Дилатометр

Изобретение относится к области исследования материалов с помощью теплофизических измерений, а именно к устройствам для измерения температурного коэффициента линейного расширения (ТКЛР). Дилатометр содержит камеру нагрева со съемной трубкой, в которой горизонтально установлены исследуемый образец и толкатели, плотно контактирующие с противоположными торцами образца, измерительные зеркала, закрепленные на концах толкателей и расположенные вне камеры нагрева, лазер и оптическую систему измерения удлинения образца. Для создания постоянного по величине и симметричного поджима толкателей к исследуемому образцу используется система поджима. В оптической системе для измерения удлинения образца использован четырехходовой интерферометр, включающий поляризованный светоделитель, делящий луч лазера на рабочий и опорный лучи, две четвертьволновые пластины, поляризационную пластину, три поворотных зеркала, оптическую призму, четыре обводных зеркала для рабочего и опорного лучей, два возвратных зеркала и фотоприемник. Электрические сигналы от фотоприемника и термопары, регистрирующей температуру нагрева образца, передаются на ПЭВМ, где ведется их синхронная запись. Технический результат - повышение точности измерения удлинения образца при определении ТКЛР исследуемого материала 4 з.п. ф-лы, 4 ил.

 

Изобретение относится к области исследования материалов с помощью теплофизических измерений, а именно к устройствам для измерения температурного коэффициента линейного расширения (ТКЛР).

Известны различные конструкции дилатометров с толкателями, в которых исследуемый образец установлен вертикально (Аматуни А.Н. Методы и приборы для определения температурных коэффициентов линейного расширения материалов. - М.: Издательство стандартов, 1972 - 140 с.).

Однако вертикальное расположение исследуемого образца имеет ряд недостатков, которые ведут к существенным погрешностям измерения ТКЛР. Во-первых, это неравномерность прогрева образца и толкателя из-за конвекционных потоков. Во-вторых, дополнительные деформации - толкателя, возникающие от воздействия силы, обусловленной массой расположенного на нем образца, или, наоборот, дополнительное деформирование образца при расположении его снизу от воздействия массы толкателя. Кроме того, вертикальное расположение образца ведет к его неустойчивости, в связи с чем повышаются требования к точности и качеству его изготовления.

Известен дилатометр, выбранный в качестве прототипа (а.с. СССР №320762, G01N 25/16, опубл. 04.11.1971, Бюл. №34), содержащий камеру нагрева, установленный в ней горизонтально на призме исследуемый образец, с противоположными торцами которого плотно контактируют толкатели, лазер и оптическую систему измерения удлинения образца. К толкателям прижаты подпружиненные рычаги с закрепленными на них зеркалами, которые расположены вне камеры нагрева.

Недостатком известного решения является низкая точность измерительной системы, которая возникает в связи с определением удлинения образца из суммы двух отдельно-регистрируемых перемещений лучей лазера, отраженных от закрепленных на поворачивающихся рычагах зеркал. Также погрешности измерения возникают из-за плотного контакта образца по всей длине призмы и в связи с существенными изменениями адгезионных и фрикционных свойств материалов в условиях больших температур. Дополнительные погрешности создаются также непостоянством и неравенством величин нагрузок на толкателях, связанных с деформированием отдельно-воздействующих на них упругих элементов - пружин и сильфонов. Кроме того, при прохождении луча лазера через зоны с различными условиями окружающей среды, в частности температуры, изменяется скорость распространения волны излучения, а, следовательно, коэффициент преломления этой среды, в частности воздуха, что тоже вносит погрешности при измерении.

Задачей изобретения является повышение точности измерения удлинения образца при определении температурного коэффициента линейного расширения исследуемого материала.

Технический результат при решении поставленной задачи заключается в объединении измеряемых величин линейных перемещений толкателей в единую регистрируемую величину с помощью оптической системы измерения удлинения образца на основе интерферометра, в обеспечении малой площади контакта образца и толкателей с опорами при наименьшей величине их прогиба, в создании постоянного по величине поджима толкателей к образцу, а также в устранении погрешности измерения, связанной с зависимостью коэффициента преломления окружающей среды от температуры. Это достигается тем, что в дилатометре, содержащем камеру нагрева, установленный в ней горизонтально исследуемый образец, плотно контактирующие с противоположными торцами образца толкатели, измерительные зеркала, расположенные вне камеры нагрева, лазер и оптическую систему измерения удлинения образца, в съемной трубке с окном толкатели и исследуемый образец установлены каждый на двух симметричных опорах, расположенных от их центра на расстоянии 0,277 длины каждого из них. Для создания постоянного по величине и симметричного поджима толкателей к исследуемому образцу используется система поджима, в которой толкатели через рычаги и нить с помощью группы блоков связаны с грузом. Вместо рычагов связь нити с каждым из толкателей может быть осуществлена через дополнительные блоки, а взамен груза может быть использована пружина. Измерительные зеркала закреплены непосредственно на концах толкателей. В оптической системе для измерения удлинения образца использован четырехходовой интерферометр, включающий поляризованный светоделитель, делящий луч лазера на рабочий и опорный лучи, две четвертьволновые пластины, поляризационную пластину, три поворотных зеркала, оптическую призму, четыре обводных зеркала для рабочего и опорного лучей, два возвратных зеркала и фотоприемник. При этом фотоприемник и термопара, установленная возле исследуемого образца, для увязки по времени записываемой информации электрически связаны с ПЭВМ.

На фиг. 1 изображена оптико-механическая схема дилатометра; на фиг. 2 - схема установки образца и толкателей на опоры; на фиг. 3 - оптическая схема хода рабочего и опорного лучей интерферометра в системе измерения удлинения образца; на фиг. 4 - пример альтернативного варианта системы поджима толкателей с пружиной и без рычагов.

Дилатометр содержит камеру нагрева 1 со съемной трубкой 2, в которой горизонтально установлены исследуемый образец 3 и толкатели 4, плотно контактирующие с противоположными торцами образца 3, измерительные зеркала 5, расположенные вне камеры нагрева 1, лазер 6 и оптическую систему измерения удлинения образца 3. В съемной трубке 2 имеется окно для установки исследуемого образца 3. Толкатели 4 и образец 3 установлены каждый на двух симметричных опорах 7, расположенных от их центра на расстоянии 0,277 длины каждого из них. Для создания постоянного по величине и симметричного поджима толкателей 4 к исследуемому образцу 3 используется система поджима, в которой толкатели 4 через рычаги 8 и нить 9 с помощью группы блоков 10 связаны с грузом 11. Вместо рычагов 8 связь нити 9 с каждым из толкателей 3 может быть осуществлена через дополнительные блоки, а взамен груза 11 может быть использована пружина 12. Непосредственно на концах толкателей 4 закреплены измерительные зеркала 5. В оптической системе для измерения удлинения образца 3 использован четырехходовой интерферометр 13, включающий поляризованный светоделитель 14, делящий луч лазера 6 на рабочий и опорный лучи, две четвертьволновые пластины 15, 16, поляризационную пластину 17, три поворотных зеркала 18, 19, 20, оптическую призму 21, четыре обводных зеркала 22 для рабочего и опорного лучей, два возвратных зеркала 23 и фотоприемник 24. При этом фотоприемник 24 и термопара 25, установленная возле исследуемого образца 3, для увязки по времени записываемой информации электрически связаны с ПЭВМ 26.

Дилатометр работает следующим образом.

Толкатели 4 с закрепленными на них измерительными зеркалами 5 установлены в съемной трубке 2, выполненной из огнеупорного материала, каждый на двух симметричных опорах 7, расположенных от их центра на расстоянии 0,277 длины каждого из них. Исследуемый образец 3 устанавливают между толкателями 4 в съемную трубку 2 через выполненное в ней окно также на две симметричные опоры 7, расположенные от его центра на расстоянии 0,277 длины. Такое расположение опор обеспечивает наименьший прогиб образца и толкателей при минимальном трении о них. После установки образца 3 съемную трубку 2 помещают в камеру нагрева 1. Для обеспечения плотного контакта и создания постоянного, но небольшого по величине, симметричного поджима толкателей 4 к противоположным торцам образца 3 используется система поджима, в которой толкатели 4 через рычаги 8 и нить 9 с помощью группы блоков 10 связаны с грузом 11. Вместо рычагов 8 связь нити 9 с каждым из толкателей 3 может быть осуществлена через дополнительные блоки, а взамен груза 11 может быть использована пружина 12. В процессе измерения удлинение образца 3, связанное с изменением температуры, постоянно регистрируется с помощью четырехходового интерферометра 13. Поляризованный под углом 45 градусов луч лазера 6 делится в поляризованном светоделителе 14 на рабочий и опорный лучи. Рабочий луч, образуемый путем прохождения через наклонную поверхность поляризованного светоделителя 14, получает горизонтальную поляризацию, а отразившийся от наклонной поверхности опорный луч - вертикальную поляризацию. Установленная по ходу рабочего луча четвертьволновая пластина 15 меняет поляризацию рабочего луча на круговую с направлением по часовой стрелке. С помощью поворотного зеркала 19 и двух левых обводных зеркал 22 рабочий луч направляется на левое измерительное зеркало 5. После отражения от левого измерительного зеркала 5 рабочий луч обретает противоположное направление круговой поляризации и возвращается тем же путем на четвертьволновую пластину 15, пройдя которую приобретает вертикальную поляризацию. Далее рабочий луч отражается от наклонной поверхности поляризованного светоделителя 14 без изменения плоскости поляризации и направляется в оптическую призму 21. После двойного отражения в оптической призме 21 и отражения от наклонной поверхности поляризованного светоделителя 14 рабочий луч снова проходит через четвертьволновую пластину 15 со сменой вертикальной поляризации на круговую с направлением против часовой стрелки. С помощью поворотного зеркала 20 и двух правых обводных зеркал 22 рабочий луч направляется на правое измерительное зеркало 5, отразившись от которого, меняет направление круговой поляризации на противоположное и возвращается тем же путем на четвертьволновую пластину 15. Пройдя сквозь последнюю, рабочий луч приобретает горизонтальную поляризацию, проходит через наклонную поверхность поляризованного светоделителя 14 и совмещается с опорным лучом.

Опорный луч, получивший вертикальную поляризацию после отражения от наклонной поверхности светоделителя 14, проходит через четвертьволновую пластину 16, где меняет поляризацию на круговую с направлением против часовой стрелки. С помощью поворотных зеркал 18, 19 и двух левых обводных зеркал 22 опорный луч направляется на левое возвратное зеркало 23, расположенное вблизи левого измерительного зеркала 5. После отражения от левого возвратного зеркала 23 опорный луч обретает противоположное направление круговой поляризации и возвращается тем же путем на четвертьволновую пластину 16, пройдя которую приобретает горизонтальную поляризацию. Далее опорный луч проходит через поляризованный светоделитель 14 без изменения плоскости поляризации. После двойного отражения в оптической призме 21 и прохождения через поляризованный светоделитель 14 опорный луч снова попадает на четвертьволновую пластину 16, пройдя через которую, меняет горизонтальную поляризацию на круговую с направлением по часовой стрелке. С помощью поворотных зеркал 18, 20 и двух правых обводных зеркал 22 опорный луч направляется на правое возвратное зеркало 23, расположенное вблизи правого измерительного зеркала 5. После отражения от правого возвратного зеркала 23 опорный луч обретает противоположное направление круговой поляризации и возвращается тем же путем на четвертьволновую пластину 16, пройдя которую приобретает вертикальную поляризацию. Отразившись от наклонной поверхности светоделителя 14, опорный луч совмещается с рабочим лучом. Далее совмещенные опорный и рабочий лучи проходят через поляризационную пластину 17, на которой их плоскости поляризации совмещаются, в результате чего происходит их интерференция. Счет интерференционных линий, перемещение которых обусловлено изменением длины исследуемого образца 3 при его нагревании и охлаждении в камере нагрева 1, осуществляется с помощью фотоприемника 24. Электрические сигналы от фотоприемника 24 и термопары 25, регистрирующей температуру нагрева образца 3, передаются на ПЭВМ 26, где ведется их синхронная запись.

Для измерения удлинения исследуемого образца 3 предварительно производится калибровка дилатометра, которая заключается в следующем. Сначала измерения проводят с образцом из эталонного материала с известными характеристиками изменения ТКЛР в требуемом диапазоне температур (например, с использованием в качестве эталонного образца стандартной меры ТКЛР по ГОСТ 8.018-2007). Размеры эталонного и исследуемого образцов одинаковые, но могут иметь большие допуски на изготовление. Нагревают эталонный образец по определенной программе. В процессе нагрева одновременно производят измерение температуры образца и непрерывную регистрацию с помощью интерферометра общего удлинения системы «эталонный образец - толкатели». В каждый интересующий момент непрерывной регистрации определяют удлинение толкателей 4 путем вычитания расчетного удлинения эталонного образца из общего измеренного удлинения системы «эталонный образец - толкатели». По достижению наибольшей заданной температуры нагрев прекращают, а регистрацию измеряемых параметров продолжают в процессе охлаждения. Заменяют эталонный образец на исследуемый образец, нагревают и охлаждают исследуемый образец по той же программе, что и для эталонного образца, при этом непрерывно регистрируют общее удлинение системы «исследуемый образец - толкатели». В каждый интересующий момент регистрации определяют удлинение исследуемого образца 3 путем вычитания из общего измеренного удлинения системы «исследуемый образец - толкатели» удлинения толкателей 4, полученные ранее при той же температуре нагрева эталонного образца.

Общее удлинение системы «образец - толкатели», измеряемое с помощью интерферометра, определяется по формуле

ΔLизм=(λ/2)⋅m,

где λ - длина волны излучения лазера;

m - число переместившихся интерференционных линий, зафиксированное фотоприемником.

По удлинению исследуемого образца 3 и величине температуры его нагрева в каждый интересующий момент определяют величину среднего интегрального ТКЛР исследуемого материала по формуле

αср=αL/(Lст⋅ΔT),

где Lст - длина исследуемого образца при стандартной температуре Тст=20°С;

ΔT=Tiст - изменение температуры Ti образца относительно стандартной температуры Тст;

ΔL=Li-Lст - удлинение исследуемого образца при изменении его температуры на величину ΔT.

Благодаря объединению измеряемых величин перемещений толкателей в единую регистрируемую величину с помощью оптической системы измерения удлинения образца на основе четырехходового интерферометра снижаются погрешности измерения. Установка образца и толкателей на двух опорах уменьшает площадь поверхности их контакта с опорами, что существенно снижает влияние адгезионных и фрикционных взаимодействий материалов этих деталей в условиях больших температур. Расположение опор исследуемого образца и толкателей от их центра на расстоянии 0,277 длины каждого из них обеспечивает наименьшую величину возможного прогиба исследуемого образца и толкателей, что тоже снижает величину погрешностей измерения. Создание постоянного по величине и симметричного поджима толкателей к исследуемому образцу также способствует уменьшению погрешностей. Горизонтальное расположение испытуемого образца снижает требования к точности его изготовления и установки в дилатометре, что в совокупности с небольшими размерами образца существенно снижает затраты на его изготовление. Кроме того, использование четырехходового интерферометра, в котором обеспечивается прохождение рабочим и опорным лучами одинаковых путей в равных условиях, устраняет погрешности измерения, связанные с изменениями параметров окружающей среды.

Таким образом, описанный дилатометр позволяет повысить точность измерения удлинения образца при определении температурного коэффициента линейного расширения исследуемого материала.

1. Дилатометр, содержащий камеру нагрева, установленный в ней горизонтально исследуемый образец, плотно контактирующие с противоположными торцами образца толкатели, измерительные зеркала, расположенные вне камеры нагрева, лазер и оптическую систему измерения удлинения образца, отличающийся тем, что в съемной трубке с окном установлены исследуемый образец и толкатели каждый на двух симметричных опорах, расположенных от их центра на расстоянии 0,277 длины каждого из них, толкатели плотно и с равным усилием контактируют с исследуемым образцом с помощью системы поджима, измерительные зеркала закреплены непосредственно на концах толкателей, в оптической системе для измерения удлинения образца использован четырехходовой интерферометр, включающий поляризованный светоделитель, делящий луч лазера на рабочий и опорный лучи, две четвертьволновые пластины, поляризационную пластину, три поворотных зеркала, оптическую призму, четыре обводных зеркала для рабочего и опорного лучей, два возвратных зеркала и фотоприемник, при этом фотоприемник и термопара, установленная возле исследуемого образца, для увязки по времени записываемой информации электрически связаны с ПЭВМ.

2. Дилатометр по п. 1, отличающийся тем, что система поджима включает в себя контактирующие с толкателями рычаги, которые через нить с помощью группы блоков связаны с грузом.

3. Дилатометр по п. 1, отличающийся тем, что система поджима включает в себя соединенную с толкателями нить, которая с помощью группы блоков связана с грузом.

4. Дилатометр по п. 1, отличающийся тем, что система поджима включает в себя контактирующие с толкателями рычаги, которые через нить соединены с пружиной.

5. Дилатометр по п. 1, отличающийся тем, что система поджима включает в себя соединенную с толкателями нить, которая с помощью группы блоков связана с пружиной.



 

Похожие патенты:

Изобретение относится к области исследования материалов с помощью теплофизических измерений, а именно к устройствам для измерения температурного коэффициента линейного расширения (ТКЛР).

Изобретение относится к области исследования материалов с помощью теплофизических измерений, а именно к способам измерения температурного коэффициента линейного расширения (ТКЛР).

Изобретение относится к области исследования свойств и контроля качества полимеров в отраслях промышленности, производящих и использующих полимерные материалы, в частности для определения границ фазовых и релаксационных переходов в полимерных материалах.

Изобретение относится к области исследования материалов с помощью теплофизических измерений, а именно к устройствам для измерения температурного коэффициента линейного расширения (ТКЛР).

Изобретение относится к области исследования механических и тепловых свойств материалов. Способ определения температурного коэффициента линейного расширения материала предусматривает перемещение относительно друг друга образца исследуемого материала и источника нагрева поверхности образца.

Изобретение относится к способу и устройству определении давления распирания угля или угольной смеси путем лабораторного исследования. Осуществляют нагревание образца в виде угля или угольной смеси в перфорированной гильзе, находящейся внутри тигля.

Изобретение относится к области исследования физических свойств материалов и может быть использовано преимущественно в дилатометрии, например, для измерения коэффициента линейного расширения.

Изобретение относится к измерительной технике и может быть использовано для измерения линейных перемещений образца под воздействием температуры из различных материалов и для определения содержания углерода в углеродистых сталях.

Изобретение относится к области исследования свойств жидкости и может найти применение в нефтегазовой, химической промышленности и др. Для определения коэффициента объемного теплового расширения жидкости в ячейку калориметра помещают образец исследуемой жидкости и осуществляют ступенчатое повышение давления в ячейке с образцом исследуемой жидкости.

Изобретение относится к области теплофизики и может быть использовано при определении коэффициента термического расширения твердых тел. .

Способ волоконной стабилизации разностей оптических длин пути включает операцию расщепления пучка, излученного лазером, на первый оптический пучок и второй оптический пучок.

Изобретение относится к области метрологии тонких пленок, а именно к способу измерения толщины тонких прозрачных пленок бесконтактным способом с помощью интерферометра.

Изобретение относится к измерительной технике, в частности к способам управления фазовым сдвигом между двумя когерентными монохроматическими световыми волнами в лазерных измерительных информационных системах.

Изобретение относится к измерительной технике, в частности к способам управления фазовым сдвигом между двумя когерентными монохроматическими световыми волнами в лазерных измерительных информационных системах.

Устройство предназначено для исследования упругопластических и прочностных свойств материалов при интенсивных динамических нагрузках. Двухканальная интерферометрическая система состоит из источника одномодового когерентного излучения, исследуемого образца, узла разделения отраженного от исследуемого образца излучения, двух независимых оптических интерферометров, построенных по схеме двухплечевого интерферометра VISAR, и системы регистрации.

Изобретение относится к области метрологии тонких пленок. Способ определения толщины пленки с помощью интерферометрии белого света, при котором подложку, содержащую измеряемую пленку, подвергают в интерферометре воздействию белого света с ограниченной когерентностью и измеряют коррелограммы, характеризуется тем, что предварительно подложку, не содержащую измеряемую пленку, подвергают воздействию белого света с ограниченной когерентностью и определяют набор коррелограмм, кроме того, набор коррелограмм определяют для каждого пикселя оптического поля, после чего выделяют нелинейную в зависимости от волнового числа часть фазового спектра, аппроксимируют фазовые спектры известным теоретическим нелинейным спектром фазового сдвига, вызванного пленкой, определяя локальную толщину пленки как параметр наилучшей аппроксимации, получают в результате набор толщин пленки и положений ее подложки, по результатам которого строятся карты топографии поверхности и толщины пленки, причем нелинейный фазовый спектр объектной коррелограммы поверхности, содержащей пленку, корректируют путем вычитания нелинейного фазового спектра опорной коррелограммы.

Способ однопозиционного определения угловых координат заключается в применении в качестве фотоприемного устройства матричного фотоприемника, осуществляющего прием суммарного излучения сигнальной волны и волны гетеродина.

Способ определения положения объектов относится к оптическим способам определения положения сканирующих датчиков при измерении полного поперечного профиля объекта.

Изобретение может быть использовано для формирования периодических интерференционных картин, например, для записи голографических дифракционных решеток, создания периодических структур различной размерности, реализации Фурье-спектрометров, брэгговских зеркал и т.п.

Голографический способ изучения нестационарных процессов, в котором используют когерентный источник излучения, коллиматор и первый, второй и третий светоделители, а также зеркала, при помощи которых формируют три опорных и один объектный пучки.

Лазерный интерферометр включает источник когерентного монохроматического излучения, коллиматор, светоделитель, разделяющий луч на объектный и опорный пучки. В опорном и объектном пучках установлены акустооптические модуляторы. Опорный и отраженный от исследуемого объекта пучки направляются на общий фотоприемник. Интерферометр содержит линию регулируемой задержки сигнала генератора, которая выполнена в виде ступенчатого фазосдвигателя. Технический результат заключается в повышении точности измерения и помехоустойчивости. 3 з.п. ф-лы, 7 ил.

Изобретение относится к области исследования материалов с помощью теплофизических измерений, а именно к устройствам для измерения температурного коэффициента линейного расширения. Дилатометр содержит камеру нагрева со съемной трубкой, в которой горизонтально установлены исследуемый образец и толкатели, плотно контактирующие с противоположными торцами образца, измерительные зеркала, закрепленные на концах толкателей и расположенные вне камеры нагрева, лазер и оптическую систему измерения удлинения образца. Для создания постоянного по величине и симметричного поджима толкателей к исследуемому образцу используется система поджима. В оптической системе для измерения удлинения образца использован четырехходовой интерферометр, включающий поляризованный светоделитель, делящий луч лазера на рабочий и опорный лучи, две четвертьволновые пластины, поляризационную пластину, три поворотных зеркала, оптическую призму, четыре обводных зеркала для рабочего и опорного лучей, два возвратных зеркала и фотоприемник. Электрические сигналы от фотоприемника и термопары, регистрирующей температуру нагрева образца, передаются на ПЭВМ, где ведется их синхронная запись. Технический результат - повышение точности измерения удлинения образца при определении ТКЛР исследуемого материала 4 з.п. ф-лы, 4 ил.

Наверх