Способ определения величины объемного заряда облаков



Способ определения величины объемного заряда облаков
Способ определения величины объемного заряда облаков
Способ определения величины объемного заряда облаков
Способ определения величины объемного заряда облаков

Владельцы патента RU 2642830:

Федеральное государственное бюджетное учреждение "Научно-производственное объединение "Тайфун" (RU)

Изобретение относится к метеорологии и может быть использовано в системах мониторинга опасных явлений погоды, а также в исследованиях электрических процессов в атмосфере и геофизических исследованиях. Достигаемый технический результат – упрощение определения объемной плотности грозоопасного заряда на основе использования сетевых геомагнитных, метеорологических и спутниковых данных, а также расширение возможностей его определения в случае движущихся облаков по их собственному магнитному полю, что в свою очередь открывает возможность получения прогностических оценок развития грозы. Указанный результат достигается за счет того, что: величину объемной плотности движущегося на определенной высоте заряда облака определяют по величине скорости движения V, индукции его собственного магнитного поля ΔВ и по геометрическим параметрам расположения центральной части объемного заряда относительно точки регистрации магнитной индукции в соответствии с формулой:

,

где ρ - объемная плотность заряда облака (Кл/м3);

ΔВ - магнитная индукция движущегося объемного заряда облака (Тл);

V - скорость движения объемного заряда (м/с);

Hh и - высоты верхней и нижней границ облаков, соответственно (м);

L - ширина массива движущихся облаков по линии, перпендикулярной вектору скорости (м);

α - угол между вертикалью и направлением на центр объемного заряда от точки регистрации магнитной индукции (рад);

μ0 - магнитная постоянная, равная 4π×10-7 (Гн/м).

Среднюю скорость и направление движения облаков V в районе наблюдения определяют по результатам измерения вертикального профиля скорости ветра на сетевых аэрологических станциях с помощью радиозондов, а также по спутниковым наблюдениям. Величину индукции ΔВ движущегося объемного заряда облаков определяют по разности индукций геомагнитного поля, регистрируемых на ближайшей сетевой геомагнитной обсерватории, где по спутниковым снимкам не наблюдается облаков, и на аналогичной геомагнитной обсерватории, где наблюдается прохождение потенциально опасной облачности. Ширину облачного массива L по линии, перпендикулярной вектору скорости движения, и высоту верхней границы облаков Hh определяют по данным спутниковых наблюдений. Высоту нижней границы облаков определяют по данным измерителя нижней границы облачности на ближайшей метеостанции, входящей в состав гидрометеорологической сети.

 

Описание изобретения

Изобретение относится к метеорологии и, в частности, к дистанционным пассивным методам контроля электрического состояния облачности. Оно может быть использовано в системах мониторинга грозоопасных явлений погоды, а также в геофизических исследованиях.

Известен дистанционный активный способ измерения параметров электрических зарядов атмосферы [1. Патент РФ №2491574], при котором плотность электрического заряда облаков вычисляется с помощью специальных формул по регистрируемым параметрам отраженных электромагнитных волн от исследуемой области.

Основным недостатком способа является необходимость использования радиолокаторов для зондирования исследуемой области облаков электромагнитным излучением с заданными характеристиками. В труднодоступных районах и, особенно, при мониторинге за пределами страны возможности метода весьма ограничены.

Наиболее близким по технической сущности к заявляемому способу определения величины заряда облаков (прототипом к предлагаемому изобретению) является способ определения параметров заряда, вовлеченного в грозовой разряд [2. Авторское свидетельство СССР №1583908, приоритет от 23.08.88 г., Бюл. №29 от 07.08.1990 г.].

Данный способ заключается в том, что в двух и более разнесенных пунктах специальной сети наблюдений располагают датчики электрического и магнитного полей с приборами, регистрирующими скачки напряженности электрического и магнитного полей во время разрядов молний. Далее, решая сложную систему уравнений, определяют параметры заряда, вовлеченного в грозовой разряд.

Данный способ обладает некоторыми недостатками. Во-первых, он не позволяет определить величину потенциально опасного заряда облаков еще не вовлеченного в молниевый разряд. Во-вторых, данным способом невозможно определить движущийся в пространстве и изменяющийся во времени объемный заряд облаков, потенциально грозоопасный для района прохождения. В-третьих, в условиях начавшихся осадков невозможно корректно измерить напряженность вертикальной компоненты электрического поля Ez, поскольку осадки сильно искажают показания датчиков электрического поля (электростатических флюксметров). В итоге, этот способ работает только в периоды, когда осадки отсутствуют.

Цель изобретения - упрощение определения объемной плотности грозоопасного заряда на основе использования сетевых геомагнитных, метеорологических и спутниковых данных, а также расширение возможностей его определения на случай движущихся облаков по их собственному магнитному полю и на случай выпадения осадков.

Технический результат достигается следующим образом.

Среднюю высоту, скорость и направление движения облаков в районе наблюдения определяют по результатам измерения вертикального профиля скорости ветра на сетевых аэрологических станциях с помощью радиозондов.

Известно, что движущийся объемный заряд создает собственное магнитное поле, индукция которого пропорциональна произведению величины заряда на скорость его перемещения [3. Яворский Б.М., Детлаф А.А. Справочник по физике - М., «Наука», 1974, 942 с.]. При отсутствии облачности или объемных зарядов в атмосфере разность текущих значений магнитной индукции, регистрируемой на двух ближайших сетевых геомагнитных обсерваториях, сохраняется близкой к нулю. При прохождении грозоопасной облачности над одной из обсерваторий магнитометры реагируют на изменение индукции геомагнитного поля, вызванное прохождением облачного заряда. Таким образом, величину индукции движущегося объемного заряда облаков можно определить по разности индукций геомагнитного поля ΔВ, регистрируемых на ближайшей (опорной) геомагнитной обсерватории, где по спутниковым снимкам не наблюдается облаков, и на геомагнитной обсерватории, где наблюдается прохождение потенциально опасной облачности.

Величину объемной плотности движущегося заряда облака определяют по величине скорости движения V, индукции его собственного магнитного поля ΔВ и по геометрическим параметрам расположения центральной части объемного заряда относительно точки регистрации магнитной индукции в соответствии с формулой:

,

где ρ - объемная плотность заряда облака (Кл/м);

ΔВ - магнитная индукция движущегося объемного заряда облака (Тл);

V - скорость движения объемного заряда (м/с);

Hh и - высоты верхней и нижней границ облаков, соответственно (м);

L - ширина массива движущихся облаков по линии, перпендикулярной вектору скорости (м);

α - угол между вертикалью и направлением на центр объемного заряда от точки регистрации магнитной индукции (рад);

μ0 - магнитная постоянная, равная 4π×10-7 (Гн/м).

В качестве примера рассмотрим применение предлагаемого способа для достижения технического результата на основе реальных данных.

Параметры мощного циклона, быстро перемещавшегося 4-5 апреля 2012 г. с запада на восток по Калужской (над Обнинском) и Московской областям с аномально сильным снегопадом и характеризовавшегося как опасное метеорологическое явление, подробно рассмотрены в статье [4. А.Ф. Нерушев, М.А. Новицкий, О.Ю. Калиничева, Л.К. Кулижникова, Л.И. Милехин, Д.Е. Чечин - Динамика атмосферных характеристик в период интенсивного снегопада в центральной части ЕТР в апреле 2012 года, «Метеорология и гидрология», 2013, №2].

На аэрологической станции (г. Долгопрудный, Московская обл.) в это время зарегистрирована средняя скорость перемещения средней части облачной толщи, с положительным зарядом, равная 22 м/с.

Разность индукций ΔВ геомагнитного поля, на обсерватории (Ярославская обл.), где отсутствовала облачность по спутниковым снимкам, и в Обнинске, Калужская обл., где за несколько часов до выпадения снега наблюдалась мощная облачность, предшествовшая снегопаду, равнялась 4 нТл.

Подставляя в вышеприведенную формулу высоту верхней границы облаков Hh=10000 м и ширину облачного массива L=3⋅105 м по данным спутниковых наблюдений из [4], а также высоту нижней границы облачности по данным метеостанции в г. Малоярославце , величину магнитной индукции ΔВ=4⋅10-9 Тл, скорость перемещения центральной части объемного заряда V=22 м/с и учитывая, что cosα=1 (середина облачного массива проходила над Обнинском), получим ρ=23⋅10-10 Кл/м3.

Этот результат согласуется с данными непосредственных экспериментальных измерений величины плотности объемного облачного заряда в опасных метеорологических ситуациях [5. Имянитов И.М. Электрическая структура мощных конвективных облаков (Си cong.) и ее связь с движениями воздуха в облаках. - В кн.: Исследование облаков, осадков и грозового электричества. М., Гидрометеоиздат, 1961, с. 225-238].

Предлагаемое техническое решение применимо на практике, поскольку для его реализации могут быть использованы данные наблюдений сети стандартных аэрологических, метеорологических станций, геомагнитных обсерваторий, а также спутниковые снимки земной поверхности как на территории Российской Федерации, так и за рубежом.

Использованные источники

1. Патент РФ №2491574.

2. Авторское свидетельство СССР №1583908, приоритет от 23.08.88 г., Бюл. №29 от 07.08.1990 г. (прототип).

3. Яворский Б.М., Детлаф А.А. Справочник по физике - М., «Наука», 1974, 942 с.

4. А.Ф. Нерушев, М.А. Новицкий, О.Ю. Калиничева, Л.К. Кулижникова, Л.И. Милехин, Д.Е. Чечин - Динамика атмосферных характеристик в период интенсивного снегопада в центральной части ЕТР в апреле 2012 года, «Метеорология и гидрология», 2013, №2.

5. Имянитов И.М. Электрическая структура мощных конвективных облаков (Си cong.) и ее связь с движениями воздуха в облаках. - В кн.: Исследование облаков, осадков и грозового электричества. М., Гидрометеоиздат, 1961, с. 225-238.

Способ определения объемной плотности заряда облаков, заключающийся в том, что для упрощения определения величины объемной плотности грозоопасного заряда и расширения возможностей его определения на случай движущихся облаков по их собственному магнитному полю и на случай выпадения осадков, объемная плотность заряда определяется по величине скорости движения V, индукции его собственного магнитного поля ΔB и по геометрическим параметрам расположения центральной части объемного заряда относительно точки регистрации магнитной индукции в соответствии с формулой:

где ρ - объемная плотность заряда облака (Кл/м3);

ΔB - магнитная индукция движущегося объемного заряда облака (Тл);

V - скорость движения объемного заряда (м/с);

Hh и - высоты верхней и нижней границ облаков, соответственно (м);

L - ширина массива движущихся облаков по линии, перпендикулярной вектору скорости (м);

α - угол между вертикалью и направлением на центр объемного заряда от точки регистрации магнитной индукции (рад);

μ0 - магнитная постоянная, равная 4π×10-7 (Гн/м).



 

Похожие патенты:

Группа изобретений относится к метеорологии и может быть использована для измерения скорости ветра и температуры воздуха в атмосферном пограничном слое до высоты 2-3 км.

Изобретение относится к области метеорологии и может быть использовано для дистанционного измерения параметров атмосферы. Сущность: устройство состоит из сканирующего устройства и приемоответчика.

Изобретение относится к исследованиям в области индикации и идентификации химических веществ, в частности к оптимизации способа проведения специального химического контроля.

Способ определения скорости ветра над водной поверхностью, в котором получают при помощи двух оптических систем на основе линеек ПЗС-фотодиодов с разными направлениями визирования два пространственно-временных изображения водной поверхности.

Изобретение относится к измерительной технике и может быть использовано при мониторинге атмосферного давления в метеорологии, климатологии и экологии. Способ измерения атмосферного давления заключается в измерении изменения электросопротивления деформируемой части анероидной коробки, которая выполнена из сплава с эффектом памяти формы со сверхупругими свойствами.

Изобретение относится к устройствам контроля параметров окружающей среды преимущественно в производственных помещениях. Сущность: устройство содержит Х метеорологических датчиков (1), Y датчиков (2) экологического мониторинга, Z датчиков (3) измерения показателей производственной среды, интеграторы (4) показаний датчиков (1-3), преобразователи (5) сигнала на каждый интегратор (4), блок (6) измерения, задатчики (7) предельно допустимых показателей на каждый датчик (1-3), блоки (8) сравнения на каждый датчик (1-3) и задатчик (7), блок (9) сопряжения, блок (10) питания, блок (11) управления режимами, блок (12) управления и связи, монитор (13) питания, дополнительный источник (14) питания, буфер (15) питания, блок (16) энергонезависимой памяти, блок (17) ввода-вывода, газоразрядники (18), супрессоры (19), дополнительные газоразрядники (20) и дополнительные супрессоры (21).

Изобретение относится к области авиационного приборостроения и может быть использовано в авиационной метеорологии при измерении параметров динамики атмосферы в приземном слое для оценки условий взлета и посадки летательных аппаратов, при прогнозировании экологической обстановки в зонах техногенных катастроф, а также на воздушных и морских судах при измерении параметров вектора скорости ветра.

Изобретение предназначено для использования при непрерывном экологическом контроле окружающей среды. Передвижная лаборатория мониторинга окружающей среды содержит автомобиль-носитель, навигационную систему на базе GPS и электронный компас, контрольно-измерительную аппаратуру, лабораторию, автоматизированное рабочее место и технологическое оборудование.

Изобретение относится к мобильным техническим средствам отбора и количественного химического анализа проб атмосферного воздуха и промышленных выбросов и может быть использовано в системе экологического мониторинга для оперативного и достоверного определения источников сверхнормативного загрязнения объектов окружающей природной среды на локальных городских территориях.

Изобретение относится к устройствам для измерения метеорологических параметров в системах контроля температуры нагреваемого оборудования. Сущность: устройство содержит шарообразный датчик (1), внутри которого расположены датчик (2) температуры и нагревательный элемент (3) с постоянной мощностью нагрева.

Предложен способ определения скорости ветра над водной поверхностью, в котором получают более двух пространственно-временных изображений водной поверхности из оптических изображений, полученных с помощью более чем двух оптических систем на основе линеек ПЗС-фотодиодов, синхронизированных между собой единым задающим генератором и установленных с разными направлениями визирования в заданном угловом секторе, определяемом азимутальным углом между крайними линейками ПЗС-фотодиодов, причем каждая линейка ПЗС-фотодиодов регистрирует одномерные оптические изображения с захватом линии горизонта и части неба под малыми углами наблюдения, стыкуют по дальности два полученных с соседних линеек ПЗС-фотодиодов изображения по дальности, определяют направления распространения ветровых порывов (определяют углы между направлениями визирования соседних линеек ПЗС-фотодиодов и направлением движения полос ветровых порывов между соседними линейками ПЗС-фотодиодов) и скорость ветровых порывов для соседних линеек ПЗС-фотодиодов по углам наклона полос ветровых порывов на пространственно-временных изображениях, полученных соседними линейками ПЗС-фотодиодов, и известному углу между направлениями визирования соседних линеек ПЗС-фотодиодов, скорость ветра определяют над каждой точкой водной поверхности в направлении визирования каждой линейки ПЗС-фотодиодов из известной модельной зависимости дисперсии уклонов волн от скорости ветра с учетом направления ветровых порывов, а значение дисперсии уклонов волн в направлении визирования в каждой точке водной поверхности получают решая задачу «обращения» зависимости яркости водной поверхности от дисперсии уклонов волн с учетом углового распределения яркости неба, причем для решения задачи «обращения» используют в каждой точке водной поверхности в направлении визирования каждой линейки ПЗС-фотодиодов сравнение измеренной яркости водной поверхности, нормированной на яркость неба у горизонта, зарегистрированной в оптическом изображении водной поверхности, и модельной (расчетной) нормированной яркости водной поверхности, при этом в формуле для яркости водной поверхности используют либо аналитическое выражение для углового распределения яркости неба в зависимости от условий освещения, либо используют угловое распределение яркости неба и окологоризонтного участка водной поверхности, зарегистрированное в цифровом виде в случае необходимости достижения высокого пространственного разрешения на водной поверхности в направлении визирования линеек ПЗС-фотодиодов либо с помощью двух взаимно откалиброванных видеокамер, на объективы которых установлены поляроиды с вертикально и горизонтально расположенными осями пропускания, либо с помощью одной видеокамеры, на объектив которой, как и на объективы линеек ПЗС-фотодиодов, установлены поляроиды или с вертикально, или с горизонтально расположенной осью пропускания, при этом в линейках ПЗС-фотодиодов используют длиннофокусные узкоугольные объективы, а в случае необходимости достижения широкой полосы обзора - с помощью самих линеек ПЗС-фотодиодов с установленными на них широкоугольными объективами и установленными на объективах поляроидами с вертикально или горизонтально расположенной осью пропускания.

Способ дистанционного оптического зондирования неоднородной атмосферы содержит этап посылки в атмосферу световых импульсов из точек, разнесенных в пространстве, по трассам, пересекающимся в заданной точке, и по дополнительным трассам, пересекающим эти трассы с образованием областей зондирования, ограниченных отрезками между точками их пересечения, приема сигналов, рассеянных в обратном направлении.
Изобретение относится к метеорологии, а именно к способам обнаружения штормовой погоды в океане. Согласно способу обнаружения шторма в океане со спутника облучают поверхность океана оптическим излучением и принимают отраженный сигнал.

Предложен способ определения атмосферного потенциала обледенения. Способ содержит испускание (304) допплеровским гетеродинным лидаром (прибором светового обнаружения и определения дальности) (108а, 108b) электромагнитного излучения в атмосферу и прием излучения, обратнорассеянного от аэрозоля, в частности, от облака.
Изобретение относится к технике измерения оптических характеристик атмосферы. Одновременно с первым зондирующим импульсом производят включение фотоприемника излучения первым стробом-импульсом питания.

Оптический блок может быть использован для измерения характеристик облачности, преимущественно, на аэродроме с целью метеообеспечения взлета/посадки информацией о высоте нижней границы облаков.

Изобретение относится к области метеорологии, а более конкретно к способам определения характеристик загрязнения атмосферы, и может быть использовано для измерения прозрачности неоднородной атмосферы лидарными системами при определении аэрозольного загрязнения воздуха.
В наблюдаемое облако с установленного на поверхности Земли или вблизи этой поверхности лазерного излучателя в тело облака посылают импульсное лазерное излучение с длительностью импульсов излучения 10-20 нс и с промежутком времени между импульсами не более 2 с.

Изобретение относится к области метеорологии, а более конкретно - к способам определения характеристик слабо рассеивающей атмосферы. Согласно способу осуществляют посылку в атмосферу световых импульсов из точек, разнесенных в пространстве, по пересекающимся трассам зондирования, проходящим по неколлинеарным направлениям.

Изобретение относится к метеорологии, к способам для определения физических параметров атмосферы, и позволяет определять направление и скорость движения нижней границы облачности (НГО).

Изобретение относится к системам для обнаружения объекта путем отражения от его поверхности радиоволн и может быть использовано в радиолокации для распознавания разрушения (подрыва) самолета.

Изобретение относится к метеорологии и может быть использовано в системах мониторинга опасных явлений погоды, а также в исследованиях электрических процессов в атмосфере и геофизических исследованиях. Достигаемый технический результат – упрощение определения объемной плотности грозоопасного заряда на основе использования сетевых геомагнитных, метеорологических и спутниковых данных, а также расширение возможностей его определения в случае движущихся облаков по их собственному магнитному полю, что в свою очередь открывает возможность получения прогностических оценок развития грозы. Указанный результат достигается за счет того, что: величину объемной плотности движущегося на определенной высоте заряда облака определяют по величине скорости движения V, индукции его собственного магнитного поля ΔВ и по геометрическим параметрам расположения центральной части объемного заряда относительно точки регистрации магнитной индукции в соответствии с формулой: ,где ρ - объемная плотность заряда облака ;ΔВ - магнитная индукция движущегося объемного заряда облака ;V - скорость движения объемного заряда ;Hh и - высоты верхней и нижней границ облаков, соответственно ;L - ширина массива движущихся облаков по линии, перпендикулярной вектору скорости ;α - угол между вертикалью и направлением на центр объемного заряда от точки регистрации магнитной индукции ;μ0 - магнитная постоянная, равная 4π×10-7.Среднюю скорость и направление движения облаков V в районе наблюдения определяют по результатам измерения вертикального профиля скорости ветра на сетевых аэрологических станциях с помощью радиозондов, а также по спутниковым наблюдениям. Величину индукции ΔВ движущегося объемного заряда облаков определяют по разности индукций геомагнитного поля, регистрируемых на ближайшей сетевой геомагнитной обсерватории, где по спутниковым снимкам не наблюдается облаков, и на аналогичной геомагнитной обсерватории, где наблюдается прохождение потенциально опасной облачности. Ширину облачного массива L по линии, перпендикулярной вектору скорости движения, и высоту верхней границы облаков Hh определяют по данным спутниковых наблюдений. Высоту нижней границы облаков определяют по данным измерителя нижней границы облачности на ближайшей метеостанции, входящей в состав гидрометеорологической сети.

Наверх