Автоматизированная система контроля параметров кабельно-жгутовых сетей автономных объектов

Изобретение относится к контрольно-измерительной технике. Сущность заявленного технического решения заключается в том, что в системе содержится блок общего управления, блок сетевого информационного обмена, магистраль информационного обмена, распределенная сеть локальных контрольно-измерительных коммутаторов, причем выход - вход блока общего управления соединен с входом - выходом блока сетевого обмена, выход - вход которого соединен посредством магистрали информационного обмена с входами - выходами локальных контрольно-измерительных коммутаторов, отличающаяся тем, что в систему введены n локальных контрольно-измерительных коммутаторов, информационно и аппаратно объединенных в единую информационную сеть, каждый из которых содержит блок информационного обмена, блок управления и вычисления, блок управления коммутаторами, блок задатчика допустимых пределов параметров, блок контроля, измерения и сравнения, коммутатор режимов контроля, шину контроля и измерения, коммутатор точек входа - выхода, обеспечивающий коммутацию точек входа - выхода на шину контроля и измерения или на корпус автономного объекта, блок входных - выходных разъемов. Технический результат, достигаемый при реализации заявленного решения, заключается в расширение функциональных возможностей и реализации методики допускового контроля изменением схемы коммутации прототипа. 1 ил.

 

Изобретение относится к контрольно-измерительной технике и может быть использовано в составе информационно-вычислительных комплексов для автоматического допускового контроля и диагностики контроля параметров и технического состояния электрических цепей кабельно-жгутовых сетей, включающих в качестве второго проводника корпус изделия.

Известно устройство контроля изоляции электрических цепей (патент РФ №2299444, МПК G01R 31/02, опубл. 20.05.2007), содержащее источник постоянного оперативного тока, фильтр присоединения указанного источника между фазами сети и землей, блок контроля величины оперативного тока на транзисторе, вход которого включен последовательно и согласно с источником оперативного тока и зашунтирован встречно включенным полупроводниковым прибором, источник пульсирующего эталонного тока, источник питания, исполнительный релейный элемент, фильтр переменной составляющей тока, к выходу которого через диод присоединен указанный исполнительный релейный элемент, причем в указанный блок контроля величины оперативного тока включены второй, третий и четвертый транзисторы, отличающийся от остальных типом проводимости.

Недостатком известного устройства контроля изоляции электрических цепей является отсутствие возможности контроля сопротивления изоляции и других параметров электрических цепей объектов контроля в автоматическом режиме, имеющих тысячи контролируемых точек.

Наиболее близкой к нашему техническому решению является автоматизированная система контроля электромонтажа и сопротивления изоляции жгутов (авт. св. №1704109, МПК G01R 31/02, опубл. 07.01.92 г. Бюл. №1), содержащая блок общего управления, блоки ввода и вывода, блок контрольно-измерительного сигнала, блок измерения сопротивления изоляции, шунтирующее реле, коммутатор многоуровневого управления и коммутации, причем первый вход блока управления соединен с выходом блока ввода, первый выход - с блоком вывода, а второй выход - с первым входом блока измерений, выход блока контрольного сигнала соединен с контрольным входом коммутатора, входные клеммы которого соединены с клеммами для подключения объекта контроля, шунтирующее реле, обмотка которого соединена с третьим выходом блока управления, а нормально замкнутые контакты присоединены параллельно к второму и третьему входам блока измерений, второй вход которого соединен с входом блока контрольного сигнала, третий вход - с измерительным входом коммутатора, адресные входы блока управления соединены с адресными выходами соответствующего уровня коммутатора, а управляющие выходы - с управляющими входами соответствующего уровня коммутатора, состоящего из блоков коммутации первого, второго, третьего и т.д. уровней управления.

Недостатком прототипа является отсутствие технической возможности контроля параметров бортовых кабельных сетей автономных объектов, имеющих однопроводную распределенную кабельно-жгутовую сеть, вторым проводом которой является корпус объекта, соединенный с помощью металлизированного заземляющего контакта.

Предложенная система свободно от указанных недостатков.

Цель изобретения - расширение функциональных возможностей и быстродействия прототипа и реализация методики допускового контроля за счет создания контрольно-измерительного контура с использованием корпуса изделия и функциональных блоков допускового контроля.

Цель достигается в результате того, что в известной автоматизированной системе контроля электромонтажа и сопротивления изоляции жгутов, содержащей блок управления, блок ввода, блок вывода, блок контрольного сигнала, блок измерений, коммутатор, причем первый вход блока управления соединен с выходом блока ввода, первый выход - с блоком вывода, а второй выход - с первым входом блока измерений, выход блока контрольного сигнала соединен с контрольным входом коммутатора, входные клеммы которого соединены с клеммами для подключения объекта контроля, шунтирующее реле, обмотка которого соединена с третьим выходом блока управления, а нормально замкнутые контакты присоединены параллельно к второму и третьему входам блока измерений, второй вход которого соединен с входом блока контрольного сигнала, третий вход - с измерительным входом коммутатора, адресные входы блока управления соединены с адресными выходами соответствующего уровня коммутатора, а управляющие выходы - с управляющими входами соответствующего уровня коммутатора, состоящего из блоков коммутации первого, второго, третьего и т.д. уровней управления, что в указанной системе предлагается изменить схему коммутации контрольно-измерительной цепи с использованием заземляющих контактов коммутатора, при этом контур контрольно-измерительной цепи охватывает корпус объекта контроля за счет распределенных контрольно-измерительных устройств, контролируя параметры электрической цепи и переходное сопротивление металлизированного заземляющего контакта.

Коммутация контрольно-измерительной цепи создается локальными контрольно-измерительными коммутаторами, разнесенными и распределенными по месту нахождения контролируемых разъемов объекта контроля, при этом первый адрес контролируемой цепи подключается одним из этих коммутаторов на свою шину контроля и измерения, а контур контрольно-измерительной цепи создается последовательной коммутацией остальных адресов контролируемой цепи на корпус автономного объекта и через корпус и металлизированный заземляющий контакт на второй заземленный вход блока контроля, измерения и сравнения коммутатора первого адреса.

Предлагаемая система иллюстрируется чертежом, где представлена блок-схема системы контроля параметров кабельно-жгутовых сетей для автономных объектов.

Она содержит блок 1 общего управления, блок 2 сетевого информационного обмена, магистраль 3 информационного обмена, распределенную сеть 4 локальных контрольно-измерительных коммутаторов 4.1…4.n, каждый из которых включает в себя соответственно блок 4.1.1…4.n.1 информационного обмена, блок 4.1.2…4.n.2 управления и вычисления, блок 4.1.3…4.n.3 управления коммутаторами, блок 4.1.4…4.n.4 задатчик допустимых пределов параметров, блок 4.1.5…4.n.5 контроля, измерения и сравнения, коммутатор 4.1.6…4.n.6 выбора режимов работы, шину 4.1.8…4.n.8 контроля и измерения, заземляющих шин G1…Gm/2 блоков 4.1.7…4.n.7 коммутаторов и точек входа - выхода блоков 4.1.9…4.1.n разъемов для подключения объекта контроля.

Система работает следующим образом.

В блок 1 из базы данных (СУБД) вводится таблица соединений в адресах объекта контроля с информацией о сечении, длине и типе провода, на основании которой рассчитываются сопротивления электрических цепей, а с учетом стыковочных карт таблица соединений преобразовывается в адреса подключаемых разъемов блоков 4.1.9…4.1.n коммутаторов 4.1…4.n, то есть в адреса программы контроля, причем цепи контроля сортируются так, чтобы последовательность коммутации контрольно-измерительных сигналов обеспечивалась в определенном порядке по локальным коммутаторам и программа контроля с управляющей информацией посредством блока 2 сетевого обмена, магистрали 3 и блоков 4.1.1…4.n1 передается в блоки 4.1.2…4.n.2 управления и вычисления, взаимодействуя с которыми блок 1 общего управления обеспечивает выполнение алгоритмов работы режимов системы, основными из которых являются режим "КОНТРОЛЬ Ra" контроля правильности монтажа и сопротивления электрических цепей, режим "КОНТРОЛЬ Rиз" контроля сопротивления изоляции проводников бортовых кабельно-жгутовых сетей, режим "КОНТРОЛЬ Rк" контроля металлизированного заземления на корпус и другие при необходимости режимы за счет увеличения коммутирующих элементов в коммутаторах 4.1.6…4.n.6 выбора режимов и расширения функциональных возможностей блоков 4.1.5…4.n.5 контроля, измерения и сравнения.

Каждый коммутатор 4.1…4.n является автономным контрольно-измерительным тестером, взаимодействующими друг с другом по магистрали 3 информационного обмена по выполнению общей задачи автоматического контроля бортовой кабельно-жгутовой сети, каждый из блоков 4.1.2…4.n.2 обрабатывает свой массив информации и в процессе контроля для каждой контролируемой цепи назначает предел допуска параметров и передает в соответствующий блок 4.1.4…4.n.4, а блоки 4.1.5…4.n.5, измеряя параметры своей контролируемой цепи, сравнивают их значения с заданными допусками и выдают в соответствующий свой блок 4.1.2…4.n.2 результаты допускового контроля по принципу «НОРМА»/«НЕ НОРМА», при этом выходные точки блоков 4.1.9…4.1.n разъемов коммутаторов 4.1…4.n по контролируемым точкам объединены корпусом посредством коммутирующих элементов четными ключами S2, S4…Sm коммутаторов 4.1.7…4.n.7, блоки управления коммутаторами 4.1.3…4.n.3 обеспечивают адресную, последовательную, комбинированную или групповую коммутацию корпуса, а контрольно-измерительные шины 4.1.8…4.n.8 могут подключаться к выходным точкам в пределах каждого своего коммутатора.

При работе в режиме "КОНТРОЛЬ Ra" в исходном состоянии ключи Ra в каждом коммутаторе 4.1.6…4.n.6 выбора режимов замыкаются все, а ключи каждого контрольно-измерительного коммутатора разомкнуты. Процесс контроля происходит по кадрам, т.е. по отдельным электрическим цепям, имеющим любое сочетание входов - выходов на подключенные разъемы, при этом если один из адресов проверяемой цепи подключен, например, на первый локальный контрольно-измерительный коммутатор 4.1, то он назначается ведущим и подключает точку входа - выхода на шину 4.1.8, на которую с блока 4.1.5 выдается сигнал от источника стабилизированного тока определенного значения, существенно превышающего значения помех в корпусе и длинных цепях.

Далее по алгоритму коммутатор 4.1.7 ведущего коммутатора 4.1 замыкает все цепи точек контролируемой цепи на корпус и контролирует наличие тока по шине 4.1.8, при этом, если ток фиксируется блоком 4.1.5, то это свидетельствует о наличии электрической цепи в виде схемной цепи или ложной цепи. Далее блок 4.1 отрабатывает поиск адресов перемычек параллельно-последовательной коммутацией на корпус всех точек входа выхода блока 4.1, а при появлении тока фиксируется адрес и значение уровня напряжения на контролируемой цепи, вычисляется значение электрического сопротивления и сравнивается с заданным значением с блока 4.1.4 с учетом допустимых отклонений, таким образом реализуя метод допускового контроля, при этом заданное значение формируется исходя из расчетных по таблице соединения на каждую цепь из базы данных или по техническим требованиям на объект контроля в виде значения максимально допустимого порога. В этом случае корпус объекта контроля не используется, так как цепи находятся в одном разъеме. Если эта цепь замыкается на один или несколько контактов блока 4.2.9, то в соответствии с алгоритмом ведущий блок 4.1, взаимодействуя с блоком 4.2, параллельно-последовательным поиском находит адреса электрических цепей и ведущий блок аналогичным образом производит допусковый контроль параметров всех цепей данного кадра контроля. При этом контур контрольно-измерительной цепи образовывается от контрольно-измерительной шины 4.1.8 через цепь объекта контроля, корпус блока 4.2, корпус автономного объекта, корпус блока 4.1, измеряется, сравнивается в блоке 4.1.5 и анализируется в блоке 4.1.2.

Общим алгоритмом предусмотрено последовательно-групповая и последовательная коммутация всех входных - выходных точек блоков 4.1.9…4.n.9 распределенной сети коммутаторов 4 для выявления всех схемных, ложных, перепутанных и обрывных цепей. Если адрес контрольно-стимулирующего сигнала коммутируется другим блоком 4.2…4.n распределенной сети 4, например 4.5.1, то он является ведущим и все функции управления по контролю конкретной цепи или группы цепей (кадров) берет на себя. В заключение этого режима от ведущих блоков 4.2.1…4.n.2 принимается отчет блоком и формируется протокол проверки бортовой кабельной сети по режиму "КОНТРОЛЬ Ra".

В режиме "КОНТРОЛЬ Rк" проверка переходных сопротивлений металлизированных соединений на корпус производиться только для цепей, имеющих выходы на технологические разъемы, соединенные своими контактами проводниками минимальной длины и номинальным сечением, исключающими значимую погрешность на процесс измерения. Процесс контроля отличается от режима "КОНТРОЛЬ Ra" тем, что в исходном состоянии ключи Rк в каждом коммутаторе 4.1.6…4.n.6 выбора режимов замыкаются все, а контролируемая цепь формируется двумя адресами, одним из которых является входом и подключается к одной из шин 4.1 8…4.n.8, а другой коммутируется на корпус одним из блоков 4.1.7…4.n.7 и далее процесс допускового контроля происходит аналогичным образом как в режиме "КОНТРОЛЬ Ra".

При работе в режиме "КОНТРОЛЬ Rиз" в исходном состоянии ключи Rиз в каждом коммутаторе 4.1.6…4.n.6 выбора режимов замыкаются все, ключи каждого блока 4.1.7…4.n.7 замкнуты на корпус, а все адреса контролируемой цепи в каждом из этих блоков коммутируются на шину 4.1.8…4.n.8, таким образом изолируя контролируемую цепь от корпуса и всех цепей объекта контроля, контролируя последовательно сопротивление изоляции всех цепей объекта контроля.

При контроле кабельно-жгутовых изделий вне борта автономного или другого любого объекта контроль параметров производится аналогично как в прототипе, при этом все функции управления процессами контроля и обработки информации обеспечивает блок 1 общего управления, а контрольно-измерительные операции может выполнять каждый из локальных контрольно-измерительных коммутаторов 4.1…4.n, на которые приходят адреса контролируемой цепи по алгоритму блока 1 общего управления.

Автоматизированная система контроля параметров кабельно-жгутовых сетей автономных объектов, содержащая блок общего управления, блок сетевого информационного обмена, магистраль информационного обмена, распределенную сеть локальных контрольно-измерительных коммутаторов, причем выход-вход блока общего управления соединен с входом-выходом блока сетевого обмена, выход-вход которого соединен посредством магистрали информационного обмена с входами-выходами локальных контрольно-измерительных коммутаторов, отличающаяся тем, что в систему введены n локальных контрольно-измерительных коммутаторов, информационно и аппаратно объединенных в единую информационную сеть, каждый из которых содержит блок информационного обмена, блок управления и вычисления, блок управления коммутаторами, блок задатчика допустимых пределов параметров, блок контроля, измерения и сравнения, коммутатор режимов контроля, шину контроля и измерения, коммутатор точек входа-выхода для коммутации точек входа-выхода на шину контроля и измерения или на корпус автономного объекта, входные-выходные разъемы, причем первый вход-выход блока общего управления соединен информационным каналом с автоматизированной системой управления предприятием или базой данных, второй выход-вход соединен с входом-выходом блока сетевого обмена, который вторым выходом-входом соединен магистралью информационного обмена с входами-выходами блоков информационного обмена каждого локального контрольно-измерительного коммутатора, выходы-входы которых соединены с входом-выходом блока управления и вычисления, выходы-входы которых через внутреннюю магистраль информационного обмена соединены с входами-выходами блока управления коммутаторами, блока задатчика допустимых пределов параметров, блока контроля, измерения и сравнения, выходы последнего соединены с входами коммутатора выбора режимов контроля, а его выходы соединены с контрольно-измерительной шиной, являющейся входами нечетных m ключей коммутатора точек входа-выхода, а выходы нечетных m ключей соединены с контактами выходных разъемов и выходами четных ключей, входы которых соединены с корпусом автономного объекта и входом блока контроля, измерения и сравнения, а блок задатчика допустимых пределов параметров соединен вторым выходом со вторым входом блока контроля, измерения и сравнения.



 

Похожие патенты:

Изобретение относится к области автоматики и вычислительной техники, в частности к устройствам для контроля электрического монтажа. Технический результат - упрощение устройства, обеспечение возможности проверки кабелей с большим количеством проводов и со специальным монтажом.

Изобретение относится к области автоматики и вычислительной техники, в частности к устройствам для контроля электрического монтажа. Технический результат - упрощение устройства, обеспечение возможности проверки кабелей с большим количеством проводов и со специальным монтажом.

Изобретение относится к электроизмерительной технике. Целью изобретения является автоматическое измерение тока утечки в нагрузке однофазного мостового выпрямителя бесконтактным способом в реальном масштабе времени без выключения выпрямителя из процесса функционирования путем сравнения соответствующих напряжений, пропорциональных реальному и заданным значениям токов утечки.

Изобретение относится к электрическим испытаниям транспортных средств. В способе испытаний электрооборудования автотранспортных средств на восприимчивость к внешнему электромагнитному полю испытываемое электрооборудование устанавливают в бортовую сеть транспортного средства и подвергают воздействию внешнего излучения с заданными параметрами.

Изобретения относятся к области измерительной техники, в частности к системам возврата электрического тока, и могут быть использованы в авиации. Способ содержит этап измерения силы тока, по меньшей мере, в одном электрическом соединении, в котором течет номинальный ток, для определенных условий полета летательного аппарата; этап беспроводной передачи значения измеренной силы тока, этап приема измеренной силы тока, этап сравнения измеренной силы тока с опорной силой номинального тока, определенной для указанного электрического соединения, для указанных определенных условий полета; и этап диагностики состояния исправности электрического соединения после этапа сравнения.

Настоящее изобретение относится к способу диагностирования по току шины короткого замыкания основного позиционного переключателя преобразователя мощности вентильного реактивного электродвигателя.

Изобретение относится к области электротехники, а именно к инверторной переносной установке для испытаний кабеля и электрооборудования напряжением постоянного тока 36 кВ, 60 кВ и 110 кВ.

В способе диагностирования неисправности в силовом преобразователе вентильно-индукторного двигателя методом интегрирования фазного тока наличие короткого замыкания или обрыва цепи главного переключателя силового преобразователя вентильно-индукторного двигателя диагностируют посредством измерения мгновенного значения фазного тока iO(t) указанного преобразователя в исправном состоянии, а также мгновенного значения текущего фазного тока i(t) указанного преобразователя для получения с помощью операции интегрирования интегрального значения SnO фазного тока в течение определенного периода в исправном состоянии и интегрального значения Sn фазного тока в течение определенного периода в текущем состоянии, отношение En которых, т.е.

Изобретение относится к методам обнаружения аварийной электрической дуги радиоэлектронной аппаратуры (РЭА), работающей в условиях вакуума и может быть использовано в бортовой аппаратуре космических аппаратов.

Группа изобретений относится к направленному обнаружению замыкания на землю, в частности, в энергосистеме со скомпенсированной нейтралью и, в конкретном случае, с изолированной нейтралью.

Устройство предназначено для диагностики силовых трансформаторов 6-10/0,4 кВ любой мощности на наличие межвитковых замыканий в обмотках трансформатора на ранней стадии развития на месте эксплуатации силового трансформатора. Устройство для диагностики межвитковых замыканий в обмотках силового трансформатора содержит измерительный блок, соединенный с силовым трансформатором. Устройство соединено с силовым трансформатором со стороны низшего напряжения через трехполюсный автомат и содержит заведомо неповрежденный трансформатор, последовательно соединенный через трехполюсный автомат с согласующим трансформатором, а также диоды, регулировочные реостаты и фильтры, последовательно соединенные между собой, через которые проводники силового и согласующего трансформаторов соединены с заземляющим проводником. В качестве измерительного блока используют приборы для измерения разности потенциалов между двумя точками, расположенными между регулировочными реостатами и фильтрами одноименных фаз силового и заведомо неповрежденного трансформаторов. В качестве заведомо неповрежденного трансформатора используют измерительный трансформатор напряжения, а в качестве приборов для измерения разности потенциалов между двумя точками используют гальванометры. Малая стоимость устройства позволяет использовать его в качестве штатного комплектующего устройства трансформаторной подстанции, т.е. без его демонтажа после окончания измерений, что упрощает его использование и процесс измерения. Техническим результатом, при реализации заявленного решение, выступает обеспечение возможности выявить межвитковое замыкание силового трансформатора на ранней стадии развития. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области геофизики и может быть использовано в процессе проведения сейсморазведочных работ. Предлагается устройство сбора данных, содержащее пару входных выводов, выполненных с возможностью соединения с набором, состоящим по меньшей мере из одного аналогового сейсмического датчика, формирующего полезный сейсмический сигнал, и средство обнаружения отключения для обнаружения частичного или полного отключения набора, состоящего по меньшей мере из одного аналогового сейсмического датчика. Средство обнаружения отключения содержит средство введения малого тока в набор, состоящий по меньшей мере из одного аналогового сейсмического датчика, для формирования сигнала смещения, частично зависящего от электрического сопротивления набора, состоящего по меньшей мере из одного аналогового сейсмического датчика, и добавляемого к полезному сейсмическому сигналу, причем сигнал смещения занимает только часть рабочего диапазона устройства сбора данных. Средство обнаружения отключения также содержит аналого-цифровой преобразователь и средство фильтрации для преобразования и фильтрации напряжения, измеренного на паре входных выводов, для получения измеренного значения сигнала смещения, и либо средство анализа изменения во времени измеренного значения сигнала смещения и включения сигнала тревоги при выполнении заданного условия, либо средство передачи измеренного значения сигнала смещения на удаленное устройство, выполненное с возможностью анализа изменения во времени измеренного значения сигнала смещения и включения тревоги при выполнении заданного условия. Технический результат – повышении точности получаемых данных. 2 н. и 7 з.п. ф -лы, 6 ил.

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки в электропроводке и электрооборудовании. Техническим результатом заявляемого технического решения является упрощение процедуры преобразования сигнала вторичной обмотки дифференциального трансформатора. Технический результат достигается тем, что в устройство для измерения дифференциального тока, содержащее чувствительный элемент в виде тороидального трансформатора с двумя первичными и одной вторичной обмотками, источник переменного тока, усилитель, блок индикации и блок питания, введены преобразователь переменного напряжения в постоянное напряжение, фотодиод и источник светового потока, причем вход чувствительного элемента соединен с источником переменного тока, выход чувствительного элемента через преобразователь переменного напряжения в постоянное напряжение подключен к первому плечу фотодиода, второе плечо которого соединено с выходом источником светового потока, вход светового потока подключен к блоку питания, третье плечо фотодиода через усилитель соединено с входом блока индикации. 1 ил.

Использование: в области электротехники для защиты электрических линий и приборов. Технический результат - повышение надежности работы электрических сетей 6-35 кВ за счет реализация функции контроля напряжения. Микропроцессорное устройство релейной защиты и автоматики (МУРЗ) содержит: корпус, в котором установлены объединенные общей шиной данных: процессорный модуль, содержащий один или более процессоров, осуществляющий основную вычислительную обработку, и модуль часов реального времени; блок памяти, содержащий ПЗУ и ОЗУ; интерфейсы связи, выполненные с возможностью связи с внешними вычислительными устройствами; модули релейной защитной автоматики (РЗА), соединенные с процессорным модулем и включающие в себя измерительные модули, состоящие из модуля аналоговых входов и модуля дискретных входов, модуля реле, представлявшего собой модуль дискретных выходов, и совмещенный модуль дискретных входов/выходов; блок питания, выполненный с возможностью сохранения работоспособности устройства при потере оперативного питания; причем модуль аналоговых входов содержит АЦП, предназначенный для преобразования поступающих аналоговых сигналов, содержит гальванически развязанные входные каналы и служит для измерения токов и напряжений по трем фазам и нулевой последовательности; лицевую панель, подключаемую посредством USB интерфейса связи к процессорному модулю, причем лицевая панель содержит микроконтроллер, интерфейсы связи с внешними вычислительными устройствами, дисплей, светодиоды, клавиатуру и лицевая панель выполнена съемной с возможностью удаленного управления МУРЗ. 6 з.п. ф-лы, 1 ил.

Изобретение относится к испытаниям в электроэнергетике. Технический результат: снижение потерь электроэнергии, упрощение. Сущность: способ состоит в установке резонансной частоты питающего преобразователя частоты (ПЧ), равной частоте контура, образованного управляемым шунтирующим реактором (УШР) и конденсатором, и номинальной промышленной частоте и подборе величины напряжения, обеспечивающего требуемое значение нагрузочного тока УШР. При этом к режиму резонанса на промышленной частоте подходят поэтапно, устанавливая резонансный режим при минимальном напряжении ПЧ путем задания частоты, равной резонансу при этом напряжении и превышающей промышленную частоту. Затем увеличивают напряжение ПЧ, подстраивают частоту до следующего резонанса. И далее ступенями до достижения номинального режима. 1 ил.

Изобретение относится к области электротехники и электроэнергетики и может быть использовано для автоматической компенсации тока однофазного замыкания на землю в распределительных сетях с изолированной нейтралью. Техническим результатом является повышение достоверности определения собственной частоты контура нулевой последовательности (КНП) и повышение точности компенсации емкостных токов замыкания на землю. В способе настройки компенсации емкостного тока замыкания на землю, при котором измеряют падение напряжения на КНП сети, формируют импульс возбуждения в КНП сети, выделяют свободную составляющую переходного процесса в измеренном падении напряжения на КНП, определяют по выделенной свободной составляющей собственную частоту КНП, определяют рассогласование собственной частоты КНП с частотой сети и регулируют индуктивность дугогасящего реактора до ликвидации рассогласования, дополнительно осуществляют нерекурсивную фильтрацию напряжения нулевой последовательности, синхронизированную с импульсом возбуждения в КНП сети, измеряют ток нулевой последовательности сети, определяют потери в КНП сети, вычисляют добротность КНП сети, сравнивают вычисленную добротность с предельно допустимой, если добротность ниже предельно допустимой, то собственную частоту КНП определяют с учетом потерь в этом контуре. 2 ил.

Изобретение относится к подаче электроэнергии к электрическим сетям, контактирующим с токоприемниками транспортных средств. Способ частично неселективной защиты тяговой сети переменного тока заключается в том, что проверяется отсутствие короткого замыкания в аварийно отключенной контактной сети посредством устройства контроля короткого замыкания по наведенному напряжению, и при отсутствии короткого замыкания подается команда на включение аварийно отключенной питающей линии с минимальной выдержкой времени автоматическим повторным включением. Тяговая сеть переменного тока содержит пост секционирования с выключателями, трансформаторами напряжения и тока на каждую питающую линию контактной сети и интеллектуальные терминалы с устройством защиты и автоматическим повторным включением аварийно отключенной питающей линии контактной сети поста секционирования. Причем основные защиты выполняются с нулевой выдержкой времени. Технический результат изобретения заключается в существенном снижении времени восстановления напряжения в контактной сети в аварийных ситуациях. 1 ил.

Изобретение относится к подаче электроэнергии к электрическим сетям, контактирующим с токоприемниками транспортных средств. Способ частично неселективной защиты тяговой сети переменного тока заключается в том, что проверяется отсутствие короткого замыкания в аварийно отключенной контактной сети посредством устройства контроля короткого замыкания по наведенному напряжению, и при отсутствии короткого замыкания подается команда на включение аварийно отключенной питающей линии с минимальной выдержкой времени автоматическим повторным включением. Тяговая сеть переменного тока содержит пост секционирования с выключателями, трансформаторами напряжения и тока на каждую питающую линию контактной сети и интеллектуальные терминалы с устройством защиты и автоматическим повторным включением аварийно отключенной питающей линии контактной сети поста секционирования. Причем основные защиты выполняются с нулевой выдержкой времени. Технический результат изобретения заключается в существенном снижении времени восстановления напряжения в контактной сети в аварийных ситуациях. 1 ил.

Изобретение относится к электроизмерительной технике, в частности к автоматизированным системам контроля, и применяется для контроля сопротивления изоляции шин питания гальванически развязанных источников постоянного тока относительно корпуса и между собой. Техническим результатом изобретения является повышение достоверности определения значений сопротивления изоляции относительно корпуса, а также возможность контроля изоляции шин нескольких гальванически развязанных источников постоянного тока как относительно корпуса, так и между собой как в выключенном, так и во включенном состоянии. Способ измерения сопротивления изоляции в цепях постоянного тока основан на подключении к полюсам цепи постоянного тока цепи резисторов, состоящей из двух последовательно соединенных резисторов с одинаковой величиной сопротивления. В место соединения резисторов включается измерительная цепь из последовательно включенных источника измерительного напряжения и измерителя тока. Далее определяется эквивалентное сопротивление цепи резисторов. В измерительную цепь включают источник измерительного напряжения с одним значением напряжения, величина которого может быть равна нулю, затем с другим, отличным от нуля. Определяют значения измерительных токов для двух значений измерительных напряжений, вычисляют алгебраическую разность измерительных напряжений, делят ее на алгебраическую разность измеренных токов и из результата деления, взятого по модулю, вычитают значение эквивалентного сопротивления. Для измерения сопротивления изоляции между двумя гальванически развязанными источниками постоянного тока подключают между местами соединения двух цепочек резисторов с одинаковыми величинами сопротивлений, включенных между полюсами соответствующих источников постоянного тока, при этом вычитаемое эквивалентное сопротивление равно номинальному значению сопротивлений резисторов цепочек. Способ измерения сопротивления изоляции реализуется в устройстве, которое содержит цепочку из одинаковых резисторов, включенных последовательно, подключаемую к полюсам источника постоянного тока для измерения его сопротивления изоляции относительно корпуса, измерительную цепь, состоящую из последовательно включенных источника измерительного напряжения и датчика тока, а также коммутатора измерительного напряжения, имеющего вход управления, контроллера с аналоговым входом, подключенным к датчику тока, и выходом контроллера, имеющим электрическую связь с входом управления коммутатора измерительного напряжения. Дополнительно введены два коммутатора, каждый из которых имеет n+1 вход, один выход и вход управления, резистор, подключенный между n+1 входом первого коммутатора и n+1 входом второго коммутатора, устройство последовательного интерфейса. Кроме этого, введены n-1 дополнительных цепочек последовательно соединенных резисторов, измерительная цепь подключена между выходами введенных коммутаторов, а коммутатор измерительного напряжения своим выходом подключен параллельно источнику измерительного напряжения. 2 н.п. ф-лы, 1 ил.

Использование: в области электротехники. Технический результат – устранение проблемы нелинейного искажения тока короткого замыкания вследствие насыщения трансформаторов тока. Сегментация призвана выделить интервалы правильной трансформации, возникающие в те промежутки времени, когда магнитопровод трансформатора тока выходит из насыщения, и подготовить условия для восстановления искаженного тока. Способ основан на сравнении отсчетов электрической величины и модельного сигнала. По результатам сравнения формируют двумерный сигнал, который подают на распознающий модуль, своеобразие которого заключается в том, что область его срабатывания задают на плоскости двумерного сигнала. Для достижения поставленной цели те же операции выполняют в строго определенной последовательности не однократно, а столько раз, сколько потребуется для определения максимальной продолжительности интервала однородности. Исследование совершают путем поэтапного расширения интервала всякий раз на один интервал дискретизации. Используют двухпараметрический сигнал. Параметры подбирают по заданному алгоритму. Между длительностью начального интервала и числом параметров модельного сигнала устанавливают взаимосвязь: число отсчетов наблюдаемой величины на единицу больше числа параметров модельного сигнала. Расширение интервала производят в случае срабатывания распознающего модуля на предыдущем интервале. Процесс приостанавливают, если при очередном расширении не произойдет срабатывания соответствующего распознающего модуля. Предлагается структура двумерного сигнала, состоящая из сигнала оценки уровня электрической величины на данном интервале и из сигнала невязки между электрической величиной и модельным сигналом. 3 з.п. ф-лы, 5 ил.
Наверх