемлемой соли.

Изобретение относится к области органической и медицинской химии, а именно, к новым производным 1H-пиразоло[3,4-d]пиримидина общей формулы I, где: R=СН3, R1=C(O)NH2 (Ia); R=СН3, R1=C(NH)NH2 (Iб); R= нафтилметил, Rl=C(O)NH2 (Iв); R= нафтилметил, R1=C(NH)NH2 (Iг).

Группа изобретений относится к области медицины и биотехнологии и предназначена для химиотерапии инфицированных ран. Антибактериальная белковая губка для химиотерапии инфицированных ран содержит белковую основу, включающую альбумин сыворотки крови, или общий белок сыворотки крови, или общий белок плазмы крови, и лекарственный агент или агенты, обладающие антибиотической активностью в отношении патогенных микроорганизмов-возбудителей гнойных воспалений.

Настоящее изобретение относится к новому соединению формулы (I) или его фармацевтически приемлемой соли, или его дейтерированному производному. Соединения обладают свойствами ингибитора нерепторной тирозинкиназы Tyk2 и селективным ингибирующим действием в отношении Янус киназ JAK1, JAK2, JAK3.
Наверх