Способ изготовления распыляемой композитной мишени из сплава гейслера co2fesi

Изобретение относится к изготовлению распыляемой композитной мишени из сплава Гейслера Co2FeSi. Способ включает механическое смешивание порошков компонентов сплава Гейслера Co2FeSi с получением однородной порошковой смеси и ее спекание. Порошковую смесь готовят из высокочистых порошков кобальта, железа и кремния. Спекание порошковой смеси ведут методом электроимпульсного плазменного спекания в графитовой пресс-форме при температуре 600°С и минимальном давлении 2,5 кН путем пропускания последовательностей импульсов постоянного тока 5000 А с длительностью импульса 3,3 мс через засыпку порошковой смеси с получением композитной мишени из сплава Гейслера Co2FeSi. Осуществляют контроль пористости мишени на основе данных дилатометрической кривой усадки. Обеспечивается получение механически прочных, не окисленных композитных мишеней с пористостью в диапазоне 10-30%. 1 з.п. ф-лы, 3 ил., 1 пр.

 

Предлагаемое изобретение относится к металлургии, а именно к производству изделий из смеси металлических порошков электроимпульсным спеканием, касается способа изготовления распыляемой композитной мишени из сплава Гейслера Co2FeSi, которая может найти применение при производстве микроэлектроники.

Пористость мишени оказывает значительное влияние на скорость распыления мишени и, как следствие, на скорость напыления пленки. Чем больше пористость мишени, тем сильнее распыляется мишень, т.е. за меньшее время получится напылить слой большей толщины, и наоборот. Скорость распыления мишени с низкой пористостью меньше, использование таких мишеней позволяет лучше контролировать толщину слоев, что важно для тонких слоев. Другой важной проблемой для мишеней сплава Гейслера является необходимость обеспечить получение не окисленной мишени. В противном случае мишени с заложенным составом Co2MnSi и Co2FeSi оказываются немагнитными и высокоомными, что не позволяет применять их для получения приборов спиновой электроники.

На решение указанных выше проблем и направлена разработка указанного изобретения.

Одним из способов создания распыляемых мишеней является метод холодного прессования с последующим отжигом в атмосфере инертных газов (азот, аргон). Апробация этой технологии на наших компонентах показала необходимость удаления недопустимо большого количества кислорода. Мишени с заложенным составом Co2MnSi и Co2FeSi оказались немагнитными и высокоомными.

Из патента US 7973351 В2, кл. H01L 21/02, опубл. 05.07.2011 г., известна распыляемая мишень Co2MnSi, используемая для формирования кристаллического стехиометрического слоя Гейслера Co2MnSi с целью создания элемента магниторезистивной оперативной памяти (MRAM) и спинового транзистора (spin MOSFET). Однако в указанном источнике информации отсутствуют сведения о способе изготовления этой мишени.

Из патента US 8070919 В2, кл. В32В 17/06, С23С 14/35, опубл. 06.12.11 г., известна распыляемая мишень, изготовленная из слитка Co2MnSi, полученного методом электродугового спекания стехиометрической смеси порошков Со, Mn и Si. Распыляемая мишень имела состав Со (99,5%, Sigma-Aldrich): Mn (99,98% Sigma-Aldrich): Si (99,95%, Sigma-Aldrich) в соотношении 2:1:1, скорость повышения температуры составляла 50°C/мин. После приготовления слитка Co2MnSi его измельчают в порошок с помощью мокрого размола в шаровой мельнице и затем прессуют с получением распыляемой мишени с размером 2 дюйма.

К недостаткам указанного способа поучения распыляемой мишени состава Co2MnSi относится пористость последней, приводящая к большой эффективной поверхности, ее окислению и адсорбции влаги и летучих загрязнений из воздуха, что затруднит получение чистых стехиометрических слоев сплава, потребует длительного отжига мишени в вакууме (реакция раскисления), кроме того, изготовление мишеней по данной технологии является более трудо- и времяемкой по сравнению с описываемым изобретением.

Известен способ получения заготовки катодной мишени с заданным химическим составом и требуемыми геометрическими размерами (RU 2405062, С23С 14/34, B22F 3/15, B22F 9/10, B22D 7/00, опубл. 27.11.2010 г.). При этом для получения заготовки мишени расплавленный металл заливают в керамическую форму с получением слитка-электрода цилиндрической формы. Затем слиток расплавляют плазмой при вращении с получением сферических гранул диаметром 50-400 мкм. Расчетное количество сферических гранул засыпают в вакууме в капсулу кольцевой формы для образования мишени с полостью. Капсулу заваривают и подвергают горячему изостатическому прессованию, после чего производят разгерметизацию капсулы и осуществляют механическую очистку заготовки путем снятия с нее составных частей капсулы. Катодную мишень выполняют из сплава на основе никеля или на основе кобальта. В результате получают заготовки мишени стабильных геометрических размеров.

Недостатком указанного способа является загрязнение мишени материалом керамической формы, капсулы. Кроме этого, изостатическое прессование также приводит к получению пористой мишени с недостатками, указанными выше. Данная технология также является много более сложной и дорогой.

Известен способ получения высокоплотных изделий спеканием заготовок из уплотненных нанодисперсных порошков карбида вольфрама методом электроимпульсного плазменного спекания (SPS), который может быть использован, в том числе, для изготовления мишеней для напыления износостойких покрытий экстремально нагружаемых ответственных деталей машин, например коленчатых валов тяжелых бронированных транспортных средств, а также материалов специального назначения с эффектом динамической сверхпрочности (RU 2548252 С2, кл. С04В 35/56, B82Y 40/00, опубл. 20.04.15 г.). Исходный порошок карбида вольфрама с размером частиц не более 110 нм с объемной долей WC не менее 99% подвергают электроимпульсному плазменному спеканию на установке Dr. Sinter Model-625 производства SPS SYNTEX INC. Ltd. (Япония) в условиях его прессования в графитовых пресс-формах при давлении прессования 60-70 МПа в вакууме 4 Па с оптимальной скоростью, выбранной из интервала 25-2400°C/мин, при температуре, которую выбирают в зависимости от размера частиц исходного порошка WC. При увеличении скорости нагрева в указанном интервале повышается твердость спекаемой заготовки, при уменьшении ее величины повышается трещиностойкость этой заготовки. Температура спекания может составлять 1550-1800°C.

Указанный способ не предусматривает изготовление распыляемых мишеней, содержащих фазу сплава Гейслера Co2FeSi или Co2MnSi состава.

Электроимпульсное спекание (Spark Plasma Sintering, сокращенно SPS) - сложный физико-механический процесс, проходящий при высоких температурах в порошковых материалах (фиг. 1). При спекании происходит уплотнение порошкового материала, внешне проявляющееся в изменении объема, увеличении плотности и уменьшении пористости. Спекание порошковых материалов происходит путем диффузионного массопереноса вещества под действием внешнего давления и внутренних сил, связанных, в первую очередь, с силами поверхностного натяжения. Диффузия осуществляется по определенным путям, которые определяют механизмы спекания. Существуют по крайней мере шесть различных механизмов спекания в порошковых материалах: поверхностная диффузия, объемная диффузия с поверхности частиц к перемычке, перенос через газовую фазу, зернограничная диффузия, объемная диффузия от границы зерна к поре и пластическая деформация (Roberto Orru, Roberta Licheri, Antonio Mario Locci; Alberto Cincotti, Giacomo Cao. Consolidation/synthesis of materials by electric current activated/assisted sintering. Materials Science and Engineering R 63, pp. 127-287, 2009 г.).

Все указанные механизмы приводят к образованию и росту перемычки между частицами, однако только часть из них приводит к усадке и уплотнению порошкового материала. Поверхностная диффузия, объемная диффузия с поверхности частицы к перемычке, перенос через газовую фазу (механизмы 1, 2 и 3, см. фиг. 2) приводят к росту перемычки без уплотнения и называются безуплотнительными механизмами. Зернограничная диффузия и объемная диффузия от границы зерна к поре (механизмы 4 и 5, см. фиг. 2) являются наиболее важными механизмами уплотнения поликристаллических керамик.

Пластическая деформация, вызванная движением дислокаций (механизм 6, см. фиг. 2) также приводит к уплотнению (Хрустов В.Р. Разработка и исследование керамик на основе нанопорошков оксидов алюминия, циркония и церия. Автореферат диссертации на соискание ученой степени кандидата технических наук. Екатеринбург, 2010 г.). На начальном этапе спекания уплотнение вызвано макроскопическими процессами перераспределения частиц порошка в более «плотную упаковку», затем начинается рост перемычек. После появления перемычек между частицами и достижения некоторой плотности включается диффузия по границам зерен и по объему. Если диффузия по границам зерен идет достаточно интенсивно, то может наблюдаться быстрое уплотнение, однако при интенсивной зернограничной диффузии может включится процесс, оказывающий отрицательное влияние на спекание - рост зерен и аномальный рост. Основные методы изменения свободного объема границ зерен связаны с микролегированием границ атомами примеси и организацией потоков дислокаций на границы (S.W. Wang, L.D. Chen, Т. Hirai, Jingkun Guo. Formation of Al2O3 grains with different sizes and morphologies during the pulse electric current sintering process. J. Mater. Res., Vol. 16, No. 12, Dec 2001 г.). При традиционных способах спекания порошковых материалов (свободное спекание, горячее прессование) скорости нагрева не превышают десятков градусов и не способны обеспечить образования высоких градиентов температур внутри порошка. Следовательно, для управления диффузионной проницаемостью границ зерен необходимо использование новых, высокоскоростных технологий спекания порошковых материалов. Наиболее перспективной технологией высокоскоростного спекания является технология электроимпульсного спекания.

Метод электроимпульсного спекания относится к ряду высокоэффективных способов спекания порошков, интенсивно развиваемых в настоящее время во многих научных центрах. Широкий диапазон возможностей при электрофизическом воздействии на порошковый материал обуславливает многообразие этих способов. К ним относятся: электроразрядное спекание (ЭРС) (I.P. Shapiro, R.I. Todd, J.M. Titchmarsh, S.G. Roberts. Effects of Y2O3 additives and powder purity on the densification and grain boundary composition of Al2O3/SiC nanocomposites. Journal of the European Ceramic Society, 29, pp. 1613-1624, 2009 г.), электроимпульсное спекание под давлением (ЭИСД) (А.В. Номоев. Сверхмикротвердость керамики на основе нанодисперсных порошков оксида алюминия с добавками нанопорошков оксида магния и кремния. Письма в ЖТФ, том 36, вып. 21, с. 46-53. 2010 г.), электроимпульсное спекание (J. Wang, S.Y. Lim, S.C. Ng, C.H. Chew, L.M. Gan. Dramatic effect of small amount of MgO addition on the sintering of Al2O3 - 5 vol % SiC nanocomposite. Materials Letters, 33, pp. 273-277, 1998 г.), электроимпульсное прессование (Sheng Guo, Apichart Limpichaipanit, R.I. Todd. High resolution optical microprobe investigation of surface grinding stress in Al2O3 and Al2O3/SiC nanocomposites. Journal of the European Ceramic Society, 31, pp. 97-109, 2011 г.), развиваемые в странах СНГ. В дальнем зарубежье к подобным методам относятся: Field assisted sintering technique (FAST), Plasma Assisted Sintering (PAS), Spark Plasma Sintering (SPS), and Electroconsolidation, High Energy High Rate Processing (HEHR), Electric Dis-charge Compaction (EDC) [C.C. Anya, S.G. Roberts. Pressureless sintering and elastic constants of Al2O3 - SiC nanocomposites. Journal of the European Ceramic Society 17, pp. 565-573, 1997 г.) и ряд других.

В задачу изобретения положено создание нового способа получения механически прочной композитной мишени сплава Гейслера Co2FeSi.

Техническим результатом от использования предлагаемого изобретения является получение механически прочной не окисленной композитной мишени сплава Гейслера Co2FeSi требуемой геометрии (диск толщиной 0,7-1 мм, диаметром 40 мм) и пористости (в диапазоне 10-30%).

Это достигается тем, что в способе изготовления распыляемой композитной мишени из сплава Гейслера Co2FeSi, включающем механическое смешивание порошков компонентов сплава Гейслера Co2FeSi с получением однородной порошковой смеси и ее спекание, порошковую смесь готовят из высокочистых порошков кобальта, железа и кремния, причем спекание порошковой смеси ведут методом электроимпульсного плазменного спекания в графитовой пресс-форме при температуре 600°C и минимальном давлении 2,5 кН путем пропускания последовательностей импульсов постоянного тока 5000 А с длительностью импульса 3,3 мс через засыпку порошковой смеси с получением композитной мишени из сплава Гейслера Co2FeSi, при этом осуществляют контроль пористости мишени на основе данных дилатометрической кривой усадки; спекание порошковой смеси осуществляют в установке электроимпульсного плазменного спекания DR. Sinter Model SPS-625.

На фиг. 1 схематично изображена установка для электроимпульсного спекания.

На фиг. 2 представлены механизмы спекания порошковой смеси, где 1 - поверхностная диффузия, 2 - объемная диффузия с поверхности частиц к перемычке, 3 - перенос через газовую фазу, 4 - зернограничная диффузия, 5 - объемная диффузия от границы зерна к поре, 6 - пластическая деформация, 7 - пора, 8 - граница зерна.

На фиг. 3 представлена типичная рентгенограмма мишени на примере Co2MnSi.

Предлагаемый способ осуществляют следующим образом.

Сначала осуществляют механическое смешивания высокочистых порошков, например, кобальта (Со), железа (Fe) и кремния (Si) для получения соединения Co2FeSi. Пропорции компонентов в смеси рассчитывают с учетом массовых долей компонентов. Смешивание производят механическим способом до получения однородной порошковой смеси.

Затем осуществляют спекание-прессование полученной смеси в установке электроимпульсного плазменного спекания DR. Sinter Model SPS-625 при температуре около 600°C, минимальном давлении около 2,5 кН, путем пропускания последовательностей импульсов постоянного тока до 5000 А, длительностью импульса 3,3 мс через порошковую засыпку в графитовой пресс-форме. При протекании тока через засыпку порошка оксидные пленки на поверхности частиц порошка разрушаются, и порошок спрессовывается в пористую заготовку с достаточной прочностью. Уплотнение порошка осуществляется только силами магнитного поля, а соединение частиц осуществляется в основном из-за оплавления контактов между частицами с образованием межчастичных перешейков. Степень уплотнения порошка зависит от параметров электрической цепи и свойств частиц порошка. Контролируют дилатометрическую кривую усадки для того, чтобы можно было прервать процесс спекания в нужной точке, избежав загрязнения камеры в результате расплавления компонента, обладающего минимальной температурой плавления, и получить материал с требуемой пористостью. В результате порошок спрессовывается с достаточной прочностью и с пористостью в диапазоне 10-30%.

Требуемый диаметр мишени обеспечивают подбором пресс-формы соответствующего диаметра, а толщину - количеством порошка и пористостью.

В случае, если требуется утонить мишень, то производят ее механическую шлифовку.

В ходе серии экспериментов были получены мишени сплава Гейслера Co2FeSi стехиометрического состава, что подтверждено рентгенографическими данными для сплава Гейслера (фиг. 3). На фоне шума не видно присутствие каких-либо других фаз.

Таким образом, предлагаемый способ позволяет исключить окисления мишени, а также предусматривает возможность управления ее пористостью. За счет этого обеспечивается получение механически прочной композитной мишени из сплава Гейслера Co2FeSi пористости в диапазоне 10-30%. Кроме этого, предлагаемый способ позволяет получить мишень требуемой геометрии (диаметром 40 мм, толщиной 0,7-1 мм).

Ниже приведен пример конкретного осуществления предлагаемого способа.

Пример 1

1. Механически смешивают порошок кобальта (Со) (99,95%, 40 мкм), железа (Fe) (99,999%, 40 мкм) и кремния (Si) (99,999%, 40 мкм) из расчета получения 18 г смеси порошков Co2FeSi на 1 мишень диаметром 40 мм и толщиной около 1 мм. Пропорции компонентов в смеси рассчитывают с учетом массовых долей компонентов. Смешивание производят до получения однородной порошковой смеси.

2. Спекают полученную смесь порошков в установке электроимпульсного плазменного спекания DR. Sinter Model SPS-625 при температуре около 600°C, минимальном давлении (около 2,5 кН), путем пропускания последовательностей импульсов постоянного тока (до 5000 А, длительность импульса 3,3 мс) через порошковую засыпку и графитовую пресс-форму. Процесс останавливают на основе данных дилатометрической кривой усадки при достижении требуемой пористости около 30% с целью избегания загрязнения камеры вследствие расплавления компонента с минимальной температурой плавления.

В результате получают мишень требуемой механической прочности (достаточной чтобы не повредить мишень в процессе напыления), геометрии (диаметр - 40 мм, толщина - 1 мм), пористости около 30% и фазового состава Co2FeSi.

1. Способ изготовления распыляемой композитной мишени из сплава Гейслера Co2FeSi, включающий механическое смешивание порошков компонентов сплава Гейслера Co2FeSi с получением однородной порошковой смеси и ее спекание, отличающийся тем, что порошковую смесь готовят из высокочистых порошков кобальта, железа и кремния, причем спекание порошковой смеси ведут методом электроимпульсного плазменного спекания в графитовой пресс-форме при температуре 600°C и минимальном давлении 2,5 кН путем пропускания последовательностей импульсов постоянного тока 5000 А с длительностью импульса 3,3 мс через засыпку порошковой смеси с получением композитной мишени из сплава Гейслера Co2FeSi, при этом осуществляют контроль пористости мишени на основе данных дилатометрической кривой усадки.

2. Способ по п. 1, отличающийся тем, что спекание порошковой смеси осуществляют в установке электроимпульсного плазменного спекания DR. Sinter Model SPS-625.



 

Похожие патенты:

Использование: для изготовления конструктивных элементов микромеханических приборов. Сущнось изобретения заключается в том, что на исходной структуре кремний-на-изоляторе (КНИ) структурируют слой кремния, расположенный на диэлектрическом слое, фокусированным ионным пучком (ФИП) до получения с заданной длиной и шириной тела плоской меандрообразной пружины с площадками на концах, при структурировании слоя кремния обеспечивают геометрическую конфигурацию пружины, приводящую к увеличению электрической длины от 9 до 11 раз по сравнению с формой балки в виде сплошного прямоугольника той же заданной длины и ширины, снижению влияния вертикальной собственной частоты колебаний, возникновению продольной горизонтальной собственной частоты колебаний и возникновению изгиба при вращательном движении, после окончания структурирования слоя кремния с получением конструктивных элементов активного элемента - тела плоской меандрообразной пружины, площадок на концах - из-под тела плоской меандрообразной пружины удаляют полностью материал диэлектрического слоя, получая структуру КНИ мостикообразной формы, подготавливают несущую подложку с диэлектрической рабочей поверхностью, на которой сначала выполняют пару контактных площадок и расположенный между ними управляющий электрод из электропроводящего материала, затем на контактных площадках посредством ФИП осаждают соединяющие активный элемент контактные площадки, активный элемент с плоской меандрообразной пружиной и площадками на концах выделяют из структуры КНИ мостикообразной формы, переносят на несущую подложку и жестко крепят площадками на концах к соединяющим активный элемент контактным площадкам.

Изобретение относится к области изготовления электронных устройств, в частности устройств на основе материалов III-V групп. Способ изготовления устройства на основе материала III-V групп включает этапы, на которых в изолирующем слое на кремниевой подложке формируют канавку, в канавку наносят первый буферный слой на основе материала III-V групп на кремниевую подложку, на первый буферный слой наносят второй буферный слой на основе материала III-V групп, слой канала устройства на основе материала III-V групп наносят на второй буферный слой на основе материала III-V групп.

Настоящее изобретение касается аммиачных композиций, включающих в себя по меньшей мере одно гидроксоцинковое соединение и по меньшей мере два соединения элементов 3-й главной подгруппы.

Изобретение относится к изготовлению распыляемой композитной мишени, содержащей фазу сплава Гейслера Co2FeSi, которая может быть использована при производстве микроэлектроники.

Изобретение относится к технологии материалов электронной техники, а именно к способам получения эпитаксиальных слоев узкозонных полупроводниковых твердых растворов CdxHg1-xTe для изготовления на их основе фотовольтаических приемников инфракрасного излучения.

Очищающая композиция после химико-механического полирования (после-СМР), содержащая: (А) соединение, представляющее собой цистеин, N-ацетилцистеин, тиомочевину или их производное, (В) эритрит, (С) водную среду и (Е) по меньшей мере одно поверхностно-активное вещество, и ее применение для удаления остатков и загрязнений с поверхности полупроводниковых подложек, содержащих электропроводящие слои (такие как медные слои), электроизолирующие диэлектроизолирующие диэлектрические слои (такие как слои диэлектриков с низкой или сверхнизкой диэлектрической проницаемостью) и барьерные слои (такие как слои тантала, нитрида тантала, нитрида титана или рутения), т.е.

Изобретение относится к области формирования эпитаксиальных слоев кремния на изоляторе. Способ предназначен для изготовления эпитаксиальных слоев монокристаллического кремния n- и p-типа проводимости на диэлектрических подложках из материала с параметрами кристаллической решетки, близкими к параметрам кремния с помощью химической газофазной эпитаксии.

Изобретение относится к контейнеру, содержащему блок корпуса, который включает органический обрабатывающий раствор для формирования структуры резистной пленки химического усиления, представляющий собой органический проявитель.

Изобретение относится к взрывной фотолитографической технологии и может быть использовано, когда получение рабочего рисунка из активного материала (металла или полупроводника) методами избирательного химического или плазмохимического травления через фоторезистную маску затруднено или нецелесообразно в связи с повышенной химической стойкостью к травлению активного материала.

Изобретение относится к технологии изготовления резистных масок в производстве микросхем, в частности изготовления резистных масок с расширенным диапазоном разрешения изображений.

Изобретение относится к области металлургии, а именно к обработке монокристаллов ферромагнитного сплава CoNiAl с эффектом памяти формы, и может быть использовано для создания рабочего тела актуатора.

Изобретение относится к области металлургии, а именно никель-кобальтовым сплавам. Ni-Co сплав содержит, вес.

Изобретение относится к области металлургии, в частности к сплавам на основе кобальта, и может быть использовано для ремонта и упрочнения рабочих лопаток турбин авиационных газотурбинных двигателей с рабочей температурой не менее 1000°С.

Изобретение относится к изготовлению распыляемой композитной мишени, содержащей фазу сплава Гейслера Co2FeSi, которая может быть использована при производстве микроэлектроники.

Изобретение относится к получению композиционного металломатричного материала, армированного сверхупругими сверхтвердыми углеродными частицами. Способ включает приготовление смеси порошков металла и фуллеритов и ее прессование при давлении 5-8 ГПа и температурах 800-1000°С с обеспечением образования сверхтвердых углеродных частиц.
Изобретение относится к области металлургии, а именно к составам для защиты лопаток паровых турбин от ударно-капельной эрозии. Сплав на основе кобальта для наплавки на лопатки паровой турбины содержит: B 1,5-5, C 0,5-1, Cr 15-18, Fe 10-12, Ni 5-10, Mo 2-4, Si 2-4, Mn 5-8, Cu 2-5, W 10-12, Co - остальное.

Изобретение относится к области металлургии, а именно к изготовлению полосы из магнитомягкого сплава. Способ изготовления полосы из магнитомягкого сплава толщиной менее 0,6 мм, пригодной для механической резки, включает холодную прокатку полосы, полученной горячей прокаткой полуфабриката, затем полосу подвергают непрерывному отжигу пропусканием через печь непрерывного действия при температуре в пределах от температуры перехода упорядочения/разупорядочения сплава до температуры начала ферритно-аустенитного превращения сплава, причем скорость движения полосы устанавливают таким образом, чтобы время выдержки полосы в печи непрерывного действия при температуре отжига составляло меньше 10 минут.

Изобретение относится к области порошковой металлургии, а именно к составам спеченных антифрикционных материалов, которые могут быть использованы в машиностроении.
Изобретение относится к электрохимическому синтезу магнитных материалов. Получают порошок интерметаллидов самария и кобальта.

Изобретение относится к области металлургии жаропрочных свариваемых деформируемых сплавов и изделий, выполненных из этих сплавов, и может быть использовано для изготовления элементов камеры сгорания, сопла и других узлов газотурбинных двигателей и установок, работающих до температуры 1250°C.

Изобретение относится к металлургии алюминия, в частности к лигатурам для модифицирования алюминия и его сплавов. Лигатура алюминий-титан-бор для модифицирования алюминия и его сплавов содержит не менее 90 вес.% частиц диборида титана и не более 10 вес.% частиц алюминида титана или борида алюминия, при этом соотношение титана к бору в лигатуре составляет (1,918-2,356):1.
Наверх