Тепловая система газоохлаждаемого реактора атомной энергетической установки

Изобретение относится к области энергетики и, в частности, к атомным энергетическим установкам, работающим по комбинированному циклу. Тепловая система включает газотурбинный и паротурбинный циклы утилизации тепла, при использовании гелия в качестве рабочего тела газотурбинного цикла и пара в качестве рабочего тела паротурбинного цикла. Газотурбинный цикл содержит газовую турбину, вал которой связан с электрогенератором и компрессором, причем вход системы охлаждения реактора сообщен с полостью высокого давления компрессора, а ее выход сообщен с входом газовой турбины. Выход газовой турбины сообщен с парогенерирующим узлом, который содержит последовательно сообщенные первый пароперегреватель, испаритель, второй пароперегреватель и экономайзер-испаритель. При этом в состав паротурбинного цикла включен пароводяной барабан. Технический результат выражается в повышении КПД атомной энергетической установки комбинированного цикла, существенном снижении массы и габаритов теплообменных аппаратов, за счет применения паротурбинного цикла, содержащего турбину высокого и низкого давления, и промежуточного перегрева пара. 1 ил.

 

Изобретение относится к области энергетики и, в частности, к атомным энергетическим установкам, работающим по комбинированному циклу.

Пятьдесят пять процентов производства электроэнергии в мире осуществляется за счет сжигания угля, что приводит к необратимым изменениям климата. Использование природного газа вместо угля несколько снижает выбросы углекислого газа, но не устраняет его выбросы. Кроме того, для очистки дымовых газов от сажи необходимо устанавливать дорогостоящие фильтры, что приводит к удорожанию стоимости электроэнергии. Использование природного газа в качестве топлива электростанций в долгосрочной перспективе нежелательно, так как природный газ является ценным сырьем химической промышленности.

Известна атомная энергетическая установка с высокотемпературным газоохлаждаемым реактором, содержащая газоохлаждаемый реактор, гелиевую турбину, рекуператор, концевой охладитель газа, компрессор и электрогенератор (см. Газотурбинные установки замкнутого цикла [Текст]: (Теория и расчет) / А. И. Михайлов, В. В. Борисов, Э. К. Калинин; Акад. наук СССР. Ин-т двигателей. - Москва: Изд-во Акад. наук СССР, 1962. - 146 с.).

Недостатками этой установки являются высокие габариты и масса рекуператора и невозможность существенного уменьшения их массогабаритных характеристик, а также КПД этой установки меньше, чем КПД установки комбинированного цикла.

Наиболее близкой к данному изобретению установкой является тепловая система газоохлаждаемого реактора атомной энергетической установки, включающая газотурбинный и паротурбинный циклы утилизации тепла, при использовании гелия в качестве рабочего тела газотурбинного цикла и пара в качестве рабочего тела паротурбинного цикла, при этом газотурбинный цикл содержит газовую турбину, вал которой связан с электрогенератором и компрессором, причем вход системы охлаждения реактора сообщен с полостью высокого давления компрессора, а ее выход сообщен с входом газовой турбины, выход которой сообщен со входом газового тракта парогенерирующего узла, выход которого в свою очередь сообщен со входом полости низкого давления компрессора, кроме того, выход парового тракта парогенерирующего узла сообщен со входом паровой турбины, вал которой связан с электрогенератором, выход которой через конденсатор и насос сообщен со входом парового тракта парогенерирующего узла (см. патент США № US 2014/0338335 A1, 2014).

Недостатками данной установки являются недостаточная эффективность паротурбинного цикла и работа последних ступеней турбины на влажном паре, что приводит к снижению КПД установки и надежности работы паровой турбины.

Задачей, на решение которой направлено предлагаемое техническое решение, является повышение КПД атомной энергетической установки комбинированного цикла, надежности ее работы, существенное снижение массы и габаритов теплообменных аппаратов.

Технический результат, который достигается при решении поставленной задачи, выражается в повышении КПД атомной энергетической установки комбинированного цикла, существенном снижении массы и габаритов теплообменных аппаратов за счет применения паротурбинного цикла, содержащего турбину высокого и низкого давления, и промежуточного перегрева пара.

Поставленная задача решается тем, что тепловая система газоохлаждаемого реактора атомной энергетической установки, включающая газотурбинный и паротурбинный циклы утилизации тепла, при использовании гелия в качестве рабочего тела газотурбинного цикла и пара в качестве рабочего тела паротурбинного цикла, при этом газотурбинный цикл содержит газовую турбину, вал которой связан с электрогенератором и компрессором, причем вход системы охлаждения реактора сообщен с полостью высокого давления компрессора, а ее выход сообщен с входом газовой турбины, выход которой сообщен со входом газового тракта парогенерирующего узла, выход которого в свою очередь сообщен со входом полости низкого давления компрессора, кроме того, выход парового тракта парогенерирующего узла сообщен со входом паровой турбины, вал которой связан с электрогенератором, выход которой через конденсатор и насос сообщен со входом парового тракта парогенерирующего узла, отличается тем, что выход газовой турбины сообщен с парогенерирующим узлом, который содержит последовательно сообщенные первый пароперегреватель, испаритель, второй пароперегреватель и экономайзер-испаритель, при этом в состав паротурбинного цикла включен пароводяной барабан выходы которого сообщены со вторыми входами первого пароперегревателя и испарителя, причем второй выход первого пароперегревателя сообщен со входом паровой турбины высокого давления, выход которой сообщен со вторым входом второго пароперегревателя, кроме того, второй выход испарителя и первый выход экономайзера-испарителя сообщены со входами пароводяного барабана, при этом второй выход второго пароперегревателя сообщен со входом паровой турбины низкого давления, причем второй выход экономайзера-испарителя через концевой холодильник сообщен с полостью низкого давления компрессора, кроме того, выход паровой турбины низкого давления через цепочку, включающую последовательно установленные конденсатор, бак питательной воды, сообщен со входом питательного насоса, выход которого сообщен со вторым входом экономайзера-испарителя.

Сопоставительный анализ существенных признаков предлагаемого технического решения и существенных признаков прототипа и аналогов свидетельствует о его соответствии критерию «новизна».

При этом существенные признаки отличительной части формулы изобретения решают следующие функциональные задачи.

Признак «…выход газовой турбины сообщен с парогенерирующим узлом, который содержит последовательно сообщенные первый пароперегреватель, испаритель, второй пароперегреватель и экономайзер-испаритель…» формирует газовый тракт эффективного утилизационного парогенерирующего узла.

Признаки «…в состав паротурбинного цикла включен пароводяной барабан, выходы которого сообщены со вторыми входами первого пароперегревателя и испарителя, причем второй выход первого пароперегревателя сообщен со входом паровой турбины высокого давления, выход которой сообщен со вторым входом второго пароперегревателя, кроме того, второй выход испарителя и первый выход экономайзера-испарителя сообщены со входами пароводяного барабана, при этом второй выход второго пароперегревателя сообщен со входом паровой турбины низкого давления…» формируют эффективный парогенерирующий тракт паротурбинного цикла атомной энергетической установки.

Признак «…второй выход экономайзера-испарителя через концевой холодильник сообщен с полостью низкого давления компрессора…» обеспечивает замыкание газотурбинного тракта.

Признак «…выход паровой турбины низкого давления через цепочку, включающую последовательно установленные конденсатор, бак питательной воды, сообщен со входом питательного насоса, выход которого сообщен со вторым входом экономайзера-испарителя…» обеспечивает замыкание паротурбинного тракта и подачу питательной воды в испаритель-экономайзер.

На фиг. 1 показана схема тепловой системы газоохлаждаемого реактора атомной энергетической установки.

На схеме показаны атомный газоохлаждаемый реактор 1, газовая турбина 2, компрессор 3, концевой холодильник 4, парогенерирующий узел, включающий в себя пароперегреватель 5, испаритель 6, второй пароперегреватель 7, экономайзер-испаритель 8, пароводяной барабан 9, паровую турбину 10 высокого давления, паровую турбину 11 низкого давления, конденсатор 12, бак питательной воды 13, питательный насос 14, циркуляционный насос 15, электрогенераторы 16,17.

Тепловая система газоохлаждаемого реактора атомной энергетической установки включает газотурбинный и паротурбинный циклы утилизации тепла, при использовании гелия в качестве рабочего тела газотурбинного цикла и пара в качестве рабочего тела паротурбинного цикла. Газотурбинный цикл содержит газовую турбину 2, вал которой связан с электрогенератором 16 и компрессором 3, причем вход системы охлаждения реактора 1 сообщен с полостью высокого давления компрессора 3, а ее выход сообщен с входом газовой турбины 2. Выход газовой турбины 2 сообщен с парогенерирующим узлом, который содержит последовательно сообщенные первый пароперегреватель 5, испаритель 6, второй пароперегреватель 7 и экономайзер-испаритель 8. В состав паротурбинного цикла включен пароводяной барабан 9, выходы которого сообщены со вторыми входами первого пароперегревателя 5 и испарителя 6, причем, второй выход первого пароперегревателя 5 сообщен со входом паровой турбины 10 высокого давления, выход которой сообщен со вторым входом второго пароперегревателя 7. Кроме того, второй выход испарителя 6 и первый выход экономайзера-испарителя 8 сообщены со входами пароводяного барабана 9, при этом второй выход второго пароперегревателя 7 сообщен со входом паровой турбины 11 низкого давления, причем второй выход экономайзера-испарителя 8, через концевой холодильник 4 сообщен с полостью низкого давления компрессора 3. Выход паровой турбины низкого давления 11, через цепочку включающую последовательно установленные конденсатор 12, бак питательной воды 13 сообщен со входом питательного насоса 14, выход которого сообщен со вторым входом экономайзера-испарителя 8. Паровые турбины высокого давления 10 и низкого давления 11 связаны с электрогенератором 17.

Тепловая система газоохлаждаемого реактора работает следующим образом. Гелий из концевого холодильника 4 поступает в осевой компрессор 3, где сжимается, например, до давления 7,2 МПа и поступает в газоохлаждаемый реактор 1, где нагревается при постоянном давлении, например, до температуры 1200°С и по трубопроводу поступает на вход газовой турбины 2, где совершает работу. Из выхлопного патрубка газовой турбины 2 гелий поступает в первый вход парогенерирующего узла, состоящего из пароперегревателя 5 паровой турбины 10 высокого давления, испарителя 6, пароперегревателя 7, паровой турбины 11 низкого давления, экономайзера-испарителя 8 и, проходя их, последовательно охлаждается и поступает на вход концевого холодильника 4, где гелий дополнительно охлаждается и поступает в полость всасывания компрессора 3. Паровой тракт парогенерирующего узла состоит из пароводяного барабана 9, пароперегревателя 5 паровой турбины 10 высокого давления, испарителя 6, пароперегревателя 7, паровой турбины 11 низкого давления, экономайзера-испарителя 8. Вода питательным насосом 14 под давлением, например, 3,5 МПа подается на второй вход экономайзера-испарителя 8, нагревается в нем за счет гелия, имеющего высокую температуру, выходит из него через второй выход и поступает в пароводяной барабан 9. Вода из пароводяного барабана 9 подается циркуляционным насосом 15 на второй вход испарителя 6, где нагревается и поступает в пароводяной барабан 9. Пар под давлением 3,5 МПа из пароводяного барабана 9 поступает на второй вход пароперегревателя 5 турбины 10 высокого давления, где нагревается и поступает на вход турбины 10 высокого давления, где расширяясь до промежуточного давления, например, 100 кПа, совершает работу в турбине 10 и поступает на второй вход пароперегревателя 7 турбины 11 низкого давления, где нагревается и из второго выхода поступает на вход турбины 11 низкого давления, расширяется до давления в конденсаторе 12 и совершает работу. Пар из турбины 11 низкого давления поступает в конденсатор 12, где при постоянном давлении и температуре конденсируется и поступает в бак питательной воды 13. Из бака питательной воды 13 вода питательным насосом 14 подается в экономайзер-испаритель, 8 и цикл повторяется.

Применение промежуточного перегрева пара и турбины низкого давления позволяет повысить среднюю температуру подвода тепла, а следовательно, повысить КПД паротурбинного цикла и тем самым повысить КПД всего комбинированного цикла. Кроме того, введение промежуточного перегрева позволяет уменьшить влажность пара последних ступеней турбины низкого давления и тем самым улучшить условия ее работы.

Тепловая система газоохлаждаемого реактора атомной энергетической установки, включающая газотурбинный и паротурбинный циклы утилизации тепла, при использовании гелия в качестве рабочего тела газотурбинного цикла и пара в качестве рабочего тела паротурбинного цикла, при этом газотурбинный цикл содержит газовую турбину, вал которой связан с электрогенератором и компрессором, причем вход системы охлаждения реактора сообщен с полостью высокого давления компрессора, а ее выход сообщен с входом газовой турбины, выход которой сообщен со входом газового тракта парогенерирующего узла, выход которого в свою очередь сообщен со входом полости низкого давления компрессора, кроме того, выход парового тракта парогенерирующего узла сообщен со входом паровой турбины, вал которой связан с электрогенератором, выход которой через конденсатор и насос сообщен со входом парового тракта парогенерирующего узла, отличающаяся тем, что выход газовой турбины сообщен с парогенерирующим узлом, который содержит последовательно сообщенные первый пароперегреватель, испаритель, второй пароперегреватель и экономайзер-испаритель, при этом в состав паротурбинного цикла включен пароводяной барабан, выходы которого сообщены со вторыми входами первого пароперегревателя и испарителя, причем второй выход первого пароперегревателя сообщен со входом паровой турбины высокого давления, выход которой сообщен со вторым входом второго пароперегревателя, кроме того, второй выход испарителя и первый выход экономайзера-испарителя сообщены со входами пароводяного барабана, при этом второй выход второго пароперегревателя сообщен со входом паровой турбины низкого давления, причем второй выход экономайзера-испарителя через концевой холодильник сообщен с полостью низкого давления компрессора, кроме того, выход паровой турбины низкого давления через цепочку, включающую последовательно установленные конденсатор, бак питательной воды, сообщен со входом питательного насоса, выход которого сообщен со вторым входом экономайзера-испарителя.



 

Похожие патенты:

Изобретение относится к металлургии, ракетному двигателестроению, системам аварийного охлаждения атомных реакторов и, в частности, диверторам, лимитерам и бланкетам термоядерных реакторов типа токамак.

Изобретение относится к области атомной энергетики, а именно к системам пассивного отвода тепла из водо-водяного энергетического реактора через парогенератор (СПОТ ПГ), и предназначено для охлаждения реактора путем естественной циркуляции теплоносителя в контуре системы.

Изобретение относится к области атомной энергетики, а именно к системам пассивного отвода тепла из внутреннего объема защитной оболочки водо-водяного энергетического реактора (СПОТ ЗО), и предназначено для охлаждения защитной оболочки реактора путем естественной циркуляции охлаждающей воды в контуре системы.

Изобретение относится к средствам перекачки расплавленного металла. Насос содержит корпус (1), в котором на верхнем подшипнике (2) и нижнем радиальном подшипнике (3) скольжения установлен соединяемый с приводом вал (4) с закрепленным на валу (4) рабочим колесом (5).

Разработана установка для конденсации, которая может включать в себя по существу плоские дефлекторы с отверстиями для прохождения через них охлаждающей текучей среды и с прикрепленными к ним отражателями, установленными под острым углом относительно дефлекторов.

Изобретение относится к тепловыделяющим сборкам ядерного реактора (ТВС). ТВС имеет множество комплектов многопластинчатых прижимных пружин, проходящих от головки.

Изобретение относится к регулированию концентрации кислорода в теплоносителе реакторной установки (РУ). РУ имеет в своем составе реактор, теплоноситель, размещенный в реакторе, газовую систему, массообменный аппарат, диспергатор и датчик концентрации кислорода в теплоносителе.

Изобретение относится к устройствам аварийного расхолаживания ядерного реактора и может использоваться как источник электроэнергии для приборов и оборудования при запроектных авариях.

Изобретение относится к гидродинамике. Распределительная камера ограничена снаружи корпусом и днищем (3) и соединяет между собой два боковых подводящих канала (1) и центральный отводящий канал (7) через зазоры между днищем (3) и торцевыми частями внутренних стенок (2).

Изобретение относится к теплотехнике. Напорная камера (4) содержит цилиндрический корпус (3) с днищем (2), цилиндрическую обечайку (8) и решетку (6).

Изобретение относится к области энергетики и, в частности, к атомным энергетическим установкам, работающим по комбинированному циклу. Тепловая система включает газотурбинный и паротурбинный циклы утилизации тепла, при использовании гелия в качестве рабочего тела газотурбинного цикла и пара в качестве рабочего тела паротурбинного цикла. Газотурбинный цикл содержит газовую турбину, вал которой связан с электрогенератором и компрессором, причем вход системы охлаждения реактора сообщен с полостью высокого давления компрессора, а ее выход сообщен с входом газовой турбины. Выход газовой турбины сообщен с парогенерирующим узлом, который содержит последовательно сообщенные первый пароперегреватель, испаритель, второй пароперегреватель и экономайзер-испаритель. При этом в состав паротурбинного цикла включен пароводяной барабан. Технический результат выражается в повышении КПД атомной энергетической установки комбинированного цикла, существенном снижении массы и габаритов теплообменных аппаратов, за счет применения паротурбинного цикла, содержащего турбину высокого и низкого давления, и промежуточного перегрева пара. 1 ил.

Наверх