Способ производства композитных карбонизированных изделий

Изобретение относится к производству строительных изделий и может быть использовано в строительной промышленности для производства различных стеновых изделий. Способ производства композитных карбонизированных изделий включает перемешивание гашеной кальциевой или доломитовой извести и карбонатного наполнителя в виде отходов добычи и обработки известняков фракции до 5 мм с получением формовочной массы, карбонизацию изделий углекислым газом. При этом дополнительно проводят порезку изделий. Причем формовочную массу готовят методом экструзии. Осуществляют экструзионное формование изделий из формовочной массы под давлением 55-75 кг·с/см2. При этом в качестве карбонатного наполнителя используют отходы камнепиления известняков-ракушечников или нуммулитовых известняков, или отходы дробления и переработки известняковых пород на щебень, или отходы дробления и переработки вулканических горных пород на щебень. Техническим результатом является повышение прочности изделия. 12 пр.

 

Изобретение относится к производству строительных изделий и может быть использовано в строительной промышленности для производства различных стеновых изделий.

Наиболее близким аналогом выбран способ производства композитных карбонизированных изделий, описанный в изобретении «Способ производства композитных карбонизированных изделий» (патент №90407, МПК С04В 2/00, 2015). Способ включает перемешивание гашеной кальциевой или доломитовой извести и карбонатного наполнителя в виде отходов добычи и обработки известняков фракции до 5 мм с получением формовочной массы, формование изделий прессованием из формовочной массы под давлением 50-150 кг⋅с/см2, карбонизацию изделий углекислым газом величиной потока 0,2 л/см2⋅мин в течение 3-6 ч, в результате чего изделия достигают конечной прочности.

Недостатками ближайшего аналога является формование изделий прессованием под давлением 150 кг⋅с/см2, что влечет за собой необходимость в громоздких дорогостоящих технологических прессах и оснастки, дополнительных затратах времени, а также ведет к увеличению энергозатрат. Как следствие - значительная себестоимость готовой продукции, низкая производительность способа.

Технической задачей изобретения является значительное снижение себестоимости готовых изделий, увеличение производительности способа производства композитных карбонизированных изделий, улучшение экологической ситуации территорий со значительным скоплением отходов камнедобычи известняков.

В основу изобретения поставлена задача усовершенствования способа производства композитных карбонизированных изделий.

Поставленная задача решается тем, что в способе производства композитных карбонизированных изделий, включающем перемешивание гашеной кальциевой или доломитовой извести и карбонатного наполнителя в виде отходов добычи и обработки известняков фракции до 5 мм с получением формовочной массы, карбонизацию изделий углекислым газом, дополнительно проводят порезку изделий, формовочную массу готовят методом экструзии, осуществляют экструзионное формование изделий из формовочной массы под давлением 55-75 кг⋅/см2, а в качестве карбонатного наполнителя используют отходы камнепиления известняков-ракушечников или нуммулитовых известняков, или отходы дробления и переработки известняковых пород на щебень, или отходы дробления и переработки вулканических горных пород на щебень.

Признаками изобретения, которые совпадают с признаками ближайшего аналога, являются наличие в способе производства композитных карбонизированных изделий перемешивания гашеной кальциевой или доломитовой извести и карбонатного наполнителя в виде отходов добычи и обработки известняков фракции до 5 мм с получением формовочной массы, карбонизации изделий углекислым газом.

Отличительными признаками изобретения являются порезка изделий, подготовка формовочной массы методом экструзии, экструзионное формование изделий из формовочной массы под давлением 55-75 кг⋅с/см2, использование в качестве карбонатного наполнителя отходов камнепиления известняков-ракушечников или нуммулитовых известняков, или отходов дробления и переработки известняковых пород на щебень, или отходов дробления и переработки вулканических горных пород на щебень.

Между совокупностью существенных признаков изобретения и техническим результатом существует причинно-следственная связь. В изобретении в качестве вяжущего используют гашеную кальциевую или доломитовую известь, в связи с чем достигается практически полная перекристаллизация гидрата кальция, а соответственно, формируется водонерастворимый каркас из вторичного карбоната кальция - продукта карбонизации, обеспечивающий требуемые нормативные физико-механические характеристики изделия. При этом использование давлений экструзионного формования в интервале 55-75 кг⋅с/см2 позволяет получать изделия с пористостью 40-50%, что значительно облегчает доступ углекислого газа по всему объему изделия. Как результат - быстрая и практически полная карбонизация известковой заготовки. Использование в качестве наполнителя отходов камнедобычи известняков фракцией до 5 мм позволяет создать в известковой заготовке дополнительные центры кристаллизации, а также улучшить контакты срастания на границе «наполнитель - вяжущее» за счет аналогичной структуры вещества наполнителя с продуктом карбонизации извести - вторичным карбонатом кальция.

Способ осуществляется следующим образом.

Гашеную кальциевую или доломитовую известь и карбонатного наполнителя фракцией до 5 мм засыпают в экструдер. В качестве карбонатного наполнителя используют отходы камнепиления известняков-ракушечников или нуммулитовых известняков, или отходы дробления и переработки известняковых пород на щебень, или отходы дробления и переработки вулканических горных пород на щебень. В экструдере с помощью многосекционного шнека материалы перемешиваются в однородную смесь и под давлением проходят через формующую головку. Проэкструдированные под давлением 55-75 кг⋅с/см2 изделия разрезают и подвергают карбонизации углекислым газом величиной потока 0,2 л/см2⋅мин. в течение 3-6 часов в результате чего изделия достигают конечной прочности. Далее изделия отпускаются потребителю.

Пример 1

Гашеную кальциевую известь и отходы камнепиления известняков-ракушечников фракцией до 5 мм засыпают в экструдер. В экструдере с помощью многосекционного шнека материалы перемешиваются в однородную смесь и под давлением 55 кг⋅с/см2 проходят через формующую головку. Проэкструдированные изделия разрезают и подвергают карбонизации углекислым газом величиной потока 0,2 л/см2⋅мин в течение 3-6 ч в результате чего изделия достигают конечной прочности - 9 МПа, средней плотности - 1650 кг/м3 при коэффициенте размягчения 0,8.

Пример 2

Гашеную кальциевую известь и отходы нуммулитовых известняков фракцией до 5 мм засыпают в экструдер. В экструдере с помощью многосекционного шнека материалы перемешиваются в однородную смесь и под давлением 55 кг⋅с/см2 проходят через формующую головку. Проэкструдированные изделия разрезают и карбонизируют, в результате чего изделия достигают конечной прочности - 12 МПа, средней плотности - 1600 кг/м3 при коэффициенте размягчения 0,8.

Технологические параметры карбонизации изделий те же, что и в примере 1.

Пример 3

Гашеную кальциевую известь и отходы дробления и переработки известняковых пород на щебень фракцией до 5 мм засыпают в экструдер. В экструдере с помощью многосекционного шнека материалы перемешиваются в однородную смесь и под давлением 55 кг⋅с/см2 проходят через формующую головку. Проэкструдированные изделия разрезают и карбонизируют, в результате чего изделия достигают конечной прочности - 16 МПа, средней плотности - 1450 кг/м3 при коэффициенте размягчения 0,8.

Технологические параметры карбонизации изделий те же, что и в примере 1.

Пример 4

Гашеную кальциевую известь и отходы дробления и переработки вулканических горных пород на щебень фракцией до 5 мм засыпают в экструдер. В экструдере с помощью многосекционного шнека материалы перемешиваются в однородную смесь и под давлением 55 кг⋅с/см2 проходят через формующую головку. Проэкструдированные изделия разрезают и карбонизируют, в результате чего изделия достигают конечной прочности - 18 МПа, средней плотности - 1250 кг/м3 при коэффициенте размягчения 0,8.

Технологические параметры карбонизации изделий те же, что и в примере 1.

Пример 5

Гашеную кальциевую известь и отходы камнепиления известняков-ракушечников фракцией до 5 мм засыпают в экструдер. В экструдере с помощью многосекционного шнека материалы перемешиваются в однородную смесь и под давлением 65 кг⋅с/см2 проходят через формующую головку. Проэкструдированные изделия разрезают и карбонизируют, в результате чего изделия достигают конечной прочности - 11 МПа, средней плотности - 1650 кг/м3 при коэффициенте размягчения 0,8.

Пример 6

Гашеную кальциевую известь и отходы нуммулитовых известняков фракцией до 5 мм засыпают в экструдер. В экструдере с помощью многосекционного шнека материалы перемешиваются в однородную смесь и под давлением 65 кг⋅с/см2 проходят через формующую головку. Проэкструдированные изделия разрезают и карбонизируют, в результате чего изделия достигают конечной прочности - 14 МПа, средней плотности - 1550 кг/м3 при коэффициенте размягчения 0,8.

Технологические параметры карбонизации изделий те же, что и в примере 1.

Пример 7

Гашеную кальциевую известь и отходы дробления и переработки известняковых пород на щебень фракцией до 5 мм засыпают в экструдер. В экструдере с помощью многосекционного шнека материалы перемешиваются в однородную смесь и под давлением 65 кг⋅с/см2 проходят через формующую головку. Проэкструдированные изделия разрезают и карбонизируют, в результате чего изделия достигают конечной прочности - 18 МПа, средней плотности - 1500 кг/м3 при коэффициенте размягчения 0,8.

Технологические параметры карбонизации изделий те же, что и в примере 1.

Пример 8

Гашеную кальциевую известь и отходы дробления и переработки вулканических горных пород на щебень фракцией до 5 мм засыпают в экструдер. В экструдере с помощью многосекционного шнека материалы перемешиваются в однородную смесь и под давлением 65 кг⋅с/см2 проходят через формующую головку. Проэкструдированные изделия разрезают и карбонизируют, в результате чего изделия достигают конечной прочности - 20 МПа, средней плотности - 1350 кг/м3 при коэффициенте размягчения 0,8.

Технологические параметры карбонизации изделий те же, что и в примере 1.

Пример 9

Гашеную кальциевую известь и отходы камнепиления известняков-ракушечников фракцией до 5 мм засыпают в экструдер. В экструдере с помощью многосекционного шнека материалы перемешиваются в однородную смесь и под давлением 75 кг⋅с/см2 проходят через формующую головку. Проэкструдированные изделия разрезают и карбонизируют, в результате чего изделия достигают конечной прочности - 13 МПа, средней плотности - 1700 кг/м3 при коэффициенте размягчения 0,8.

Пример 10

Гашеную кальциевую известь и отходы нуммулитовых известняков фракцией до 5 мм засыпают в экструдер. В экструдере с помощью многосекционного шнека материалы перемешиваются в однородную смесь и под давлением 75 кг⋅с/см2 проходят через формующую головку. Проэкструдированные изделия разрезают и карбонизируют, в результате чего изделия достигают конечной прочности - 17 МПа, средней плотности - 1500 кг/м3 при коэффициенте размягчения 0,8.

Технологические параметры карбонизации изделий те же, что и в примере 1.

Пример 11

Гашеную кальциевую известь и отходы дробления и переработки известняковых пород на щебень фракцией до 5 мм засыпают в экструдер. В экструдере с помощью многосекционного шнека материалы перемешиваются в однородную смесь и под давлением 75 кг⋅с/см2 проходят через формующую головку. Проэкструдированные изделия разрезают и карбонизируют, в результате чего изделия достигают конечной прочности - 20 МПа, средней плотности - 1300 кг/м3 при коэффициенте размягчения 0,8.

Технологические параметры карбонизации изделий те же, что и в примере 1.

Пример 12

Гашеную кальциевую известь и отходы дробления и переработки вулканических горных пород на щебень фракцией до 5 мм засыпают в экструдер. В экструдере с помощью многосекционного шнека материалы перемешиваются в однородную смесь и под давлением 75 кг⋅с/см2 проходят через формующую головку. Проэкструдированные изделия разрезают и карбонизируют, в результате чего изделия достигают конечной прочности - 22 МПа, средней плотности - 1200 кг/м3 при коэффициенте размягчения 0,8.

Технологические параметры карбонизации изделий те же, что и в примере 1.

При использовании доломитовой извести для производства композитных карбонизированных изделий технические характеристики изделий лежат в пределах: прочность 9-22 МПа, средняя плотность 1200-1700 кг/м3, коэффициент размягчения 0,75-0,85.

В результате реализации предложенного способа производства композитных карбонизированных изделий получают прочный искусственный материал прочностью 9-22 МПа, при средней плотности 1200-1700 кг/м3, коэффициент размягчения которого составляет 0,75-0,85, что достаточно для изготовления различных стеновых изделий.

Способ производства композитных карбонизированных изделий, включающий перемешивание гашеной кальциевой или доломитовой извести и карбонатного наполнителя в виде отходов добычи и обработки известняков фракции до 5 мм с получением формовочной массы, карбонизацию изделий углекислым газом, отличающийся тем, что дополнительно проводят порезку изделий, формовочную массу готовят методом экструзии, осуществляют экструзионное формование изделий из формовочной массы под давлением 55-75 кг·с/см2, а в качестве карбонатного наполнителя используют отходы камнепиления известняков-ракушечников или нуммулитовых известняков, или отходы дробления и переработки известняковых пород на щебень, или отходы дробления и переработки вулканических горных пород на щебень.



 

Похожие патенты:

Группа изобретений относится к области строительных материалов и может быть использовано в качестве добавки в строительную смесь. Способ бетонирования при отрицательных температурах заключается в добавлении в строительную смесь частиц шлама от выплавки стали, покрытых полиэтиленовой оболочкой, в количестве от 2 до 10% от общей массы строительной смеси, и воздействии на указанные частицы пульсирующим электромагнитным полем, время воздействия зависит от температуры окружающей среды и объема строительной смеси.

Изобретение относится к области строительства и может быть использовано для прогрева монолитной части узла примыкания ригелей к колонне зданий с сборно-монолитным каркасом.

Изобретение относится к области производства строительных материалов, конкретно к получению композиционных теплоизоляционных негорючих заполнителей, используемых в качестве негорючих утеплителей в различных конструкциях и элементах зданий и строительных сооружений.

Изобретение относится к области строительства и предназначено для покрытия скоростных трасс, аэродромов, площадок различного назначения, требующих высокой прочности покрытий, для ремонта дорожных покрытий, нанесения разметки на дорожные покрытия, а также для нанесения покрытий на поверхности, требующие уменьшения эффективности отражательной способности электромагнитного излучения.

Изобретение относится к производству конструкционно-теплоизоляционных материалов. В способе изготовления конструкционно-теплоизоляционного материала, включающем измельчение силикат-глыбы до удельной поверхности 2500 см2/г, смешивание ее с модификатором, упрочняющей добавкой - портлантцементом, базальтовой микрофиброй и водой затворения, помещение полученной смеси в форму, тепловую обработку токами СВЧ в течение 15 минут при температуре 300 град С, в качестве модификатора используют гидрофобизатор 136-41 при следующем соотношении компонентов смеси, мас.

Изобретение относится к производству изделий из газобетона и может быть использовано в домостроении для изготовления строительных блоков, а также в дорожном строительстве для изготовления бордюров, ограждений и плиток.

Изобретение относится к промышленности строительных материалов и может быть использовано для производства конструкционно-теплоизоляционных изделий и конструкций из ячеистого бетона.
Изобретение относится к производству газобетонов, используемых в малоэтажном строительстве. В способе изготовления газобетона, включающем дозирование и смешивание молотой извести, кварцевого песка, муки из известняка, алюминиевой пудры, воды, укладку полученной смеси в формы, затвердевание, извлечение массива из форм, тепловлажностную обработку, карбонизацию в среде углекислого газа, используют молотую негашеную известь, тепловлажностную обработку массива осуществляют в пропарочных камерах, а его карбонизацию - в течение 3 или 4 ч в среде углекислого газа в герметичных камерах, причем перед карбонизацией массива на решетчатых или сетчатых поверхностях в тех же герметичных камерах проводят его вакуумирование.

Изобретение относится к строительной промышленности и может быть использовано при производстве бетонных и железобетонных изделий, а именно в процессе тепловой обработки отформованных бетонных и железобетонных изделий в камере обработки.

Группа изобретений относится к промышленности строительных материалов и может быть использована для изготовления теплоизоляционных ячеистых бетонов неавтоклавного твердения различного назначения.

Способ изготовления строительного кирпича, строительный кирпич и блок из строительных кирпичей используются при строительстве стен с высокой изолирующей способностью.

Способ изготовления строительного кирпича, строительный кирпич и блок из строительных кирпичей используются при строительстве стен с высокой изолирующей способностью.

В настоящем документе описаны цементные композиции и способы применения цементных композиций в подземных пластах. В одном из вариантов реализации изобретения предложен способ цементирования в подземном пласте, включающий: обеспечение цементной композиции, содержащей воду, пуццолан, гашеную известь и цеолитный активатор; и обеспечение возможности схватывания цементной композиции в подземном пласте, причем цеолитный активатор расположен на поверхности пуццолана.

Изобретение относится к строительному кирпичу с ячеистой структурой, использующемуся при сооружении стен, плов, перегородок или других элементов зданий. Технический результат заключается в повышении изолирующих свойств.

Изобретение относится к области получения безобжиговых теплоизоляционных огнеупорных изделий для металлургии и теплоэнергетики для футеровки тепловых агрегатов, металлоплавильных и металлоразливочных устройств, электролизеров в алюминиевом и других высокотемпературных производствах.

Изобретение относится к производству силикатных прессованных изделий и стеновых материалов. Технический результат заключается в расширении сырьевой базы, увеличении сырцовой и автоклавной прочности, снижении расхода сырьевых материалов.

Изобретение относится к способу получения пористой кремниево-известковой структуры, а также ее использование в производстве строительного кирпича с высокой изоляционной способностью.

Изобретение относится к способу цементирования в подземной формации, включающему: приготовление медленно застывающей цементной композиции, содержащей воду, пемзу, гашеную известь, диспергирующий агент и замедлитель схватывания, где замедлитель схватывания содержит производное фосфоновой кислоты, а диспергирующий агент содержит диспергирующий агент на основе поликарбоксилированного эфира; активацию медленно застывающей цементной композиции; введение медленно застывающей цементной композиции в подземную формацию; и предоставление возможности медленно застывающей цементной композиции схватиться в подземной формации.
Изобретение относится к производству строительных материалов. Технический результат заключается в повышении морозостойкости силикатных изделий (кирпича, блоков).
Изобретение относится к строительной отрасли и может быть использовано для производства стеновых изделий. Способ производства композитных карбонизированных изделий включает формование изделий из формовочной массы, полученной на основе гашеной кальциевой или доломитовый извести и наполнителя в виде отходов добычи и обработки известняков фракции до 5 мм, формование осуществляют под давлением 50-150 кгс/см2, карбонизацию изделий углекислым газом величиной потока 0,2 л/см2 мин в течение 3-6 ч.
Изобретение относится к строительной отрасли и может быть использовано для производства стеновых изделий. Способ производства композитных карбонизированных изделий включает формование изделий из формовочной массы, полученной на основе гашеной кальциевой или доломитовый извести и наполнителя в виде отходов добычи и обработки известняков фракции до 5 мм, формование осуществляют под давлением 50-150 кгс/см2, карбонизацию изделий углекислым газом величиной потока 0,2 л/см2 мин в течение 3-6 ч.
Наверх