Универсальный твердотопливный генератор давления

Изобретение относится к твердотопливным генераторам давления, применяемым при комплексной обработке скважин в составе импульсных корпусных и бескорпусных устройств, предназначенных для интенсификации нефтегазодобычи. Генератор давления представляет собой заряд, состоящий из набора твердотопливных шашек, имеющих цилиндрический осевой канал, прочноскрепленных между собой по боковым поверхностям, устанавливаемый в корпусе устройства или на геофизическом кабеле. Укладку однотипных твердотопливных канальных шашек при сборке генератора производят концентрическими рядами вокруг центральной шашки, имеющей цилиндрический осевой канал. При этом соотношение наружного диаметра центральной шашки и диаметра ее канала равно (2-7):1, соотношение наружного диаметра однотипных твердотопливных шашек к диаметру их канала равно (2-3):1, а соотношение наружного диаметра центральной шашки и диаметра периферийных шашек равно (5-11):1. Склеивание шашек производят на длине не более 0,2 длины шашек со стороны обоих торцов. При этом количество периферийных шашек и их длина назначаются в зависимости от требуемого импульса давления, максимального давления и времени работы генератора, что обеспечивает его универсальность при использовании в различных конструкциях корпусных и бескорпусных устройств. Воспламенение газогенератора производят при помощи электронагревательного элемента, вмонтированного во внешнем ряду периферийных шашек в районе склеивания шашек. Технический результат заключается в повышении эффективности действия генератора давления. 2 з.п. ф-лы, 5 ил.

 

Изобретение относится к нефтегазодобывающей промышленности, а именно к твердотопливным генераторам давления, предназначенным для термобарохимической обработки продуктивного пласта скважин с целью интенсификации нефтегазодобычи.

Задачами изобретения являются:

- создание универсальной конструкции твердотопливного генератора давления для различных корпусных и бескорпусных импульсных устройств;

- создание конструкции твердотопливного генератора давления с регулируемыми рабочими характеристиками: импульсом давления, временем его работы и максимальным давлением продуктов сгорания;

- создание конструкции твердотопливного генератора с заданным режимом работы;

- обеспечение оптимальных значений основных параметров твердотопливного генератора давления для воздействия на продуктивный пласт нефтегазодобывающей скважины в зависимости от ее эксплуатационного состояния и горно-геологических особенностей;

- повышение эффективности действия.

Известен большой ряд твердотопливных генераторов давления, предназначенных для применения в различных устройствах, используемых для термобарохимического воздействия на продуктивный пласт, например:

RU 97118482 A, 10.07.1999

RU 97118480 A, 27.08.1999

RU 2151282 C1, 20.06.2000

RU 2175059 C2, 20.10.2001

RU 2277167 C1, 27.05.2006

RU 2311530 C1, 27.11.2007

RU 2413069 C2, 27.02.2011

RU 2011104812 A, 20.08.2012

RU 2465447 C1, 27.10.2012

RU 2460877 C1, 10.09.2012

RU 2011111945 A, 10.10.2012

RU 2471973 C2, 10.01.2013

RU 2471974 C2, 10.01.2013

RU 2502867 C2, 27.12.2013

RU 2503807 C2, 10.01.2014

RU 2012152700 A, 20.06.2014

RU 2597302 CI, 10.09.2016

Наиболее близким к предлагаемому решению по назначению, конструкторскому исполнению и функционированию является универсальный твердотопливный генератор давления скважинный, представленный в патенте RU 2597302 C1, 10.09.2016, взятый авторами за прототип.

Твердотопливный генератор по данному изобретению представляет собой заряд, состоящий из набора шашек баллиститного топлива, устанавливаемых концентрическими кругами вокруг центральной шашки, имеющей цилиндрический осевой канал, которые скрепляются между собой по внешним образующим (боковым поверхностям) путем склеивания нитроцеллюлозным клеем на длине 0,065-0,1 длины генератора со стороны обоих торцов, при этом соотношение наружного диаметра центральной твердотопливной шашки и наружного диаметра периферийных шашек равно (2,2-5,5):1.

Существенным недостатком прототипа является недостаточное количество газообразных продуктов сгорания, необходимых для очистки продуктивного пласта после его разрыва, что обусловлено малой массой твердотопливных элементов генератора.

Если при разработке конструкции генератора, взятого за прототип, решалась задача регулирования в широком диапазоне его рабочих характеристик - импульса давления и времени его работы, то при разработке заявленной конструкции генератора, наряду с указанной задачей, должна быть решена задача получения необходимого газоприхода для последующего после разрыва продуктивного пласта репрессионно-депрессионного воздействия на него с целью очистки от асфальто-смолистых парафиновых отложений (далее - АСПО). Массу топлива, обеспечивающую необходимый газоприход, можно увеличить только за счет увеличения наружного диаметра центральной шашки, что приведет к уменьшению количества периферийных шашек, резкому уменьшению поверхности горения, уменьшению импульса давления и, как следствие, - потере положительного эффекта от срабатывания генератора. Сохранить поверхность горения в этом случае и даже существенно увеличить ее можно, заменив бесканальные периферийные шашки на канальные, при этом необходимо уменьшить внешний диаметр периферийных шашек, что позволит сделать компоновку более плотной и дополнительно увеличить общий вес генератора.

С целью получения максимального эффекта при воздействии на продуктивный пласт, повышения надежности срабатывания и обеспечения универсальности применения предлагается конструкция твердотопливного генератора давления с заданным режимом работы (фиг. 1), представляющая собой заряд, собранный из шашек баллиститного топлива: однотипных шашек 1, имеющих цилиндрический осевой канал, устанавливаемых концентрическими рядами вокруг центральной шашки 2, имеющей цилиндрический осевой канал, которые скрепляются между собой по внешним образующим (боковым поверхностям) нитроцеллюлозным клеем 3 на длине не более 0,2 длины генератора со стороны обоих торцов. При этом соотношение наружного диаметра центральной шашки 2 и диаметра ее канала равно (2-7):1, соотношение наружного диаметра однотипных твердотопливных шашек 1 и диаметра их канала равно (2-3):1, а соотношение наружного диаметра центральной шашки и диаметра периферийных шашек равно (5-11):1. Полученное расчетом соотношение диаметров, обеспечивающее оптимальную поверхность горения и оптимальный вес заряда, в сочетании с изменением количества периферийных шашек 1 и их длины, позволило перейти на новый уровень качества генератора давления, т.е. позволяет в управляемом режиме производить последовательно разрыв пласта и его очистку от АСПО путем репрессионно-депрессионного воздействия на пласт за счет серии колебательных движений скважинной жидкости над продуктивным пластом, приводимой в возвратно-поступательное движение продуктами сгорания заряда генератора. Пульсация давления повторяется в течение времени, значительно превышающего время горения генератора (фиг. 3).

Воспламенение заряда генератора производится при помощи электронагревательного элемента 4, вмонтированного во внешнем ряду периферийных шашек 1 (фиг. 2). Для размещения электронагревательного элемента уменьшают длину нескольких шашек. Данная схема расположения нагревательного элемента, сохраняя все преимущества, заявленные в прототипе, характеризуется существенным повышением технологичности изготовления генератора и, как следствие, уменьшением трудозатрат при ее реализации. Нагревательный элемент устанавливается на каждый 2-й или 3-й заряд (в зависимости от заявки Заказчика).

Обработка скважины при помощи предлагаемого генератора давления производится в следующем порядке: определенное количество генераторов последовательно устанавливается в корпусное импульсное устройство (фиг. 4) или на стальную штангу (фиг. 5), пропускаемую через канал центральной шашки. Провода электронагревательного элемента присоединяют к проводам кабель-троса. Из скважины извлекают насосно-компрессорное оборудование. После чего генераторы на геофизическом кабель-тросе опускают в район продуктивного пласта и устанавливают в зоне перфорации обсадной колонны. Заряды генераторов воспламеняют подачей электрического импульса на нагревательный элемент 4. При сгорании заряда генераторов в замкнутом объеме скважины, ограниченном столбом скважинной жидкости и обсадной колонной, в зоне обработки создается высокое избыточное давление продуктов сгорания и высокая температура. Зная технические характеристики скважины и ее горногеологические особенности, назначают расчетное количество генераторов для получения избыточного давления, необходимого для разрыва пласта.

Расчет давления производят по известному уравнению состояния продуктов сгорания:

где W - объем, занимаемый продуктами сгорания;

ωт - вес выгоревшего топлива;

R - газовая постоянная;

Т - температура продуктов сгорания;

χ - тепловые потери;

Рг/ст - гидростатическое давление в зоне расположения заряда.

После разрыва пласта часть продуктов сгорания, имеющих высокую температуру, устремляются в продуктивный пласт - очистка пласта от АСПО, оставшаяся в скважине часть продуктов сгорания поднимает столб скважинной жидкости - депрессия на пласт (очистка пласта). Столб жидкости возвращается в начальное положение, сжимая оставшиеся продукты сгорания и загоняя их в пласт - репрессия на пласт (очистка пласта). Репрессионно-депрессионное воздействие на пласт продолжается до момента, когда гидростатическое давление скважинной жидкости станет равным пластовому давлению (фиг. 3).

1. Универсальный твердотопливный генератор давления для корпусных и бескорпусных импульсных устройств, состоящий из набора однотипных твердотопливных шашек баллиститного топлива, уложенных концентрическими рядами вокруг центральной шашки, имеющей цилиндрический осевой канал, прочноскрепленных между собой склеиванием по наружным поверхностям, устанавливаемый в корпусе или на кабеле, отличающийся тем, что однотипные периферийные шашки имеют осевой цилиндрический канал, при этом: соотношение их наружного диаметра и диаметра их канала равно (2-3):1; соотношение наружного диаметра центральной шашки и диаметра ее канала равно (2-7):1; соотношение наружного диаметра центральной шашки и диаметра периферийных шашек равно (5-11):1.

2. Генератор по п.1, отличающийся тем, что при срабатывании в призабойной зоне скважины он обеспечивает разрыв продуктивного пласта и последующее репрессионно-депрессионное воздействие на пласт.

3. Генератор по п.1, отличающийся тем, что электронагревательный элемент, воспламеняющий заряд, вмонтирован во внешнем ряду укороченных шашек в районе их склеивания.



 

Похожие патенты:

Способ газодинамической обработки пласта относится к нефтегазодобывающей промышленности и может быть применен для разрыва и газодинамической обработки нефтегазоносных пластов продуктами горения твердотопливных (газогенерирующих) зарядов для улучшения гидродинамической связи скважины с пластом, в том числе в скважинах с низким пластовым давлением.

Группа изобретений относится к нефтедобывающей промышленности и может быть использована для увеличения эффективности вторичного вскрытия пласта. Способ включает перфорацию скважины корпусным перфоратором и последующее выполнение разрыва пласта с использованием термогазокислотного модуля, оснащенного зарядом твердого топлива, осуществление при его горении выделения газа, попадающего через соединительный узел в корпус перфоратора и направленными струями воздействующего на сформированные перфорационные каналы.

Группа изобретений относится к горному делу и может быть применена в гидравлическом разрыве пласта. Описывается взрывчатая гранула для описания разлома в подземном пласте.

Изобретение относится к горной промышленности и предназначено для вскрытия продуктивных пластов в нефтяных и газовых скважинах при буровзрывных работах. Устройство для обработки призабойной зоны скважины содержит корпусный или бескорпусный перфоратор в обсадной колонне с кумулятивным и газогенерирующим зарядом из твердого топлива, совмещенного с кислотным реагентом.

Изобретение относится к твердотопливным генераторам давления для интенсификации нефтегазодобычи, применяемым при комплексной обработке скважин в составе импульсных корпусных и бескорпусных устройств.

Группа изобретений относится к нефтегазодобывающей и горной промышленности и, в частности, к интенсификации нефтегазовых скважин и дегазации угольных пластов. Технический результат - повышение эффективности способа и надежности работы устройства.

Группа изобретений относится к нефтегазодобывающей промышленности и может быть применена для обработки продуктивного пласта. Способ включает газодинамический разрыв пласта путем сжигания в интервале продуктивного пласта порохового заряда из твердотопливного материала с наполнителем-стабилизатором горения с центральным круглым каналом, с одновременным накоплением давления пороховых газов в полости центрального канала заряда, с последующей передачей энергии горения заряда в пласт.

Изобретение относится к технологиям добычи нефти и может быть применено для газодинамического воздействия на пласт. Способ включает кумулятивную перфорацию интервала скважины с образованием в обсадной колонне скважины и в горной породе сгруппированных перфорационных каналов для притока флюида, последующее срабатывание генераторов давления и их воздействие на пласт через сгруппированные перфорационные каналы для притока флюида с образованием в горной породе индивидуальных трещин разрыва горной породы в направлении каждого перфорационного канала.

Группа изобретений относится к топливно-энергетическому комплексу и может быть использована для добычи нефти и газа при разработке сланцевых нефтегазоносных залежей (плев).

Предоставляются способы и система разрыва горной породы в формации для улучшения добычи флюидов из формации. В одном способе одна или несколько скважин пробурены в коллектор, причем каждая скважина содержит главный ствол скважины с двумя или несколькими боковыми стволами скважины, пробуренными из главного ствола скважины.

Изобретение относится к вибросейсмической технике и может быть использовано для повышения нефтеотдачи нефтегазоносных месторождений путем скважинного вибровоздействия на нефтяные пласты, а также для сейсморазведки земных недр.

Изобретение относится к области добычи нефти и газа и может быть использовано при добыче сланцевой нефти с применением технологии гидравлического разрыва пласта. Скважинное оборудование для обработки призабойной зоны пласта состоит из струйного насоса, колонны насосно-компрессорных труб (НКТ), наземного силового насоса, наземной сепарационной системы и системы управления.

Группа изобретений относится к области нефтегазодобывающей промышленности, в частности к технологии очистки призабойной зоны горизонтальной скважины и для интенсификации добычи скважины.

Группа изобретений относится к нефтедобывающей промышленности и предназначено для очистки от твердых отложений стенок обсадных труб и отверстий перфорации, декольматации призабойной зоны пласта (ПЗП) и увеличения подвижности пластовых флюидов.

Группа изобретений относится к нефтедобывающей промышленности и предназначена для очистки от твердых отложений стенок обсадных труб и отверстий перфорации, декольматации призабойной зоны пласта (ПЗП) и увеличения подвижности пластовых флюидов.

Изобретение относится к нефтедобывающей промышленности и предназначено для воздействия на призабойную зону нефтяных скважин. Технический результат заключается в обеспечении скважинным акустическим преобразователем увеличения радиуса эффективного воздействия на призабойную зону нефтяных скважин за счет увеличения его акустической мощности, радиальной направленности акустического излучения и уменьшения километрического затухания акустической волны в окружающем пространстве при повышении надежности и ремонтопригодности в полевых условиях.

Группа изобретений относится к управлению вибрацией забойных двигателей при бурении скважин. Устройство содержит объемный двигатель, пару выходных отверстий, прикрепленных к выходному каналу для текучей среды двигателя и включающих выполненное с возможностью выборочного перемещения наружное выходное отверстие, расположенное рядом с неподвижным внутренним выходным отверстием, пружину, предназначенную для возвращения наружного выходного отверстия в нерабочее положение, когда поток буровой текучей среды уменьшен ниже выбранного нижнего предела.

Изобретение относится к области промысловой геофизики и может быть использовано для интенсификации добычи тяжелой высоковязкой нефти. Заявлен способ повышения нефтеотдачи пласта с высоковязкой нефтью, при котором погружают в скважину снаряд, содержащий спиральную линию, с помощью которой возбуждают в обсадной трубе скважины переменный азимутальный электрический ток с частотой ~10 кГц, осуществляя локальный нагрев участка обсадной трубы и коллектора скважины для уменьшения коэффициента вязкости нефти в области пласта, прилегающего к обсадной трубе.
Изобретение относится к горному делу и может быть использовано для освоения и восстановления дебита эксплуатационных скважин, понизившегося вследствие кольматации призабойной зоны асфальтосмолопарафиновыми образованиями и мехпримесями.

Группа изобретений относится к области нефтедобывающей промышленности, в частности к способу интенсификации добычи нефти и стимуляции повышения нефтеотдачи пласта.
Изобретение относится к горному делу и может быть применено для импульсного гидроразрыва. Способ включает закачивание в полость скважины жидкости, формирование перепадов давления между призабойной зоной и полостью скважины путем создания периодических импульсов давления в призабойной зоне в виде перемещающейся по полости скважины волны движения массы жидкости, образующейся при периодическом открывании полости скважины на устье для вытекания скважинной жидкости, находящейся под давлением, и повышения давления с применением вентилей. При этом предварительно оценивают время перемещения волны движения массы жидкости от устья до призабойной зоны и длительность расширения и смыкания трещин пласта, устанавливают в полости скважины исходное давление, при котором трещины пласта сомкнуты, затем вентили долива жидкости открывают на время, в течение которого волна движения массы жидкости достигает призабойной зоны и воздействует на трещины пласта. Затем закрывают вентили долива жидкости и открывают вентиль слива жидкости для снижения давления в скважине до величины исходного, к линии, соединяющей устье скважины и источник жидкости, находящейся под давлением, через два вентиля долива подключены два гидропневмоаккумулятора, объем которых определяется расходом скважинной жидкости при ее перетекании в пласт. Вентили долива открывают последовательно через отрезок времени, обеспечивающий формирование суммарного импульса давления на забое скважины с учетом геолого-физических характеристик. Технический результат заключается в получении в зумпфе скважины импульсов высокого давления с длительностью, достаточной для деформации трещин.

Изобретение относится к твердотопливным генераторам давления, применяемым при комплексной обработке скважин в составе импульсных корпусных и бескорпусных устройств, предназначенных для интенсификации нефтегазодобычи. Генератор давления представляет собой заряд, состоящий из набора твердотопливных шашек, имеющих цилиндрический осевой канал, прочноскрепленных между собой по боковым поверхностям, устанавливаемый в корпусе устройства или на геофизическом кабеле. Укладку однотипных твердотопливных канальных шашек при сборке генератора производят концентрическими рядами вокруг центральной шашки, имеющей цилиндрический осевой канал. При этом соотношение наружного диаметра центральной шашки и диаметра ее канала равно :1, соотношение наружного диаметра однотипных твердотопливных шашек к диаметру их канала равно :1, а соотношение наружного диаметра центральной шашки и диаметра периферийных шашек равно :1. Склеивание шашек производят на длине не более 0,2 длины шашек со стороны обоих торцов. При этом количество периферийных шашек и их длина назначаются в зависимости от требуемого импульса давления, максимального давления и времени работы генератора, что обеспечивает его универсальность при использовании в различных конструкциях корпусных и бескорпусных устройств. Воспламенение газогенератора производят при помощи электронагревательного элемента, вмонтированного во внешнем ряду периферийных шашек в районе склеивания шашек. Технический результат заключается в повышении эффективности действия генератора давления. 2 з.п. ф-лы, 5 ил.

Наверх