Способ ультразвукового контроля алюминотермитного сварного соединения рельсов



Способ ультразвукового контроля алюминотермитного сварного соединения рельсов
Способ ультразвукового контроля алюминотермитного сварного соединения рельсов
Способ ультразвукового контроля алюминотермитного сварного соединения рельсов
Способ ультразвукового контроля алюминотермитного сварного соединения рельсов
Способ ультразвукового контроля алюминотермитного сварного соединения рельсов

Владельцы патента RU 2643866:

Общество с ограниченной ответственностью "ГТ-Алюминотермитная сварка" (RU)

Изобретение относится к неразрушающему контролю уложенных в железнодорожный путь железнодорожных рельсов ультразвуковым методом и может быть использовано для обнаружения дефектов в подошвах рельсов в зоне их сварного соединения, выполненного алюминотермитной сваркой методом промежуточного литья. В процессе осуществления ультразвукового контроля алюминотермитного сварного соединения рельсов определяют по меньшей мере две зоны для выполнения ультразвукового контроля, причем одна из по меньшей мере двух зон выбирается на обливе (валике усиления) сварного соединения с боковой поверхности пера подошвы рельса. Шлифуют определенные зоны на обливе (валике усиления) с образованием площадок, выполненных с возможностью обеспечения акустического контакта. Устанавливают ультразвуковой датчик на каждую площадку на обливе, подключенный к по меньшей мере одному ультразвуковому дефектоскопу. Выполняют ультразвуковой контроль сварного соединения упомянутым по меньшей мере одним дефектоскопом эхо-методом или дельта-методом. В результате «слепая зона» в зоне подошвы сварного соединения рельсов отсутствует, обеспечивается повышение точности выявления дефектов сварного шва в зоне подошвы рельсов. 2 з.п. ф-лы, 8 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к неразрушающему контролю уложенных в железнодорожный путь железнодорожных рельсов ультразвуковым методом и может быть использовано для обнаружения дефектов в подошвах рельсов, в зоне их сварного соединения, выполненного алюминотермитной сваркой методом промежуточного литья.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

В соответствии с ГОСТ 18576-85 (Контроль неразрушающий. / Рельсы железнодорожные. Методы ультразвуковые. М., Изд-во стандартов, 1985) для контроля подошвы допускается введение ультразвуковых колебаний через поверхность катания головки рельса, где условия акустического контакта оптимальны и могут быть применены при сплошном контроле качества рельсов с помощью съемных дефектоскопных тележек.

Такие методы обеспечивают высокую скорость неразрушающего контроля рельсов. Однако ввиду специфичности профиля рельса методы ультразвукового исследования с поверхности катания головки рельсов с помощью дефектоскопных тележек не обеспечивают обнаружения дефектов в подошвах рельсов в зоне их сварного соединения выполненного алюминотермитной сваркой методом промежуточного литья.

В соответствии с ГОСТ 14782-86 (Контроль неразрушающий. Соединения сварные. Методы ультразвуковые. М., Изд-во стандартов, 1986) сварное соединение подготавливают к ультразвуковому контролю при отсутствии в соединении наружных дефектов. Форма и размеры околошовной зоны должны позволять перемещать преобразователь в пределах, обеспечивающих прозвучивание акустической осью преобразователя сварного соединения или его части, подлежащей контролю.

Известен способ контроля рельсов, в котором проверка шва алюминотермитной сварки в области подошвы осуществляется поперечной ультразвуковой волной с верхней поверхности пера подошвы рельса пьезоэлектрическим преобразователем с углом ввода 70 градусов (Стандарт СТО РЖД 1.11.003-2009 Метод ультразвукового контроля сварных стыков Технологическая инструкция ТИ-07.96-2011). При этом выявление дефекта происходит прямым лучом или лучом, отраженным от нижней поверхности пера подошвы рельса.

Данный способ применим для случая стандартного сварного шва (зазор между рельсами 25±1 мм, ширина облива 40-45 мм) алюминотермитной сварки в области подошвы рельсов. Однако при необходимости выполнения ремонтного сварного соединения в результате алюминотермитной сварки получается более широкий сварной шов (зазор между рельсами 50-75 мм, облив 70-100 мм) данный способ не обеспечит выявления дефектов в центре сварного сечения.

Определить «слепую зону» можно путем графического построения сечения сварного шва, максимальный возможный угол ввода ультразвуковой поперечной волны в металл - около 70 градусов (это следует из закона Снеллиуса). Как показано на Фиг. 1, при установке совмещенного пьезоэлектрического преобразователя, работающего по эхо-методу, в положение (1), (2), (3), (4) (положение, при котором преобразователь упирается в облив (10)) в центре сечения возникает область, не прозвучиваемая акустической осью. При смещении датчика в положение (5), (6), (7), (8) центр сечения будет озвучен однократно отраженным лучом, что допускается нормативно-технической документацией. На Фиг. 2 графически показано распространение ультразвуковых волн в сечении сварки при увеличенном зазоре (50 мм) в центре сечения появляется «слепая зона» (9), не прозвучиваемая прямым и однократно отраженным лучом. Таким образом, при увеличении сварочного зазора в центре сечения образуется область, в которой выявление дефектов не гарантируется, размер этой области увеличивается с увеличением сварочного зазора. Следовательно, этот известный способ не обеспечивает гарантированного обнаружения дефектов в подошвах рельсов в зоне их сварного соединения в случае наличия широкого облива (10) (более 45 мм).

Из патента РФ № RU 2309402, опубл. 27.10.2007 известен способ ультразвукового контроля сварных стыков рельсов, выполненных электроконтактным способом (стыки без валика усиления). Особенностью способа является установка нескольких ультразвуковых датчиков в различных зонах рельсов, в частности на поверхностях перьев подошвы и на боковых сторонах головки рельсов. При этом все датчики подключены к одному многоканальному ультразвуковому дефектоскопу МИГ-УКС УДС2-116, что позволяет использовать различные схемы прозвучивания между датчиками и обеспечивает обнаружение дефектов почти по всему сечению рельс. Согласно описанию датчики неподвижно закрепляют на рельсах в окрестности сварного стыка с помощью прижимных элементов произвольной конструкции или магнитами для обеспечения надежного акустического контакта. Зазор между блоками с ультразвуковыми датчиками и поверхностью рельса заполняют контактирующей жидкостью.

Данное техническое решение можно считать наиболее близким к заявляемому. Недостатками этого известного технического решения является невозможность выявления дефектов в сварных стыках, выполненных алюминотермитным методом, поскольку в способе предусматривается установка датчиков непосредственно на перья подошвы рельсов в зоне стыка при обязательном условии отсутствия валика усиления шва (края валика усиления будут являться отражателями и осуществить указанный способ будет невозможно).

Задачей, решаемой предлагаемым изобретением, является разработка способа, позволяющего с большой достоверностью выявлять дефекты алюминотермитного сварного шва в зоне перьев подошвы рельс.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Поставленная задача решается за счет того, что предлагаемый способ включает в себя следующие этапы:

определение по меньшей мере двух зон для выполнения ультразвукового контроля, причем одна из по меньшей мере двух зон выбирается на сварном соединении с боковой поверхности пера подошвы рельса;

шлифовку по меньшей мере двух определенных зон с образованием по меньшей мере двух площадок, выполненных с возможностью обеспечения акустического контакта;

установку на каждую площадку датчика, подключенного к одному ультразвуковому дефектоскопу;

выполнение ультразвукового контроля последовательно эхо-методом, дельта-методом сварного соединения упомянутым по меньшей мере одним дефектоскопом.

Возможен вариант осуществления способа, в котором при определении зон ультразвукового контроля по меньшей мере одну другую зону ультразвукового контроля выбирают из следующих: боковая поверхность пера подошвы рельса, верхняя поверхность пера подошвы рельса.

Возможен вариант осуществления способа, при котором установку датчиков и выполнение ультразвукового контроля сварного шва выполняют по меньшей мере с помощью одного дефектоскопа последовательно для каждой определенной зоны.

Технический результат - повышение достоверности выявления дефектов сварного шва в зоне подошвы рельс.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На Фиг. 1, 2 показана схема прозвучивания согласно известному уровню техники.

На Фиг. 3 показана принципиальная схема для осуществления заявляемого способа при вводе УЗК с боковой поверхности пера подошвы рельса в зоне алюминотермитного стыка.

На Фиг. 4 показана принципиальная схема для осуществления заявляемого способа при вводе УЗК с боковой поверхности пера подошвы рельса в зоне алюминотермитного стыка (вид сбоку).

На Фиг. 5 показана принципиальная схема для осуществления заявляемого способа при вводе УЗК с верхней поверхности пера подошвы рельса в зоне алюминотермитного стыка.

На Фиг. 6 показана принципиальная схема другого варианта осуществления заявляемого способа при вводе УЗК с верхней поверхности пера подошвы рельса в зоне алюминотермитного стыка.

На Фиг. 7 показана принципиальная схема для варианта осуществления заявляемого способа при вводе УЗК с боковой поверхности пера подошвы рельса и с верхней поверхности пера подошвы рельса в зоне алюминотермитного стыка.

На Фиг. 8 показана принципиальная схема для варианта осуществления заявляемого способа при вводе УЗК с боковой поверхности пера подошвы рельса и с верхней поверхности пера в зоне алюминотермитного стыка (вид сбоку).

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

На Фиг. 3 схематично показан иллюстративный вариант осуществления заявляемого способа ультразвукового контроля алюминотермитного сварного соединения рельсов. Способ может быть реализован посредством по меньшей мере одного дефектоскопа (не показан) и по меньшей мере одного ультразвукового датчика (12), подключенных к упомянутому дефектоскопу. В качестве дефектоскопа может быть использован, например, Авикон-02р УДС2-112 или УДС2-РДМ-33, работающие по эхо-методу, дельта-методу. В качестве ультразвуковых датчиков могут быть использованы - PC ПЭП П112-2,5 и ПЭП П121-2,5 по ГОСТ55725-2013.

Как будет понятно специалисту в иллюстративном примере, на Фиг. 3 показан упрощенный неограничивающий вариант осуществления способа, реализуемый с боковой поверхности пера подошвы рельса посредством одного дефектоскопа и одного ультразвукового датчика (12) PC ПЭП П112-2,5. Количество используемых датчиков обусловлено выбранными зонами и схемами прозвучивания. Как показано на Фиг. 3, 4, для осуществления заявляемого способа достаточно по меньшей мере одного ультразвукового датчика (12), подключенного к одному дефектоскопу (не показан). Для случая применения всего одного ультразвукового датчика (12) ультразвуковой контроль выполняют с помощью одного дефектоскопа последовательно для каждой определенной зоны.

На Фиг. 5 показан неограничивающий вариант осуществления способа, в котором в качестве по меньшей мере одной второй зоны для выполнения ультразвукового контроля выбрана верхняя поверхность пера подошвы рельса. Ультразвуковой контроль может быть выполнен последовательно посредством одного дефектоскопа (не показан) и одного ультразвукового датчика (12) PC ПЭП П112-2,5.

В другом варианте осуществления изобретения, как показано на Фиг. 6 на верхней поверхности пера подошвы рельса (по меньшей мере одной второй зоне для выполнения ультразвукового контроля) может быть установлено два ультразвуковых датчика (12) ПЭП П121-2,5 с различными углами ввода на двух соответствующих площадках (13).

На Фиг. 7 и 8 показана принципиальная схема для другого варианта осуществления заявляемого способа при вводе УЗК с боковой поверхности пера подошвы рельса и с верхней поверхности пера подошвы рельса в зоне алюминотермитного стыка (вид сбоку). Причем контроль выполняется по дельта-методу двумя датчиками (12), подключенными по раздельной схеме к одному дефектоскопу: один ПЭП-излучатель (14), второй ПЭП-приемник (17).

Далее будет описано осуществление заявляемого способа ультразвукового контроля алюминотермитного сварного соединения рельсов со ссылкой на Фиг. 3, 4, 5, 6, 7, 8.

Способ начинается на этапе определения по меньшей мере двух зон для выполнения ультразвукового контроля. Определение выполняют исходя из размеров контактной поверхности ультразвуковых датчиков, выбранной схемы прозвучивания слепой зоны, возможности доступа для подгототовки площадки шлифовкой. Причем одну из по меньшей мере двух зон выбирают на сварном соединении с боковой поверхности пера подошвы рельса (11) (Фиг. 3-4, Фиг. 7-8).

По меньшей мере одну другую зону ультразвукового контроля выбирают, например, на верхней поверхности пера подошвы рельса на обливе (10), как показано на Фиг. 5, 6, 7.

Определение зон ультразвукового контроля осуществляют по следующему принципу: прозвучивание центра сечения сварного соединения (слепой зоны) акустической осью преобразователя прямым лучом.

Затем выполняют шлифовку по меньшей мере двух определенных зон с образованием по меньшей мере двух соответствующих площадок (13) ((15), (16)), выполненных с возможностью обеспечения акустического контакта ультразвуковых датчиков (12) ((14), (17)). Шлифовка может быть выполнена любыми доступными средствами, например угловой шлифовальной машиной, работающей от сети или от аккумуляторной батареи.

Устанавливают на каждую площадку (13) ((15), (16)) ультразвуковой датчик (12) ((14), (17)), подключенный к по меньшей мере одному ультразвуковому дефектоскопу, и проводят сканирование центра сечения («слепой зоны») сварного соединения рельсов (11).

В общем случае, показанном на Фиг. 3, 4 одну из по меньшей мере двух зон выбирают на обливе (10) (валике усиления) сварного соединения с боковой поверхности пера подошвы рельса. Затем выполняют шлифовку данной зоны с образованием площадки (13) для ультразвукового датчика (12) и осуществляют выполнение ультразвукового контроля сварного соединения упомянутым по меньшей мере одним дефектоскопом эхо-методом.

Согласно неограничивающему варианту осуществления, показанному на Фиг. 5, другая из по меньшей мере двух зон выбирается на верхней поверхности пера подошвы рельса на обливе (10). Затем выполняют шлифовку данной зоны с образованием площадки (13) для ультразвукового датчика (12) и выполнение ультразвукового контроля сварного соединения упомянутым по меньшей мере одним дефектоскопом эхо-методом. После выполнения упомянутых этапов способа на одном пере подошвы рельса аналогичные этапы могут быть выполнены на противоположном пере подошвы рельса.

Согласно другому неограничивающему варианту осуществления, показанному на Фиг. 6, в качестве другой по меньшей мере одной зоны могут быть выбраны две зоны на верхней поверхности пера подошвы рельса (11). Причем площадки (13) выполняют симметрично под углом 40-50° относительно поверхности пера рельса по краям облива (10). Например, для зазора 50 мм - 40°; для зазора 75 мм - 50° - угол ввода прорабатывается графически в масштабе из условия озвучивания центра «слепой зоны» акустической осью преобразователя. На каждую подготовленную площадку (13) устанавливают параллельно или последовательно (при наличии всего одного ультразвукового датчика (12)) ультразвуковой датчик (12) и выполняют ультразвуковой контроль сварного соединения упомянутым по меньшей мере одним дефектоскопом эхо-методом. После выполнения упомянутых этапов способа на одном пере подошвы рельса аналогичные этапы могут быть выполнены на противоположном пере подошвы рельса.

Возможен вариант осуществления настоящего способа, в котором сначала выполняют ультразвуковой контроль с боковой поверхности пера подошвы рельса справа и слева (на правом и левом пере подошвы рельса (11)), а затем выполняют ультразвуковой контроль в по меньшей мере одной другой зоне. Таким образом, порядок выполнения ультразвукового контроля в определенных зонах не является ограничивающим условием.

Признаком обнаружения дефекта при ультразвуковом контроле эхо-методом будет наличие эхо-сигнала с амплитудой, превышающей браковочный уровень. Ультразвуковой контроль выполняют, например, путем измерения амплитуды принятых сигналов по каждому УЗ-преобразователю, принимающему отраженный сигнал в данный момент. Измеряют временное положение принятых сигналов, т.е. временной интервал между излученным и принятым сигналами. Вычисляют пространственное положение дефекта по известной схеме прозвучивания, временному положению принятых сигналов и скорости распространения УЗ-сигнала в рельсе. Оценивают результаты всех зондирований и принимают решение о качестве сварного стыка рельсов. Для этого сопоставляют местоположение и амплитуды принятых сигналов и на основании чего делают вывод о его качестве.

Для случая использования всего одного ультразвукового датчика (12) этапы установки, фиксации и ультразвукового контроля выполняют сначала для одной определенной зоны ультразвукового контроля, а затем для по меньшей мере одной другой определенной зоны ультразвукового контроля последовательно. Затем выполнение способа может завершаться или повторяться для тех же или других зон.

В иллюстративном примере на Фиг. 7, 8 сканирование выполняется по дельта-методу двумя преобразователями (12), подключенными по раздельной схеме к одному дефектоскопу, (один ПЭП-излучатель (14), второй ПЭП-приемник (17)). Причем для излучателя (14) выполняют площадку (15) на боковой поверхности пера подошвы рельса (11), а для приемника (17) выполняют площадку (16) на верхней поверхности пера подошвы рельса (11).

Для создания площадки (15) шлифуют боковую поверхность пера подошвы рельса (11) по всей длине облива (10). Для создания площадки (16) шлифуют верхнюю поверхность пера подошвы рельса по центру облива (10) шириной 20-40 мм под приемник (17). Выполнение контроля (Фиг. 8) - излучатель (14) устанавливают в положение (151) на площадке (15), приемником (17) сканируют от края подошвы до шейки рельса, перемещая приемник (17) вдоль площадки (16). Далее излучатель (14) перемещают в положение (152), приемником (17) сканируют от шейки к краю подошвы, перемещая приемник (17) вдоль площадки (16). Далее излучатель (14) перемещают в положение (153), приемником (17) сканируют от шейки к краю подошвы, перемещая приемник (17) вдоль площадки (16). Стоит отметить, что в иллюстративном примере на Фиг. 8 показано 3 положения (151), (152), (153) излучателя (14), однако для осуществления заявляемого способа может быть использовано также большее или меньшее количество положений излучателя (14) на площадке (15) в зависимости от ширины облива (10) и выбранной модели ультразвукового датчика (12) (излучателя (14)). Описанные выше операции сканирования повторяют до тех пор, пока излучатель (14) не дойдет от одного края площадки (15) до другого края площадки (15) поперек облива (10). По окончании операций сканирования одной (например, левой) подошвы симметрично производятся полностью те же операции на другой (например, правой) подошве. Признаком обнаружения дефекта (18) будет фиксация приемником дифрагированного на дефекте сигнала (при попадании волны на дефект произойдет эффект дифракции).

В результате выполнения заявляемого способа «слепая зона» в зоне подошвы сварного соединения рельсов отсутствует. Заявляемый способ обеспечивает повышение точности выявления дефектов сварного шва в зоне подошвы рельсов (11).

1. Способ ультразвукового контроля алюминотермитного сварного соединения рельсов, включающий этапы:

определения по меньшей мере двух зон для выполнения ультразвукового контроля, причем одна из по меньшей мере двух зон выбирается на обливе (валике усиления) сварного соединения с боковой поверхности пера подошвы рельса;

шлифовки определенных зон на обливе (валике усиления) с образованием площадок, выполненных с возможностью обеспечения акустического контакта;

установки ультразвукового датчика на каждую площадку на обливе, подключенного к по меньшей мере одному ультразвуковому дефектоскопу;

выполнения ультразвукового контроля сварного соединения упомянутым по меньшей мере одним дефектоскопом эхо-методом или дельта-методом.

2. Способ по п.1, в котором при определении зон ультразвукового контроля по меньшей мере одну другую зону ультразвукового контроля выбирают из следующих: боковая поверхность пера подошвы рельса, верхняя поверхность пера подошвы рельса.

3. Способ по п.1, в котором этапы установки ультразвукового дефектоскопа и выполнения ультразвукового контроля сварного шва выполняют по меньшей мере с помощью одного дефектоскопа последовательно для каждой определенной зоны.



 

Похожие патенты:

Использование: для контроля сварных соединений. Сущность изобретения заключается в том, что устройство для контроля сварных соединений содержит функционально соединенные и объединенные в единую конструкцию пьезоэлектрический преобразователь, установленный на контролируемом сварном соединении, аналитический блок акустико-эмиссионной системы, приспособление для точечного нагрева, при этом оно снабжено последовательно соединенными координатно-передвижным устройством, на котором установлено приспособление для точечного нагрева, и блоком управления, который соединен с приспособлением для точечного нагрева и подключен к выходу аналитического блока акустико-эмиссионной системы.

Использование: для диагностики изделий машиностроения, создаваемых на основе соединений с гарантированным натягом с помощью ультразвука. Сущность изобретения заключается в том, что зондирующий ультразвуковой импульс вводится через контактную жидкость в наружную боковую поверхность охватывающего кольца соединения с натягом.

Использование: для ультразвукового контроля листов. Сущность изобретения заключается в том, что локальная иммерсионная ванна (ЛИВ) для ультразвукового контроля листов включает корпус и как минимум одну линейку ультразвуковых преобразователей (ЛУП), которая дополнительно содержит как минимум одну линейку акустических зеркал (ЛАЗ), разворачивающих ультразвуковые лучи на заданный угол, и устройство поворота зеркал (УПЗ), позволяющее корректировать угол падения ультразвуковых лучей на поверхность листа относительно его номинального значения, а также осуществлять поворот ЛАЗ для дополнительной очистки ее рабочей поверхности.

Предложены способ и устройство испытания испытуемого объекта (204). Способ испытания прочности соединений композитного объекта (204) включает: генерирование волны (228) напряжения в текучей среде (306) в полости (302) в конструкции (300) генератора волн; направление волны (228) напряжения через текучую среду (306) в полости (302) в композитный объект (204) и задание определенного количества свойств (310) волны (228) напряжения в текучей среде (306) на основании конфигурации (308) полости (302) в конструкции (300) генератора волн.

Предложены способ и устройство испытания испытуемого объекта (204). Способ испытания прочности соединений композитного объекта (204) включает: генерирование волны (228) напряжения в текучей среде (306) в полости (302) в конструкции (300) генератора волн; направление волны (228) напряжения через текучую среду (306) в полости (302) в композитный объект (204) и задание определенного количества свойств (310) волны (228) напряжения в текучей среде (306) на основании конфигурации (308) полости (302) в конструкции (300) генератора волн.

Изобретение относится к области минералогического анализа тонковкрапленных зерен благородных металлов и может быть использовано в горнодобывающей отрасли. При осуществлении способа производится дробление кернового материала до крупности -1+0,0 мм, первичная классификация материала по классам крупности -1+0,5 мм, -0,5+0,2 мм, -0,2+0,0 мм, взвешивание каждого класса крупности, гравитационное обогащение каждого класса крупности с использованием лотка для промывки проб с получением первичного шлихового материала, первичный просмотр под бинокуляром с диагностикой всех минералов и выборка выделенных тонкодисперсных частиц благородных металлов, ультразвуковая обработка по классам крупности гидросмеси первичного шлихового материала с соотношением Т:Ж 1:3, посредством размещения гидросмеси в цилиндрообразном излучателе осуществляется при частоте 22 кГц, средней интенсивности звука 15 Вт/см2, вторичная классификация шлихового материала каждого класса крупности и гравитационное обогащение каждого класса крупности с использованием лотка для промывки проб с получением вторичного шлихового материала, взвешивание каждого класса крупности, вторичный просмотр под бинокуляром с диагностикой всех минералов по каждому классу крупности и выборка выделенных тонкодисперсных частиц свободных частиц благородных металлов, электронно-микроскопическое исследование состава благороднометалльных частиц в остатке вторичного шлихового материала.

Изобретение относится к области неразрушающего контроля технического состояния рельсовых путей. Согласно способу мониторинга рельсового пути в рельсы передают акустический сигнал, отраженный сигнал принимают акустическими датчиками, обрабатывают сигнал с помощью системы обработки сигналов.

Использование: для неразрушающего дистанционного контроля различных силовых конструкций и ответственных деталей. Сущность изобретения заключается в том, что неконтактное возбуждение ультразвуковой волны в объекте осуществляется мощным наносекундным объемным электрическим разрядом с заданным фронтом и длительностью и синхронно производится ее регистрация до и после прохождения объекта оптическим устройством, сигнал с которого передается на фотоприемник, подключенный к цифровому осциллографу.

Использование: для оценки ресурса трубы из полиэтилена. Сущность изобретения заключается в том, что пьезоэлектрический преобразователь устанавливают последовательно, равномерно по периметру внешней поверхности полиэтиленовой трубы, и осуществляют последовательно ввод импульсов ультразвуковых колебаний в материал трубы через ее внешнюю поверхность по нормали к внешней ее поверхности продольных колебаний и последовательно прием отраженных ультразвуковых колебаний от внутренней поверхности стенки трубы и последовательно при этом измеряют время прохождения ультразвуковых колебаний в каждой установленной точке пьезоэлектрического преобразователя и запоминают измеренные значения, затем определяют стандартное отклонение измеренных значений, и по величине стандартного отклонения, которое сравнивают со стандартным отклонением трубы из полиэтилена с предельным состоянием материала, полученное аналогично описанному выше при определении стандартного отклонения контролируемой трубы из полиэтилена, определяют возможность дальнейшей эксплуатации трубы из полиэтилена.

Использование: для ультразвукового (УЗ) неразрушающего контроля протяженных металлических изделий. Сущность изобретения заключается в том, что при перемещении вдоль трубопровода периодически возбуждают УЗ колебания в заданной области внешней или внутренней его поверхности, связанной с диагностическим устройством, принимают из этой же области реализации УЗ колебаний от акустических нормальных волн, отраженных от различных нарушений сплошности материала стенок, и в результате обработки принятых реализаций определяют распределение дефектов в стенках трубопровода, при этом возбуждают УЗ колебания касательными к поверхности трубопровода колебательными силами акустических контактов приемно-излучающих элементов диагностического устройства поочередно в каждой точке, а прием колебаний осуществляют одновременно во всех точках в пределах указанной области в выбранном интервале времени, и из реализаций УЗ колебаний, принятых во всех точках поверхности трубопровода при перемещении вдоль него, по предварительно рассчитанным временам задержки для всех типов акустических нормальных волн выбирают эхосигналы от каждой точки поверхности стенок, когерентно суммируют их для каждой точки поверхности отдельно для каждого типа волн, вычисляют амплитуды суммарных сигналов и строят нормированные распределения этих амплитуд в соответствии с координатами точек поверхности стенок трубопровода отдельно для каждого типа акустических волн, после чего составляют одно распределение величины, значения которой равны максимальным значениям амплитуд суммарных сигналов от разных типов акустических волн для совпадающих по координатам точек поверхности стенок трубопровода, и по этому распределению судят о наличии и величине дефектов в стенках трубопровода.

Изобретение относится к области неразрушающего контроля состояния железнодорожного полотна. Согласно способу контроля механических напряжений рельсовых плетей в условиях наличия магнитного и температурного полей методом шумов Баркгаузена (ШБ) проводят визуализацию полученных данных в виде амплитудного графика огибающих гармоник спектра ШБ.

Техническое решение относится к области железнодорожной автоматики и телемеханики для непрерывной регистрации пространственного положения рельсовой колеи. Устройство, реализующее способ определения пространственных координат и геометрических параметров рельсового пути, содержит путеизмерительную тележку, включающую подвижную и неподвижную колесные пары, связанные между собой опорной рамой, установленной перпендикулярно относительно направления движения, при этом в оконечных частях указанной опорной рамы над соответствующими рельсовыми нитями установлены первая и вторая спутниковые антенны.

Изобретение относится к области контроля состояния железнодорожного полотна, в частности к не разрушаемым методам контроля напряженного состояния участков рельсовых плетей бесстыкового железнодорожного пути.

Изобретение относится к области контроля состояния железнодорожного полотна. Способ оценки запаса устойчивости бесстыкового железнодорожного пути включает регистрацию температуры рельсовой плети при укладке ее в путь, а также после проведения ремонтных работ, выявление участков напряженного состояния рельсовой плети, для этого на рельсовой плети в сечениях с интервалом 50-500 метров определяют текущее значение температуры плети и интенсивность генерируемого шума Баркгаузена в рассматриваемом сечении пути, интенсивность магнитных шумов Баркгаузена оценивают в относительных единицах, определение фактической температуры закрепления плети.

Предлагаемое изобретение относится к железнодорожному транспорту. Согласно способу контроля устойчивости бесстыкового рельсового пути путем измерения частоты его собственных горизонтальных поперечных колебаний в качестве критерия устойчивости принимают отношение частоты его собственных горизонтальных поперечных колебаний в текущий момент времени к заранее известной частоте колебаний этого же участка пути при продольной силе, равной нулю.

Изобретение относится к железнодорожному строительству и предназначено для периодической проверки усилия прижатия клеммы во время монтажа и эксплуатации. Устройство для измерения усилия прижатия клемм состоит из опоры, силоизмерителя и узла захвата, включающего насадку и шарнирно соединенные с ней подпружиненные лапы узла захвата.

Настоящее изобретение относится к измерительной технике, а именно к средствам контроля состояния конструкций искусственных сооружений для железнодорожного транспорта в процессе их эксплуатации, и может применяться для выявления потенциально опасных участков железнодорожного пути и его окружения.

Изобретение относится к измерительным устройствам. Устройство замера горизонтальных усилий между гребнем колеса и головкой рельса при проведении макетных исследований движения подвижного состава по рельсовому пути состоит из макета рельс в виде стальной ленты, креплений, шпал и датчиков.

Изобретение относится к стендовым конструкциям для проведения макетных исследований моделирования динамики движения подвижного состава железнодорожного транспорта в прямых и кривых участках пути.

Изобретение относится к железнодорожному транспорту, а именно к применению вычислительных средств при проектировании и отработке элементов верхнего строения пути, в частности для определения перемещения рельсовых путей, в том числе изолирующих стыков, при воздействии на них подвижной нагрузки.

Способ комплексной диагностики рельсов относится к контрольно-измерительным устройствам для проверки состояния железнодорожных путей и может быть использовано при исследовании рельсового пути комплексом средств неразрушающего контроля, в том числе и для обнаружения микротрещин на поверхности катания рельсов.
Наверх