Устройство для измерения акустического сигнала от деталей турбомашины

Изобретение относится к измерительным устройствам, в частности к устройствам диагностики технического состояния подшипниковых опор авиационных газотурбинных двигателей. Устройство для измерения акустического сигнала от деталей турбомашины содержит трубчатый полый корпус, установленный в газовоздушном тракте турбомашины, микрофон, установленный в трубчатом полом корпусе и зафиксированный от смещения относительно продольной оси последнего. Причём со стороны измерительной части микрофона канал трубчатого полого корпуса перекрывает торцевая перфорированная крышка, жестко закрепленная относительно последнего. При этом между микрофоном и торцевой перфорированной крышкой образована полость, заполненная звукопоглощающим материалом. Кроме того, трубчатый полый корпус соединен с наружным корпусом турбомашины посредством фиксирующего элемента. Изобретение позволяет повысить амплитуду полезного акустического сигнала, а также позволяет исключить изменение его параметров за счет установки устройства непосредственно вблизи от объекта диагностирования, что приводит к улучшению качество сигнала. 1 ил.

 

Предлагаемое изобретение относится к измерительным устройствам, в частности к устройствам диагностики технического состояния подшипниковых опор авиационных ГТД.

Известно устройство для измерения акустического сигнала, в частности микрофон (см. ссылку сети Интернет https://www.valuetronics.com/detail/Used-bruel-and-kjaer-4134.cfm).

Данное устройство выбрано в качестве прототипа.

Известному устройству присущи следующие недостатки:

Известный микрофон фиксируется снаружи корпуса турбомашины, т.к. его конструкция не позволяет его надежно разместить непосредственно рядом с исследуемым узлом внутри корпуса турбомашины. В связи с этим увеличивается расстояние, которое проходят виброакустические колебания, а также происходит их ослабление и изменение параметров из-за флуктации, связанной с прохождением сварных, болтовых и т.п. соединений. Все это ослабляет амплитуду полезного акустического сигнала.

Техническим результатом, достигаемым при использовании заявленного изобретения, является повышение амплитуды полезного акустического сигнала, исключение изменения его параметров за счет установки устройства непосредственно вблизи от объекта диагностирования, а следовательно, улучшение качества сигнала.

Указанный технический эффект достигается тем, что устройство для измерения акустического сигнала от деталей турбомашины содержит трубчатый полый корпус, установленный в газовоздушном тракте турбомашины, микрофон, установленный в трубчатом полом корпусе и зафиксированный от смещения относительно продольной оси последнего, причем со стороны измерительной части микрофона канал трубчатого полого корпуса перекрывает торцевая перфорированная крышка, жестко закрепленная относительно последнего, при этом между микрофоном и торцевой перфорированной крышкой образована полость, заполненная звукопоглощающим материалом, кроме того, трубчатый полый корпус соединен с наружным корпусом турбомашины посредством фиксирующего элемента.

Повышение амплитуды полезного акустического сигнала достигается за счет уменьшения расстояния до объекта диагностирования путем установки устройства непосредственно в газовоздушный тракт, что исключает изменение параметров акустического сигнала в связи с уменьшением влияния большого количества деталей и соединений, в результате прохождения через них акустического сигнала, а следовательно, улучшается качества сигнала в целом.

На фигуре представлен продольный разрез устройства для измерения акустического сигнала от деталей турбомашины, установленного в корпусе последней.

Устройство для измерения акустического сигнала от деталей турбомашины содержит трубчатый полый корпус 1, установленный в газовоздушном тракте турбомашины, микрофон 2, установленный в трубчатом полом корпусе 1 и зафиксированный от смещения относительно продольной оси последнего, в частности, посредством полой трубки 3 меньшего диаметра, чем трубчатый полый корпус 1, соединенной с последним посредством резьбового соединения (на чертеже не показано), а со стороны измерительной части микрофона 2 канал трубчатого полого корпуса 1 перекрывает торцевая перфорированная крышка 4, жестко закрепленная относительно последнего, например, посредством пайки. Между микрофоном 2 и торцевой перфорированной крышкой 4 образована полость 5, заполненная звукопоглощающим материалом (на чертеже не показан), например синдипон, вата, служащим для предотвращения попадания в измерительное устройство грязи и запирания (перегрузки) микрофона из-за высокого акустического давления.

Трубчатый полый корпус 1 соединен с наружным корпусом 6 турбомашины посредством фиксирующего элемента, в частности втулки 7, в которой он зафиксирован, например, методом пайки. В свою очередь втулка 7 устанавливается в окно осмотра турбины и фиксируется в нем, например, посредством резьбового соединения (на чертеже не показано).

Провода от микрофона 2 проходят внутри трубчатого полого корпуса 1 и за пределами наружного корпуса 6 турбомашины подсоединены к виброанализатору (на чертеже не показан).

В трубчатый полый корпус 1 с предварительно впаянной перфорированной крышкой 4 помещается звукопоглощающий материал, затем устанавливается микрофон 2, соединенный с проводом, и фиксируется в трубчатом полом корпусе 1 посредством полой трубки 3 меньшего диаметра, чем последний. Далее трубчатый полый корпус 1 фиксируется в втулке 7, которая устанавливается в окно осмотра входных кромок ТВД и фиксируется в нем. Затем выполняется холодная прокрутка двигателя и измерение акустических параметров.

Устройство для измерения акустического сигнала от деталей турбомашины, характеризующееся тем, что содержит трубчатый полый корпус, установленный в газовоздушном тракте турбомашины, микрофон, установленный в трубчатом полом корпусе и зафиксированный от смещения относительно продольной оси последнего, причем со стороны измерительной части микрофона канал трубчатого полого корпуса перекрывает торцевая перфорированная крышка, жестко закрепленная относительно последнего, при этом между микрофоном и торцевой перфорированной крышкой образована полость, заполненная звукопоглощающим материалом, кроме того, трубчатый полый корпус соединен с наружным корпусом турбомашины посредством фиксирующего элемента.



 

Похожие патенты:

Изобретение относится к датчику отработавших газов в моторном транспортном средстве. Предложен способ для контроля датчика отработавших газов, присоединенного на выпуске двигателя.

Изобретение относится к системе судового энергетического оборудования, в частности к способам анализа отработавших газов. Технический результат заключается в возможности определения оптимального режима нагрузки дизеля и контроля процесса горения топлива на основе полученных параметров, а именно размеров твердых частиц отработавших газов дизеля.

Изобретение относится к области испытаний авиационных двигателей, в частности к созданию на стендах условий для подготовки испытаний авиационного двигателя по оценке достаточности запасов газодинамической устойчивости.

Изобретение относится к области измерительной техники, к испытаниям, доводке и эксплуатации всех типов газотурбинных двигателей (ГТД), к способам доставки измерительного элемента в заданную позицию при замерах параметров газового потока, к проведению инженерных и сертификационных испытаний ГТД, к верификации расчетных моделей узлов двигателей.

Изобретение относится к области измерительной техники, к испытаниям, доводке, диагностике и эксплуатации реактивных двигателей, а конкретно к способам диагностики технического состояния двухконтурного газотурбинного двигателя по газодинамическим параметрам потока.

Изобретение относится к стендовым испытаниям узлов транспортных средств. Предложена автоматизированная система управления нагружающим устройством для стендовых испытаний автомобильных энергетических установок, в которой устройство имитации колеса содержит блок модели привода, который в реальном автомобиле связывает вал испытываемого силового агрегата энергоустановки с колесами, и интегрирующее звено, постоянная времени которого равна моменту инерции имитируемого колеса и коэффициент усиления равен радиусу имитируемого колеса.

Изобретение относится к области двигателестроения и может найти применение при стендовых испытаниях и в эксплуатации газотурбинных двигателей, а также для создания систем диагностики.

Стенд для «холодной» обкатки турбокомпрессоров энергетических установок включает источник подачи газа, напорный и выпускной воздуховоды, соединенные с рабочей камерой турбины, датчик частоты вращения и цифровой указатель оборотов, блок управления источником подачи газа.

Изобретение относится к электрическим испытаниям транспортных средств. В способе испытаний электрооборудования автотранспортных средств на восприимчивость к внешнему электромагнитному полю испытываемое электрооборудование устанавливают в бортовую сеть транспортного средства и подвергают воздействию внешнего излучения с заданными параметрами.

Изобретение относится к области стендовых испытаний деталей и корпусов турбомашин, в частности авиационного двигателестроения, а именно к конструкции стендовых силовых рам для статических и циклических испытаний.

Изобретение относится к области автомобилестроения, в частности к системам двигателя с датчиком влажности. Представлены способы и системы эксплуатации двигателя с емкостным датчиком влажности. В одном из вариантов осуществляют контроль за изменениями датчика давления и влажности с одновременным направлением газов в воздухозаборник двигателя ниже по потоку от датчика влажности и выше по потоку от компрессора, в случае, если контролируемые изменения датчика давления и влажности меньше соответствующих пороговых значений, осуществляют интрузивное регулирование давления в воздухозаборнике и выполняют индикацию ухудшения работы датчика влажности, когда показания влажности изменяются на величину, которая меньше первого порогового значения, а давление на датчике изменяется на величину, которая больше второго порогового значения. Техническим результатом является повышение точности показаний датчика влажности. 3 н. и 16 з.п. ф-лы, 8 ил.

Изобретение относится к двигателям транспортных средств. В способе управления двигателем определяют, образовался ли лед во впускном коллекторе или корпусе дросселя двигателя, в ответ на рабочие параметры двигателя. Затем глушат двигатель в ответ на действие водителя. Определяют, растопился ли лед после глушения двигателя. Определяют, рассеялся ли растопленный лед. Активируют диагностику пропусков зажигания в двигателе после запуска двигателя в ответ на определение о рассеянном растопленном льде. Кроме наличия льда, определяют также его количество. Повышается точность диагностики пропусков зажигания. 3 н. и 17 з.п. ф-лы, 4 ил.
Изобретение относится к области диагностики, а именно к способам оценки технического состояния роторного оборудования, и может быть использовано при определении дефектных узлов и деталей, оценке долговечности оборудования. Для реализации способа на роторное оборудование устанавливаются датчики вибрации в ключевых точках оборудования, которыми могут быть: подшипниковые узлы, корпус оборудования, точки крепления оборудования к фундаменту и другие. Далее устанавливаются тензометрические датчики в ключевых точках оборудования. Информация с датчиков вибрации обрабатывается в режиме реального времени с получением частотного спектра вибрации. Информация с тензометрических датчиков обрабатывается в режиме реального времени с получением частотного спектра по нагрузкам. Анализ данных частотного спектра тензометрических датчиков в совокупности с данными частотного спектра датчиков вибрации дает более полную диагностирующую информативность, и это позволяет с большей достоверностью определять техническое состояние оборудования и дефекты узлов. Изобретение направлено на повышение достоверности диагностики технического состояния роторного оборудования.

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний турбореактивных двигателей (ТРД). Способ испытания ТРД включает подогрев и наддув воздуха на входе в двигатель. Для двигателя, содержащего топливно-масляный теплообменник, предварительно создают математическую модель двигателя, корректируют ее по результатам испытаний репрезентативного количества от трех до пяти двигателей, по математической модели определяют расход топлива, подаваемого в теплообменник на заданном режиме при заданных условиях полета, а при испытании двигателя с наддувом и подогревом воздуха на входе в двигатель обеспечивают дополнительную подачу топлива в топливно-масляный теплообменник с расходом, соответствующим имитируемым полетным условиям. Технический результат – обеспечение оптимальных значений температуры и расхода масла при проведении испытаний и повышение достоверности их результатов. 1ил.

Изобретение относится к способу определения частиц сажи в выхлопной струе газотурбинного двигателя (ГТД) в полете. Для осуществления способа измеряют в полете ток нейтрализации с электростатических разрядников самолета электрических зарядов, генерируемых частицами сажи в выхлопной струе газа ГТД, определяют расход газа через сопло двигателя, измеряют значение электризации аэрозолей атмосферы за счет соприкосновения их с поверхностями самолета, определяют среднее значение плотности электрического заряда струи газа на всех режимах полета, определяют содержание частиц сажи в струе по градуированным зависимостям «чисел дымности» от среднего значения плотности электрического заряда и влияния аэрозолей атмосферы. Обеспечивается повышение эффективности определения содержания частиц сажи в выхлопной струе газа ГТД при различных метеорологических условиях. 2 ил., 1 пр.

Изобретение относится к области неразрушающего контроля и может быть использовано для контроля вращающихся элементов авиационного двигателя. Объектами изобретения являются система и способ обнаружения дефектов на объекте, содержащий этапы, на которых: формируют изображение (13), характеризующее указанный объект (11), на основании сигналов (9), связанных с объектом, разбивают указанное изображение на участки (15) в соответствии с самоадаптирующимися разрешениями и вычисляют расхождения между различными участками для обнаружения аномального участка, указывающего на возможность повреждения. Технический результат - повышение точности и достоверности получаемых данных. 2 н. и 10 з.п. ф-лы, 16 ил.

Способ диагностики двигателя внутреннего сгорания с наддувом, оборудованного турбокомпрессором фиксированной геометрии, содержащим компрессор, через который проходит воздух, поступающий во впускную систему двигателя, и турбину, которая связана во вращении с компрессором через общий вал и через которую проходят выхлопные газы двигателя в выпускную систему двигателя, при этом указанный двигатель связан: с дроссельным клапаном для изменения пропускного сечения воздуха, поступающего во впускную систему двигателя; и с разгрузочным вентилем waste-gate, установленным параллельно с турбиной в выпускной системе двигателя для изменения количества выхлопных газов, проходящих через турбину, при этом содержит: этап вычисления первого временного интеграла измерения атмосферного давления в течение времени вычисления; этап вычисления временного интеграла измерения давления наддува в течение указанного времени вычисления; этап вычисления второго временного интеграла измерения атмосферного давления в течение указанного времени вычисления; этап вычисления двух критериев диагностики; этап сравнения первого критерия диагностики с первым порогом диагностики и сравнения второго критерия диагностики с вторым порогом диагностики; и этап диагностики неисправности, когда по меньшей мере один из двух критериев диагностики меньше своего соответствующего порога диагностики. Техническим результатом является повышение точности диагностики двигателя. 2 н. и 10 з.п. ф-лы, 3 ил.

Изобретение относится к ракетной технике, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей с имитацией высотных условий. Стенд для высотных испытаний ракетных двигателей содержит барокамеру и выхлопной диффузор с выходной секцией, включающей две торцевые, внешнюю и внутреннюю стенки, образующие кольцевое пространство рубашечной системы охлаждения. По периметру задней торцевой стенки выходной секции выхлопного диффузора равномерно расположены отверстия или форсунки, обеспечивающие выход рабочей жидкости из рубашечной системы охлаждения за срез выхлопного диффузора. Изобретение позволяет повысить эффективность охлаждения стенок выходной секции диффузора за счет формирования равномерного течения рабочей жидкости вдоль горячей стенки рубашечной системы охлаждения, а также позволяет обеспечить орошение струи продуктов сгорания ракетного двигателя за срезом выхлопного диффузора. 2 з.п. ф-лы, 5 ил.

Использование: обнаружение и регистрация металлических частиц износа в потоке масла работающего ГТД. Для обнаружения металлических частиц износа в потоке масла работающего газотурбинного двигателя общий поток масла разделяют на N независимых потоков, суммарная площадь поперечного сечения которых равна площади поперечного сечения общего входного потока; контроль каждого независимого потока осуществляют индивидуальным одновитковым вихретоковым чувствительным элементом кластерного датчика, благодаря чему повышается чувствительность вихретоковых чувствительных элементов и возможность обнаружения единичных металлических частиц, находящихся в одном поперечном сечении потока масла; фиксируют момент времени и возможное число от одной до N одновременно прошедших частиц металла через контролируемое сечение потока масла, а по результатам измерения судят об изменении технического состояния двигателя непосредственно во время его эксплуатации, что позволяет своевременно обнаружить зарождение дефектов трущихся поверхностей и принять меры по недопущению аварийной ситуации. 1 ил.
Изобретение относится к области эксплуатации машин и может быть использовано для диагностики подшипников кривошипно-шатунного механизма дизельных автотракторных двигателей. Способ определения технического состояния подшипников скольжения кривошипно-шатунного механизма дизельных автотракторных двигателей заключается в том, что на работающем двигателе получают зависимости изменения давления масла в центральной масляной магистрали от частоты вращения коленчатого вала. Для получения зависимостей двигатель загружают путем свободного разгона. На полученных зависимостях выбирают участок, соответствующий максимальному крутящему моменту коленчатого вала и сравнивают данные, полученные на этом участке с эталонными. Технический результат заключается в оперативном безразборном определении технического состояния подшипников кривошипно-шатунного механизма дизельных автотракторных двигателей.
Наверх