Способ получения блочного пеностекла

Изобретение относится к области получения блочного пеностекла. Способ получения блочного пеностекла включает диспергирование стеклоотходов, смешивание их со вспенивающей смесью, гранулирование исходной шихты до размеров частиц 0,5-5,0 мм. Затем осуществляют подачу гранулированной шихты в питатель плазменного реактора, вспенивание гранул в плазменном факеле, напыление конгломератов пеностекла потоком плазмообразующего газа, транспортирование вспененных конгломератов отходящим плазмообразующим потоком газов в металлическую форму. Гранулированная шихта подается в плазменную горелку параллельно оси плазменного факела потоком плазмообразующих газов, а напыление в металлические формы конгломератов пеностекла выполняется при мощности работы плазмотрона 12 кВт. Технический результат – улучшение однородности распределения гранул шихты в готовом продукте, снижение теплопроводности, повышение прочности на сжатие. 3 табл.

 

Изобретение относится к области получения блочного пеностекла и может быть использовано в промышленности строительных материалов.

Из уровня техники известны аналогичные способы получения блочного пеностекла.

Недостатками данных способов являются высокая энергоемкость и длительность технологического процесса, низкое качество конечного продукта.

Наиболее близким к предлагаемому способу по технической сущности и достигаемому результату является способ получения блочного пеностекла (Патент РФ №2417170), включающий диспергирование стеклоотходов и их дигидроксилирование, смешивание их со вспенивающей смесью, гранулирование исходной шихты до размеров частиц 1-3 мм, подачу гранулированной шихты в питатель плазменного реактора перпендикулярно оси плазменного факела, вспенивание гранул шихты в плазменном факеле, напыление конгломератов пеностекла потоком плазмообразующего газа, транспортирование вспененных конгломератов отходящим плазмообразующим потоком газов в металлическую форму.

Существенным недостатком прототипа является высокая энергоемкость технологического процесса получения блочного пеностекла и неоднородность распределения гранул шихты в готовом пеностекле, что ведет к снижению качества конечного продукта.

Технический результат предлагаемого изобретения заключается в снижении энергоемкости процесса получения блочного пеностекла и улучшении однородности распределения гранул шихты в готовом пеностекле.

Технический результат достигается тем, что предлагаемый способ получения блочного пеностекла включает диспергирование стеклоотходов, смешивание их со вспенивающей смесью, гранулирование исходной шихты, подачу гранулированной шихты в питатель плазменного реактора, вспенивание гранул в плазменном факеле, напыление конгломератов пеностекла потоком плазмообразующего газа, транспортирование вспененных конгломератов отходящим плазмообразующим потоком газов в металлическую форму, причем гранулирование исходной шихты осуществляется до размеров частиц 0,5-5,0 мм и гранулированная шихта подается в плазменную горелку параллельно оси плазменного факела потоком плазмообразующих газов, а напыление в металлические формы конгломератов пеностекла выполняется при мощности работы плазмотрона 12 кВт.

Предложенный способ получения блочного пеностекла отличается от прототипа тем, что в предлагаемом способе гранулирование исходной шихты осуществляется до размеров частиц 0,5-5,0 мм и гранулированная шихта подается в плазменную горелку параллельно оси плазменного факела потоком плазмообразующих газов, а напыление в металлические формы конгломератов пеностекла выполняется при мощности работы плазмотрона 12 кВт.

Проведенный анализ известных способов получения блочного пеностекла позволяет сделать заключение о соответствии заявляемого изобретения критерию «новизна».

Сопоставительный анализ известного и предлагаемого способов представлен в таблице 1. Экспериментально установлены оптимальные условия получения пеностекла и влияние размера частиц исходной шихты на качество блочного пеностекла (таблицы 2, 3).

Как видно из таблицы 3, размер частиц исходной шихты влияет на вспенивании конгломератов пеностекла и, как следствие, на показатели качества готового пеностекла.

Пример получения блочного пеностекла.

Гранулированная шихта с размером частиц 0,5-5,0 мм, приготовленная из отходов стеклобоя, вспениваясь в автоматическом режиме, загружалась в порошковый питатель. Затем зажигалась дуга плазменного реактора. Под действием плазмообразующего газа (аргон) частицы шихты поступали в зону действия плазменного факела, где образовывались конгломераты пеностекла. Из плазменного реактора под действием динамического напора плазменного факела конгломераты пеностекла напылялись в металлическую форму, где формируется блочное пеностекло, которое поступало на транспортирующем устройстве в зону напыления плазменного реактора.

При оптимальных параметрах работы электродугового плазмотрона УПУ - 8 м (мощность 12 кВт, расход плазмообразующего газа 1,5 м3/ч) получено блочное пеностекло со следующими свойствами: прочность на сжатие - 1,53 МПа; плотность - 0,250 г/см3; объемное водопоглощение - 8,33%; теплопроводность - 0,065 Вт/м⋅К.

Способ получения блочного пеностекла, включающий диспергирование стеклоотходов, смешивание их со вспенивающей смесью, гранулирование исходной шихты, подачу гранулированной шихты в питатель плазменного реактора, вспенивание гранул в плазменном факеле, напыление конгломератов пеностекла потоком плазмообразующего газа, транспортирование вспененных конгломератов отходящим плазмообразующим потоком газов в металлическую форму, отличающийся тем, что гранулирование исходной шихты осуществляется до размеров частиц 0,5-5,0 мм и гранулированная шихта подается в плазменную горелку параллельно оси плазменного факела потоком плазмообразующих газов, а напыление в металлические формы конгломератов пеностекла выполняется при мощности работы плазмотрона 12 кВт.



 

Похожие патенты:

Изобретение относится к производству теплоизоляционных материалов, а именно к производству гранулированного пеностекла. Техническим результатом заявляемого изобретения является увеличение выхода годного продукта.
Изобретение относится к производству строительных материалов, а именно к производству материала из пеностекла. Способ получения материала из пеностекла включает загрузку силикатной массы в виде стеклобоя в контейнер, его вспенивание, схватывание и создание стеклянной оболочки.

Изобретение относится к строительным материалам, а именно к технологии изготовления эффективных конструкционно-теплоизоляционных материалов. Шихта для синтеза конструкционно-теплоизоляционных блоков из ячеистого стекла содержит, мас.%: шлак ТЭС 35-45, металлургический шлак 5-10, стеклобой 35-45, глицерин 3, борную кислоту 3, фторид натрия 4.

Изобретение относится к составу шихты для получения пеностекла. Технический результат - повышение теплотехнических и прочностных характеристик пеностекла.

Изобретение относится к производству гранулированного пеностекла. Технический результат – получение равномерно вспененной структуры в пеностекле.

Изобретение относится к технологии строительных материалов теплоизоляционно-конструкционного назначения. Технический результат – расширение сырьевой базы, снижение температуры вспенивания.

Изобретение относится к технологии строительных материалов теплоизоляционно-конструкционного назначения. Технический результат изобретения – расширение сырьевой базы, получение однородной пористой структуры пеностекла.

Изобретение относится к теплоизоляционным материалам. Технический результат – снижение температуры вспенивания.

Изобретение относится к составу шихты для получения пеностекла. Шихта для получения пеностекла, включающая гидрат окиси натрия, углерод, перлит, отличающаяся тем, что дополнительно содержит листовое стекло и/или тарное стекло при следующем соотношении размолотых до остатка не более 10% на сите №008 компонентов, мас.

Изобретение относится к технологии изготовления эффективных теплоизоляционных материалов. Технический результат изобретения заключается в снижении температуры вспенивания, расширении сырьевой базы.

Изобретение относится к энергосберегающим покрытиям. Многослойное покрытие на стекле содержит следующие слои в порядке удаления от стекла: первый слой диоксида титана TiO2, первый контактный слой Zn-Al-O, первый слой серебра Ag, отражающий ИК-излучение, первый укрывной слой Zn-Al-O, промежуточный слой Zn-Sn-O, второй контактный слой Zn-Al-O, второй слой серебра Ag, второй укрывной слой Zn-Al-O, внешний защитный слой Zn-Sn-O.

Изобретение относится к энергосберегающим покрытиям. Технический результат – снижение излучательных теплопотерь в холодное время, повышение светопрозрачности, снижение уровня прямого пропускания ультрафиолетового излучения.

Изобретение относится к химической технологии нанесения на микросферы металлосодержащих покрытий. Способ нанесения металлосодержащих покрытий на микросферы пиролитическим разложением металлоорганических соединений заключается во взаимодействии паров металлоорганического соединения с поверхностью микросфер, нагретых до температуры ниже температуры размягчения, перемешивании микросфер.

Стекло // 2642585
Изобретение относится к технологии силикатов и касается составов стекол, которые могут быть использованы для изготовления изделий хозяйственно-бытового назначения.

Настоящее изобретение относится к стекловолокну, которое может быть использовано для армирования композиционных материалов для производства лопастей ветряных мельниц, сосудов высокого давления, компонентов в автомобильной, машиностроительной, аэрокосмической промышленности и т.п.

Изобретение относится к способу локальной кристаллизации стекол под действием лазерного пучка. Локальную кристаллизацию стекол лантаноборогерманатной системы, легированных неодимом, проводят с помощью импульсного фемтосекундного лазера, перемещающегося относительно стекла со скоростью 10-50 мкм/с на глубине от 100 мкм.

Изобретение относится к стеклу с антиконденсатным и/или низкоэмиссионым покрытиям. Стеклопакет содержит первую и вторую параллельные расположенные на расстоянии друг от друга стеклянные подложки.

Изобретение относится к строительным материалам, а именно к технологии изготовления эффективных конструкционно-теплоизоляционных материалов. Шихта для синтеза конструкционно-теплоизоляционных блоков из ячеистого стекла содержит, мас.%: шлак ТЭС 35-45, металлургический шлак 5-10, стеклобой 35-45, глицерин 3, борную кислоту 3, фторид натрия 4.

Изобретение относится к изолирующим стеклопакетам с низкоэмисионными и антиотражающими покрытиями. Стеклопакет содержит первую, вторую и третью параллельно разнесенные в пространстве стеклянные подложки.

Изобретение может быть использовано в стекольной, керамической и металлургической промышленности для приготовления шихт способом, предусматривающим физико-химическую активацию тугоплавких сырьевых материалов.

Изобретение относится к области нанесения покрытий на порошкообразные материалы и может быть применено для получения гидрофобного мелкодисперсного порошка, предназначенного для использования в медицинской технике в качестве рабочего тела в установках, работающих на принципе псевдоожижения слоя порошка и используемых для лечения ожоговых больных, а также в качестве наполнителя в строительных материалах, пластмассах и красках.

Изобретение относится к области получения блочного пеностекла. Способ получения блочного пеностекла включает диспергирование стеклоотходов, смешивание их со вспенивающей смесью, гранулирование исходной шихты до размеров частиц 0,5-5,0 мм. Затем осуществляют подачу гранулированной шихты в питатель плазменного реактора, вспенивание гранул в плазменном факеле, напыление конгломератов пеностекла потоком плазмообразующего газа, транспортирование вспененных конгломератов отходящим плазмообразующим потоком газов в металлическую форму. Гранулированная шихта подается в плазменную горелку параллельно оси плазменного факела потоком плазмообразующих газов, а напыление в металлические формы конгломератов пеностекла выполняется при мощности работы плазмотрона 12 кВт. Технический результат – улучшение однородности распределения гранул шихты в готовом продукте, снижение теплопроводности, повышение прочности на сжатие. 3 табл.

Наверх