Волоконно-оптический датчик объемного напряженного состояния

Изобретение относится к области измерительной техники, в частности к волоконно-оптическим средствам измерения неоднородного сложного объемного динамического напряженного состояния, и может быть использовано для диагностики напряженного состояния и дефектоскопии композитов, в медико-биологических исследованиях, гидроакустике, аэродинамике, системах охраны при дистанционном мониторинге давления. Волоконно-оптический датчик объемного напряженного состояния содержит протяженный каркас, расположенные внутри каркаса сонаправленно его оси измерительные элементы. Каждый измерительный элемент включает волоконно-оптический световод, выполненный с возможностью подключения к измерительному устройству, два управляющих непрерывных электрода, пьезоэлемент, электролюминисцентный элемент. Пьезоэлементы всех измерительных элементов имеют различные направления пространственных поляризаций, из которых произвольные три направления некомпланарны. Количество измерительных элементов не менее шести. Изобретение позволяет определить все шесть независимых компонент тензора напряжений для объемного сложного напряженного состояния и локации неоднородностей напряженного состояния по длине датчика. 2 з.п. ф-лы, 3 ил.

 

Изобретение относится к области измерительной техники, в частности к волоконно-оптическим средствам измерения неоднородного сложного объемного динамического напряженного состояния, и может быть использовано для диагностики напряженного состояния и дефектоскопии композитов, в медико-биологических исследованиях, гидроакустике, аэродинамике, системах охраны при дистанционном мониторинге давления.

Известен волоконно-оптический датчик, содержащий сердцевину оптического волокна, имеющую, по меньшей мере, одну решетку, сформированную вдоль, по меньшей мере, одной ее части, первую оболочку, окружающую указанную сердцевину и содержащую средство, воспринимающее давление, для преобразования изотропных сил давления в анизотропные силы давления на указанную сердцевину, двулучепреломляющее средство для улучшения двойного лучепреломления в указанной сердцевине. Двулучепреломляющее средство может включать в себя средство, имеющее пару продольных стержней, встроенных в первую оболочку. Средство, воспринимающее давление, включает в себя пару продольных отверстий или чувствительный к давлению материал, или капиллярную трубку, окружающую указанную первую оболочку, причем указанная капиллярная трубка имеет пару продольных отверстий, по существу параллельных указанной оболочке. Давление или поперечную деформацию измеряют направлением света от источника света в сердцевину волоконно-оптического датчика с решеткой на сердцевине волокна, оптическим присоединением анализатора спектра к волоконно-оптическому датчику с решеткой, измерением расстояния между двумя спектральными пиками, детектируемыми анализатором спектра (патент RU №2205374, 2003).

Известное техническое решение обеспечивает повышение разрешения и динамического диапазона измерений, однако не позволяет определить все шесть независимых компонент тензора напряжений для объемного сложного напряженного состояния.

Наиболее близкой конструкцией того же назначения к заявленному изобретению по совокупности признаков является датчик для определения величины и направления деформации протяженного объекта (патент RU №91625, опубл. 20.02.2010). Датчик состоит из протяженного цилиндрического каркаса и волоконно-оптических световодов, расположенных внутри каркаса сонаправленно его оси. Световоды выполнены с возможностью подключения к измерительному устройству. Каркас и световоды снаружи монолитно охвачены и скреплены между собой сосной с каркасом защитной цилиндрической оболочкой, материалом каркаса и оболочки является полимер, предпочтительно полихлорвинил или полиэтилен. Датчик может встраиваться в материал внутри или прикрепляться на внешней поверхности конструкции; каркас выполнен гибким для обеспечения навивки на транспортный барабан. Данное устройство принято в качестве прототипа.

Признаки прототипа, совпадающие с существенными признаками заявляемого изобретения, - протяженный каркас; измерительные элементы, расположенные внутри каркаса сонаправленно его оси; каждый измерительный элемент включает волоконно-оптический световод, выполненный с возможностью подключения к измерительному устройству.

Недостатком известной конструкции, принятой за прототип, является невозможность определения датчиком всех шести независимых компонент тензора напряжений для объемного сложного напряженного состояния и невозможность определения локаций неоднородностей напряженного состояния по длине датчика.

Задачей изобретения является создание датчика, определяющего все шесть независимых компонент тензора напряжений для объемного сложного напряженного состояния и локации неоднородностей напряженного состояния по длине датчика.

Поставленная задача была решена за счет того, что в известном волоконно-оптическом датчике объемного напряженного состояния, содержащем протяженный каркас и расположенные внутри каркаса сонаправленно его оси измерительные элементы, каждый из которых включает волоконно-оптические световод, выполненный с возможностью подключения к измерительному устройству, согласно изобретению в каждый измерительный элемент введены сонаправленные оси каркаса два управляющих непрерывных электрода, пьезоэлемент, электролюминисцентный элемент, при этом пьезоэлементы всех измерительных элементов имеют различные направления пространственных поляризаций, из которых произвольные три направления некомпланарны, количество измерительных элементов не менее шести.

Кроме того, управляющие непрерывные электроды и/или пьезоэлементы и/или электролюминисцентные элементы и/или световоды различных измерительных элементов могут быть объединены в общие, соответственно, управляющие непрерывные электроды и/или пьезоэлементы и/или электролюминисцентные элементы и/или световоды.

Кроме того, в световодах могут быть расположены решетки Брэгга.

Признаки заявляемого технического решения, отличительные от прототипа: в каждый измерительный элемент введены сонаправленные оси каркаса два управляющих непрерывных электрода, пьезоэлемент, электролюминисцентный элемент; пьезоэлементы всех измерительных элементов имеют различные направления пространственных поляризаций, из которых произвольные три направления некомпланарны; количество измерительных элементов не менее шести; управляющие непрерывные электроды и/или пьезоэлементы и/или электролюминисцентные элементы и/или световоды различных измерительных элементов объединены в общие, соответственно, управляющие непрерывные электроды и/или пьезоэлементы и/или электролюминисцентные элементы и/или световоды; в световодах расположены решетки Брэгга.

Отличительные признаки в совокупности с известными позволяют определить все шесть независимых компонент тензора напряжений для объемного сложного напряженного состояния и локации неоднородностей напряженного состояния и температуры по длине датчика.

Заявителю неизвестно использование в науке и технике отличительных признаков датчика с получением указанного технического результата.

Волоконно-оптический датчик объемного напряженного состояния иллюстрируется чертежами, представленными на фиг. 1-3.

На фиг. 1 показан общий вид фрагмента датчика с общим по измерительным элементам световодом, общим внутренним перфорированным (фотопрозрачным) электродом, общим наружным электродом, различными (по частоте излучения, в частности, в невидимом спектре) по измерительным элементам электролюминисцентными (светодиодными) элементами, различными (по направлениям пространственной поляризации) пьезоэлектрическими элементами.

На фиг. 2 - поперечное сечение датчика.

На фиг. 3 - расчетная область dV*, с действующими на нее искомыми (диагностируемыми) компонентами тензора макроскопических напряжений σ*, для вычисления «передаточных» aσ(j)mn и «управляющих» аU(j) коэффициентов встроенного в композит датчика с учетом эффективных упругих свойств композита, формы и размера каркаса, взаимного расположения измерительных элементов датчика.

Волоконно-оптический датчик объемного напряженного состояния (фиг. 1-3) содержит цилиндрический каркас 1 (буферный слой). Внутри каркаса 1 расположены сонаправленно его оси измерительные элементы. Каждый измерительный элемент включает волоконно-оптический световод 2 (на фиг. 1-3 показан общий световод), два управляющих непрерывных внутренний 3 внешний 4 электроды (на фиг. 1-2 показаны общие внутренний и внешний электроды), пьезоэлемент 5-10, электролюминисцентный элемент 11-16. Количество измерительных элементов не менее шести.

Световод 2 выполнен с возможностью подключения к измерительному устройству. Пьезоэлементы 5-10 каждого измерительного элемента имеют различную взаимную пространственную поляризацию, из которых произвольные три направления некомпланарны. Пьезоэлементы 5-10 могут представлять собой один и тот же пьезоэлектрик, в частности PVF, но с взаиморазличными пространственными направлениями dk поляризации в различных измерительных элементах.

Размер каркаса 1 в поперечной плоскости датчика превосходит более чем в 2 раза размер микронеоднородностей диагностируемой композитной конструкции. Одноименные компоненты: управляющие непрерывные электроды 3, 4, пьезоэлементы 5-10, электролюминисцентные элементы 11-16, световоды 2 различных измерительных элементов могут быть объединены в общие (в частности, общий световод или общие управляющие электроды). Пьезоэлемент и электролюминофор (светодиод) в каждом измерительном элементе расположены, в частности, между управляющими электродами.

В световодах 2 могут быть расположены решетки Брэгга для диагностики и/или верификации измеряемых датчиком параметров напряженного состояния и температуры.

Для различных вариантов конструкции датчика форма, относительный размер, взаимное расположение и физико-механические характеристики компонент: световода 2, двух управляющих непрерывных электродов 3, 4, пьезоэлементов 5-10, электролюминисцентных элементов 11-16 в измерительном элементе и взаимное расположение измерительных элементов в объеме каркаса 1 (буферного слоя) датчика могут быть различными.

Управляющие электроды 3, 4 могут иметь цилиндрическую оболочечную или ленточную пластинчатую форму.

Пьезоэлементы 5-10 могут иметь форму полых цилиндров, или цилиндрических круговых секторов, или прямоугольных стержней.

Световод 2 может располагаться вблизи или внутри электролюминисцентного (светодиодного) элемента 11-16.

Частота светоотдачи электролюминисцентного (светодиодного) элемента 11-16 для различных измерительных элементов может быть одинаковой или различной, в частности, для конструкции датчика с общим световодом 2 для различных элементов.

Полимерный цилиндрический каркас 1 выполняет защиту от механических повреждений размещенных в нем измерительных элементов, монолитно охватывает и сонаправленно скрепляет между собой измерительные элементы и их компоненты: световоды 2, управляющие непрерывные электроды 3, 4, пьезоэлементы 5-10, электролюминисцентные (светодиодные) элементы 11-16. Каркас 1 также выполняет роль буферного слоя для механической трансляции на измерительные элементы лишь однородной макроскопической (осредненной) составляющей действующего (в частности, со стороны диагностируемой микронеоднородной композитной конструкции) в окрестности внешней границы каркаса датчика микронеоднородного напряженного состояния. Считаем, что в поперечном сечении размер измерительных элементов датчика соизмерим с характерным размером неоднородностей, в частности, для полимерного волокнистого композита.

Размер каркаса 1 (буферного слоя) в поперечном сечении датчика, во-первых, больше размера самого датчика (совокупности измерительных элементов), во-вторых, в 2 или более раз больше характерного размера (в плоскости поперечного сечения датчика) микронеоднородностей диагностируемой композитной конструкции и, в-третьих, меньше характерных размеров (в плоскости поперечного сечения датчика) неоднородностей диагностируемого поля макронапряжений σ*; т.е. градиенты макронапряжений σ* в плоскости поперечного сечения датчика должны быть несущественны на характерных размерах поперечного сечения каркаса датчика. Первое условие обусловлено физическим ограничением - условием, что совокупность измерительных элементов датчика расположена внутри каркаса. Второе условие обусловлено тем, что соотношения размера каркаса с размером микронеоднородностей диагностируемой композитной конструкции в плоскости поперечного сечения датчика менее, чем в 2 раза нецелесообразны из-за появляющихся при этих соотношениях существенных влияниях на диагностируемое напряженное состояние пульсаций напряжений от присутствия микронеоднородностей вблизи каркаса датчика в композитной конструкции. Третье условие обусловлено тем, что «передаточные коэффициенты» датчика определяются, как правило, для однородного сложного напряженного состояния и не учитывают градиенты макроскопических полей деформирования в плоскости поперечного сечения датчика.

На фиг. 3 показаны: 17 - однородная анизотропная упругая среда с эффективными свойствами композита, в частности, полимерного однонаправленного волокнистого композита; r1, r2, r3 - координатные оси.

Датчик работает следующим образом.

Механолюминесцентные эффекты в датчике возникают в результате парных взаимодействий между собой электролюминесцентных 11-16 и соответствующих пьезоэлектрических 5-10 элементов (см. фиг. 1, фиг. 2).

Действие неоднородных (соответствующих однородному объемному макроскопическому напряженному состоянию σ*) полей нормальных и касательных напряжений на внешнюю боковую поверхность каркаса 1 датчика приводит к деформациям пьезоэлектрических элементов, что приводит к возникновению в них соответствующих электрических полей. Эти электрические поля (зависящие от диагностируемых значений σ*) суммируются с составляющими от действия управляющего напряжения на внутреннем 3 и внешнем 4 электродах (см. фиг. 1, фиг. 2); в каждом измерительном элементе результирующее электрическое поле действует на электролюминесцентный элемент 11-16, вызывая его свечение на своей (различной по измерительным элементам) частоте. Разночастотные свечения из различных измерительных элементов проникают во внутрь световода 2 и передаются к приемнику-анализатору интенсивностей света на выходе из световода для каждой частоты дискретного спектра. Из анализа зависимостей интенсивностей света каждой частоты на выходе от управляющего напряжения делается вывод о характере распределения, величине и локациях неоднородностей напряженного состояния по длине датчика.

Управляющее напряжение по длине электродов может быть, например, как постоянной (по длине электрода) величиной, так и в виде бегущего по электроду локационного электрического видеоимпульса прямоугольной формы, отличного от нуля лишь на локальном участке с пошаговым изменением величины импульса на каждом цикле прохождения по электроду.

Подтверждение заявленных технических результатов: возможность определения датчиком всех шести независимых компонент тензора напряжений σ* для объемного сложного напряженного состояния и нахождения локаций неоднородностей напряженного состояния по длине датчика получено в результате проведенных численных экспериментов нахождения величин Δ(j) на основе разработанных двух алгоритмов локаций:

- первый алгоритм с использованием локационного сканирующего электрического видеоимпульса с пошаговым изменением величины импульса на каждом цикле прохождения исследуемого локального участка,

- второй алгоритм с использованием локационной сканирующей бегущей гармонической волны с варьированием амплитуды, где функции Δ(j)= Δ(j) (r3) наведенных тензором напряжений σ* составляющих электрических напряжений на электролюминесцентных элементах всех шести измерительных элементов датчика, координатная ось r3 совмещена с осью датчика, .

Свойства электролюминисцентных элементов заданы «S-образной» кривой зависимости интенсивности свечения от приложенного к нему напряжения с характерными точками заданных пороговых напряжений для начала свечения и для начала насыщенного свечения электролюминисцентных элементов.

Наличие в датчике шести взаиморазличных по направлениям пространственной поляризации пьезоэлементов позволяет найти все шесть независимых компонент , , …, тензора σ* объемного напряженного состояния в рассматриваемом элементарном объеме dV* с координатой r3 из решения системы линейных алгебраических уравнений. Для получения этой системы необходимо для каждого из измерительных элементов представить результирующие электрические напряжения на электролюминесцентных элементах линейными разложениями по заданным значениям управляющего электронапряжения и диагностируемого тензора объемного напряженного состояния σ* в рассматриваемом элементарном объеме dV*, . Коэффициенты разложений являются «управляющими» aU(j) и «передаточными» аσ(j)mn коэффициентами и зависят от параметров датчика, в частности: заданных шести различных пространственных направлений поляризации dj измерительных элементов и их взаимного расположения и, дополнительно, от формы и упругих свойств каркаса (буферного слоя) и эффективных упругих свойств композита. Пример расчетной области для определения коэффициентов aU(j), aσ(j)mn датчика изображен на фиг. 3 в однородной области 17 с эффективными свойствами композита диагностируемой конструкции; фрагмент датчика располагается на удалении от боковых граней области dV* и для расчета aU(j), aσ(j)mn решение для электроупругих полей (электрические напряжения на электролюминесцентных элементах) в элементах датчика рассматриваем на некотором удалении от торцов фрагмента датчика, где влияние краевых эффектов области dV* несущественно. В результате, искомые компоненты тензора напряжений σ* определяем из системы шести линейных алгебраических уравнений, выбор направлений поляризаций dj измерительных элементов осуществляется из условия отличия от нуля главного определителя этой системы уравнений. Функции наведенных составляющих электрических напряжений Δ(j)(j) (r3) на электролюминесцентных элементах всех шести измерительных элементов могут быть определены независимо для каждого измерительного элемента методами сканирования на основе анализа изменений интенсивностей света шести различных частот ν(j) волн на выходе из оптоволокна при варьировании управляющим напряжением .

Таким образом, по найденным значениям наведенных составляющих электрических напряжений Δ(j) в измерительных элементах поперечного сечения датчика с координатой r3 из решения системы линейных алгебраических уравнений определяем искомые шесть компонент , , …, тензора σ* объемного напряженного состояния в рассматриваемом элементарном объеме dV* с координатой r3 по оси датчика.

Заявляемый датчик позволяет определить все шесть независимых компонент тензора напряжений для объемного сложного напряженного состояния и локации неоднородностей напряженного состояния по длине датчика.

Для верификации результатов диагностирования напряжений (и/или для измерения приращения температуры) в световоде датчика дополнительно может быть расположена решетка Брэгга или в датчике может быть размещен дополнительный измерительный элемент со своей отличной от других измерительных элементов поляризацией пьезоэлектрической фазы (пьезоэлемента) и частоты светоотдачи электролюминесцентной фазы (светодиода).

1. Волоконно-оптический датчик объемного напряженного состояния, содержащий протяженный каркас, расположенные внутри каркаса сонаправленно его оси измерительные элементы, каждый из которых включает волоконно-оптический световод, выполненный с возможностью подключения к измерительному устройству,

отличающийся тем, что в каждый измерительный элемент введены сонаправленные оси каркаса два управляющих непрерывных электрода, пьезоэлемент, электролюминисцентный элемент, при этом пьезоэлементы всех измерительных элементов имеют различные направления пространственных поляризаций, из которых произвольные три направления некомпланарны, количество измерительных элементов не менее шести.

2. Датчик по п. 1, отличающийся тем, что управляющие непрерывные электроды, и/или пьезоэлементы, и/или электролюминисцентные элементы, и/или световоды различных измерительных элементов могут быть объединены в общие, соответственно, управляющие непрерывные электроды, и/или пьезоэлементы, и/или электролюминисцентные элементы, и/или световоды.

3. Датчик по п. 1 или 2, отличающийся тем, что в световодах расположены решетки Брэгга.



 

Похожие патенты:

Комбинированный прибор для определения прочностных характеристик ягод относится к области садоводства, а именно к средствам контроля для оценки физико-механических свойств ягод.

Изобретение относится к измерительной технике, в частности может быть использовано для надежного и точного измерения усилий в широком диапазоне, в том числе и малой величины.

Изобретение относится к области испытаний соединения полимерных труб, полученного посредством сварки с использованием накладной муфты. Сущность: вырезают из муфтового сварного соединения образец, содержащий части соединяемых полимерных труб и перекрывающую их и приваренную к ним часть муфты.

Заявленное изобретение относится к области швейного материаловедения и связано с определением деформации пористых вспененных материалов для одежды при сжатии. Заявленное устройство для исследования деформации вспененных одеждных материалов при сжатии содержит средство для крепления исследуемого образца, при этом воспринимающие элементы выполнены в виде двух плоских металлических пластин, на нижнем неподвижном элементе (1) расположена осевая конструкция с винтовой нарезкой (3), отвечающая за действие силы сжатия на материал (2) под действием внешнего давления, в том числе давления водной среды, и сохранение его толщины после снятия деформирующей нагрузки, при этом второй из воспринимающих элементов (4) выполнен с возможностью регулирования его высоты от исходной до заданной толщины сжатия материала (2) за счет деталей винтового сжатия (5) и (6).

Изобретение относится к контрольно-измерительной технике и может быть использовано при стопорении резьбовых соединений (болтов, шпилек), а также для измерения усилий и температуры в различных резьбовых соединениях строительных элементов и конструкций, от состояния которых в значительной степени зависит вероятность аварийной ситуации на строительных сооружениях, имеющих важное стратегическое значение.

Изобретение относится к системам водоотведения. В системе, включающей модуль перекачки воды, содержащий насосы, приемный резервуар с подводящим трубопроводом, модуль анализа диагностируемых параметров, модуль контрольно-измерительных приборов, блок ввода объемов приемного резервуара, блок анализа водопритока, модуль анализа диагностируемых параметров, снабженный блоками ввода геометрических характеристик приемного резервуара, ввода гидравлических характеристик подводящего трубопровода, анализа откачки воды из приемного резервуара, модуль контрольно-измерительных приборов снабжен датчиками уровня воды, установленными на подводящем трубопроводе и в приемном резервуаре, модуль перекачки воды снабжен запорно-регулирующим устройством с исполнительным органом, установленным на подводящем трубопроводе, устройством управления, при этом выходы блоков ввода геометрических характеристик приемного резервуара, ввода гидравлических характеристик подводящего трубопровода и блока анализа откачки воды из приемного резервуара подключены к входу блока анализа водопритока.

Изобретение относится к измерительной технике и предназначено для измерения нагрузки на штанговую и стоечную крепь горных выработок, для измерения нагрузки на элементы машин и механизмов при изменении знака нагрузки на них, а также для измерения нагрузки при испытаниях образцов материалов на прочность.

Изобретение относится к способам оценки напряженно-деформированного состояния (НДС) и может быть использовано для определения механических напряжений и деформаций элементов сложных конструкций расчетно-экспериментальным методом.

Изобретение относится к испытательным стендам для определения механических сопротивлений упругих вставок в трубопроводы с жидкостью. Техническим результатом заявляемой установки является обеспечение проведения достоверных измерений механических сопротивлений гибких вставок в трубопроводы.

Система (6) для сброса грузов из летательного аппарата (10) содержит грузовой парашют (2) с канатом (4) грузового парашюта и средства (21) приведения в действие, предназначенные для введения грузового парашюта (4) в окружающий воздушный поток позади летательного аппарата (10).

Изобретение относится к измерительной технике и может быть использовано в различных отраслях промышленности (машиностроение, химической, горнодобывающей и др.) для дистанционной индикации и регистрации механических усилий, в частности для диагностики и мониторинга напряженно-деформированного состояния массива горных пород в окрестностях капитальных, очистных и подготовительных горных выработок, целиков, а также при техносферных и природных чрезвычайных ситуациях.

Изобретение относится к области измерительной техники и может быть использовано для определения остаточных технологических напряжений в образцах, вырезанных из исследуемой детали.

Изобретение относится к области измерительной техники и может быть использовано в приборостроении и машиностроении для измерения деформации. .

Изобретение относится к силоизмерительной технике и может быть использовано для измерения линейных статических и динамических сил и вызванных ими перемещений. .

Изобретение относится к области измерительной техники и может быть использовано в приборостроении и машиностроении для измерения механических напряжений. .

Изобретение относится к силоизмерительной технике и может быть использовано для измерения линейных статических и динамических сил и вызванных ими перемещений. .

Изобретение относится к области измерительной техники и может быть использовано в приборостроении и машиностроении для измерения деформации. .

Изобретение относится к области измерительной техники и может быть использовано в приборостроении и машиностроении для измерения физических величин. .

Изобретение относится к электрическим измерительным устройствам, предназначенным для измерения колебаний в широком диапазоне частот колебаний в различных средах.

Изобретение относится к измерительной технике и предназначено для измерения напряжений и перемещений, связанных с деформацией объектов. Волоконно-оптический тензометрический датчик состоит из оптического волокна, покрытого металлом, двух волоконных брэгговских решеток (ВБР), защитной трубки и корпуса датчика.

Изобретение относится к области измерительной техники, в частности к волоконно-оптическим средствам измерения неоднородного сложного объемного динамического напряженного состояния, и может быть использовано для диагностики напряженного состояния и дефектоскопии композитов, в медико-биологических исследованиях, гидроакустике, аэродинамике, системах охраны при дистанционном мониторинге давления. Волоконно-оптический датчик объемного напряженного состояния содержит протяженный каркас, расположенные внутри каркаса сонаправленно его оси измерительные элементы. Каждый измерительный элемент включает волоконно-оптический световод, выполненный с возможностью подключения к измерительному устройству, два управляющих непрерывных электрода, пьезоэлемент, электролюминисцентный элемент. Пьезоэлементы всех измерительных элементов имеют различные направления пространственных поляризаций, из которых произвольные три направления некомпланарны. Количество измерительных элементов не менее шести. Изобретение позволяет определить все шесть независимых компонент тензора напряжений для объемного сложного напряженного состояния и локации неоднородностей напряженного состояния по длине датчика. 2 з.п. ф-лы, 3 ил.

Наверх