Способ оценки заживления переломов трубчатых костей крыс в эксперименте



Способ оценки заживления переломов трубчатых костей крыс в эксперименте
Способ оценки заживления переломов трубчатых костей крыс в эксперименте
G01N1/28 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2644279:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Оренбургский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО ОрГМУ Минздрава России) (RU)

Изобретение относится к области медицины, а именно к морфологии, иммуногистохимии, экспериментальной травматологии и ортопедии. Для оценки заживления переломов трубчатых костей крыс в эксперименте на разных сроках репаративного процесса используют цифровую микрофотографию иммуногистохимического препарата зоны периостальной и интермедиарной костной мозоли. При помощи морфометрических программ определяют содержание белков межклеточного матрикса, измеряя площади участков иммуногистохимически окрашенных структур в цифровых изображениях, с последующим вычислением их относительной объемной плотности в тканях по формуле: ООП (%)=(Sa/St)×100, где ООП - относительная объемная плотность, Sa - суммарная площадь всех областей исследуемого белка, St - общая площадь цифровой микрофотографии. Значения относительной объемной плотности включают в формулу: ИЗ=-7,00041+34,93413×ОС+0,46838×Col-I-0,22592×Col-II, где ИЗ - индекс заживления, ОС - относительная объемная плотность остеокальцина, Col-I - относительная объемная плотность коллагена I, Col-II - относительная объемная плотность коллагена II. При значении индекса заживления выше контрольных показаний на любом сроке от начала лечения судят об ускоренной динамике заживления перелома кости. Способ позволяет объективно и с высокой точностью прогнозировать динамику остеорепаративного процесса для оценки характера заживления переломов трубчатых костей крыс на разных сроках эксперимента. 4 ил., 1 пр.

 

Изобретение относится к области экспериментальной медицины, а именно к морфологии, иммуногистохимии, экспериментальной травматологии и ортопедии, и может быть использовано для оценки заживления переломов трубчатых костей крыс в эксперименте на разных сроках репаративного процесса.

Ежегодно в мире травматизм, связанный с переломами костей, постоянно растет. В связи с этим перед современной медициной возникает задача стимуляции посттравматической регенерации костной ткани. В настоящее проводятся многочисленные экспериментальные исследования по разработке и внедрению в клиническую практику лекарственных препаратов - стимуляторов косной регенерации, или остеорепарантов. В связи с чем, возникла необходимость в оценке характера и дальнейшего прогноза процесса заживления переломов костей в условиях эксперимента.

Уровень техники

Проведенный анализ патентной и специальной литературы показал, что аналоги данного изобретения применительно к оценке заживления переломов трубчатых костей, включающие иммуногистохимическое исследование, морфометрию и математическое моделирование, отсутствуют. Известны способы оценки заживления ран матки [1, 2, 3] и кожи [4] с применением методов морфометрии и математического моделирования, но все они направлены на оценку заживления других тканей и не пригодны для оценки характера заживления переломов костей.

Также известны способы оценки заживления костной ткани, основанные на измерении динамики звукопроводимости конечности [5] или костной ткани [6, 7]. Наиболее близким из которых к предлагаемому в изобретении способу является способ диагностики выраженности репаративного процесса при сращении переломов длинной кости [7], включающий лучевое и ультразвуковое исследования, отличающийся тем, что сопоставляют количественную динамику звукопроводимости по кости и накопление активности радиофармпрепарата в зоне перелома и при увеличении показателя прохождения ультразвуковой волны свыше 89% и содержания радиофармпрепарата 870% для поперечных переломов без смещения костных отломков, 900% для косых переломов без смещения костных отломков, 930% для винтообразных переломов без смещения костных отломков и 910% для косых переломов с диастазом, 970% для винтообразных с диастазом диагностируют выраженный репаративный процесс.

К недостаткам вышеперечисленных известных способов оценки заживления костной ткани следует отнести отсутствие возможности прогнозирования динамики репаративного процесса; трудоемкость, сложность выполнения, наличие специального дополнительного дорогостоящего оборудования; не может быть использован для анализа архивного материала; ограничивается только лучевым и ультразвуковым исследованием и не может быть использован для характеристики состояния гистоархитектоники костной ткани крыс, в связи с чем отсутствует возможность анализа органотипичности костного регенерата, и, как следствие, установления стадии и срока остеорепарации в конкретный момент времени, что в совокупности делает непригодным использование этого метода для решения экспериментальных научных задач.

Новизной настоящего предложения является разработка способа, позволяющего объективно и с высокой точностью прогнозировать динамику остеорепаративного процесса для оценки характера заживления переломов трубчатых костей крыс на разных сроках эксперимента.

Поставленная задача решается путем изготовления гистологического препарата костной мозоли с иммуногистохимическим окрашиванием для специфического выявления экспрессии и последующего вычисления относительной объемной плотности (ООП) белков межклеточного матрикса остеокальцина, коллагена I, коллагена II в зоне периостальной и интермедиарной костной мозоли и включением в формулу полученных значений, в которой одновременно учитывается динамика изменения ООП всех выше перечисленных белков регенерирующей костной ткани в определенный промежуток времени.

Раскрытие изобретения

Предлагаемый способ заключается в том, что используют цифровую микрофотографию иммуногистохимического препарата зоны периостальной и интермедиарной костной мозоли, при помощи морфометрических программ измеряют площади участков иммуногистохимически окрашенных белковых структур в цифровых изображениях, с последующим вычислением их относительной объемной плотности в тканях по формуле: ООП (%)=(Sa/St)×100, где ООП - относительная объемная плотность, Sa - суммарная площадь всех областей исследуемого белка, St - общая площадь цифровой микрофотографии, полученные значения относительной объемной плотности включают в формулу: ИЗ=-7,00041+34,93413×OC+0,46838×Col-I-0,22592×Col-II, где ИЗ - индекс заживления, ОС - относительная объемная плотность остеокальцина, Col-I - относительная объемная плотность коллагена I, Col-II - относительная объемная плотность коллагена II, и при значении индекса заживления выше контрольных показаний на любом сроке от начала лечения судят о ускоренной динамике заживления перелома кости.

На процесс заживления переломов костей большое значение оказывает качественное и количественное содержание белков межклеточного матрикса костной ткани в области перелома на различных сроках остеорепарации продуцируемых клетками фибробластического, хондробластического и остеобластического дифферонов. Таким образом, каждому сроку заживления перелома костной ткани соответствует определенное качественно-количественное соотношение белков, что определяет органотипичность формируемого регенерата. Полученные результаты собственных иммуногистохимических исследований по качественно-количественному анализу содержания белков межклеточного матрикса костной ткани с использованием метода множественной корреляции и регрессии при помощи статистической программы «Statistica-6.1» позволили выявить вклад каждого вида белка в результат времени выздоровления. Наиболее доминирующими оказались коллаген I, коллаген II и остеокальцин, на основании чего была создана адекватная математическая модель взаимосвязи времени заболевания и содержанием белков костного матрикса.

Описание способа

Производят забор кусочка регенерирующей костной ткани (костной мозоли) с последующим изготовлением иммуногистохимических препаратов для специфического выявления экспрессии белков межклеточного матрикса остеокальцина, коллагена I, коллагена II. Далее делают цифровые микрофотографии зоны периостальной и интермедиарной костной мозоли, которые загружают в компьютерную программу для морфометрии (например, "ДиаМорф Объектив 1.6") или любую другую подходящую для автоматического выделения участков цифрового изображения по эталонному цвету (например, Adobe Photoshop CS6 Extended) с последующим выделением и вычислением (автоматически или в ручном режиме) в исследуемом цифровом изображении площади участков иммуногистохимически окрашенных структур, содержащих определяемые белки (остеокальцин, коллаген I или коллаген II). Далее для точного определения относительной объемной плотности (ООП) иммуногистохимически выявленных белков межклеточного матрикса, нужно рассчитать отношение суммарной площади выделенных областей в изображении (содержащих соответствующий белок) к общей площади цифровой микрофотографии по формуле: ООП (%)=(Sa/St)×100; где ООП - относительная объемная плотность; Sa - суммарная площадь всех областей в анализируемом изображении, содержащих исследуемый белок; St - общая площадь цифровой микрофотографии. Полученные значения ООП для остеокальцина, коллагена I, коллагена II включают в формулу: ИЗ=-7,00041+34,93413×ОС+0,46838×Col-1-0,22592×Col-II, где ИЗ - индекс заживления, ОС - относительная объемная плотность остеокальцина, Col-I - относительная объемная плотность коллагена I, Col-II - относительная объемная плотность коллагена II. При значении индекса заживления выше контрольных показаний на любом сроке от начала лечения судят о ускоренной динамике заживления перелома кости. При этом разница значений между ИЗ двух сравниваемых случаев (например, опыт и контроль) соответствует времени (в сутках) опережения (для случая с большим значением ИЗ) или замедления (для случая с меньшим значением ИЗ) заживления перелома кости, что и определяет динамику остеорепарации.

Таким образом, предлагаемый метод на основании вычисления относительной объемной плотности белков межклеточного костного матрикса и установлении индекса заживления позволяет достичь поставленной цели - оценить заживление переломов трубчатых костей крыс на разных сроках эксперимента, что в свою очередь позволяет с высокой точностью прогнозировать динамику остеорепаративного процесса. Этот способ прост, доступен, точен. Впервые по особенностям динамики относительной объемной плотности белков межклеточного костного матрикса с математическим выражением оценивается характер заживления переломов костей.

Изобретение иллюстрируется рисунками с подробным описанием и примером его практического использования.

Фиг. 1 - ООП остеокальцина в периостальной мозоли.

Фиг. 2 - А) Контрольная группа, периостальная зона перелома, иммуногистохимическая реакция на выявление экспрессии коллагена I типа (коричневого цвета), об. ув. ×600.

Б) Опытная группа, периостальная зона перелома, иммуногистохимическая реакция на выявление экспрессии коллагена I типа (коричневого цвета), об. ув. ×600.

Фиг. 3 - ООП коллагена II типа в периостальной мозоли.

Фиг. 4 - Индекс заживления на разных сроках репаративного процесса при заживлении открытого перелома большеберцовой кости крысы.

Пример конкретного использования

Экспериментальное исследование проведено на 70 половозрелых крысах-самцах линии «Вистар». Все исследования на животных были выполнены в соответствии с «Правилами проведения работ с использованием экспериментальных животных» (приказ Минвуза СССР от 13.11.1984 г. №724). Животным под ингаляционным наркозом формировали открытый поперечный перелом средней трети диафиза левой большеберцовой кости. В опытной группе (ОГ) животным в область перелома на 1 и 2 сутки эксперимента вводили по 0,5 мл препарата «Винфар» [8], в контрольной группе (КГ) - 0,5 мл физ. раствора. Осуществлена естественная иммобилизация посредством сохранившей целостность малоберцовой кости. Животных выводили из опыта на 3, 14, 28, 44 и 61 сутки. Исследования проводили с использованием гистологических, иммуногистохимических методов и морфометрии. Гистологическое исследование включало окраску гематоксилином Майера и эозином. При проведении иммуногистохимических методов исследования для выявления экспрессии Osteocalcin (маркер созревания костной ткани), collagen II (маркер хондрогенеза) и collagen I (в данном исследовании - маркер остеогенеза) использовались соответственно антитела anti-Osteocalcine («SPRING Bioscience», США), anti-Collagene II Туре и anti-Collagene I Type («GeneTex», США). Используемая система детекции - Reveal Polyvalent HRP - DAB Detection System («SPRING Bioscience», США). Подсчет площади остеокальцина и коллагеновых волокон производился при помощи программы Adobe Photoshop CS6 Extended в относительных значениях (вычисление относительной объемной плотности - ООП), в пределах исследуемого гистосреза на 1 цифровой микрофотографии (равной 1 полю зрения) при увеличении ×300 минимум в 5 полях зрения (микрофотографий) для каждого показателя. Относительная объемная плотность (ООП) и индекс заживления (ИЗ) вычислялись по выше описанным методике и формулам. При проведении статистической обработки результатов вычисляли средние значения абсолютных и относительных величин (М), ошибки средних величин (m) и t-критерий Стьюдента. Различия считали достоверно значимыми при уровне вероятности p<0,05.

На 3 сутки у животных контрольной группы (КГ) в периостальной и интермедиарной зонах перелома синтез остеокальцина незначителен и составляет 0,218±0,009%, тогда как в опытной группе (ОГ) ООП остеокальцина в 2 раза выше - 0,423±0,013% (см. Фиг. 1). Экспрессия коллагена I типа в ОГ (ООП 9,40±0,62%) больше таковой группы контроля (ООП 3,92±0,31%) почти в 3 раза. У животных контрольной группы ООП коллагена II типа составляет 4,77±0,11%, что незначительно превышает данный показатель в ОГ (ООП коллагена II типа 4,03±0,08%). Индекс заживления опытной группы (11,3±0,5 сут) в 8 раз превышает ИЗ КГ (1,4±0,2 сут).

На 14 сутки у животных КГ ООП остеокальцина составляет 0,612±0,024%, а в ОГ ООП остеокальцина - 0,802±0,031%. Экспрессия коллагена I типа в ОГ (ООП 15,21±0,23%) на этом сроке, по сравнению с предыдущим, значительно возрастает и по-прежнему больше таковой группы контроля (ООП 9,24±0,12%). У животных контрольной группы ООП коллагена II типа составляет 10,04±0,16%, что почти двукратно превышает данный показатель в ОГ (ООП коллагена II типа 6,58±0,27%). Индекс заживления опытной группы (26,8±1,1 сут) на 10 суток превышает ИЗ КГ (16,4±0,7 сут).

На 21 сутки у животных КГ в периостальной зоне перелома ООП остеокальцина составляет 0,841±0,035%, а в ОГ ООП остеокальцина - 1,078±0,027%. Экспрессия коллагена I типа в ОГ (ООП 20,7±1,01%) на этом сроке возрастает и по-прежнему больше таковой группы контроля (ООП 11,25±1,12%). У животных контрольной группы ООП коллагена II типа составляет 19,16±0,98%, в ОГ ООП коллагена II типа - 12,55±0,52%, т.е. происходит двукратное увеличение экспрессии коллагена II по сравнению с предыдущим сроком. Индекс заживления опытной группы (37,5±1,4 сут) на 14 суток превышает ИЗ КГ (23,3±0,8 сут).

На 28 сутки у животных КГ содержание остеокальцина по сравнению с предыдущим сроком почти не изменяется и составляет 0,866±0,023%, тогда как в ОГ ООП остеокальцина увеличивается на четверть и достигает 1,253±0,056%. Экспрессия коллагена I типа в ОГ (ООП 29,85±1,03%) на этом сроке так же, как и остеокальцина, возрастает почти на треть и по-прежнему больше таковой группы контроля (ООП 16,23±1,08%). У животных контрольной группы ООП коллагена II типа составляет 20,94±1,12%, в ОГ ООП коллагена II типа - 10,37±1,02%. Индекс заживления опытной группы (48,4±2,3 сут) почти двукратно превышает ИЗ КГ (26,1±1,2 сут).

На 44 сутки у животных КГ в периостальной зоне перелома ООП остеокальцина составляет 1,156±0,034%, а в ОГ ООП остеокальцина уже на данном сроке достигает значений (ООП 1,582±0,026%), близких с ООП нормальной (около 1,6%) костной ткани [9]. Экспрессия коллагена I типа в ОГ (ООП 42,43±2,21%) на этом сроке возрастает на четверть и по-прежнему двукратно больше таковой группы контроля (ООП 21,23±1,94%), что визуально проявляется в большей интенсивности окраски иммуногистохимических препаратов опытной группы (см. Фиг. 2А и Б). У животных контрольной группы ООП коллагена II типа составляет 9,35±0,97%, в ОГ ООП коллагена II типа - 4,33±0,82%, т.е. происходит уменьшение экспрессии коллагена II в обеих группах по сравнению с предыдущим сроком (см. Фиг. 3), из-за хондролиза хряща и остеогенной реорганизации периостальной мозоли (это подтверждается увеличением ООП коллагена I типа, см. выше). Индекс заживления опытной группы (67,2±2,9 сут) более чем в полтора раза превышает ИЗ КГ (41,2±2,1 сут).

На 61 сутки экспрессия коллагена I типа в ОГ (ООП 69,25±2,23%) на этом сроке возрастает более чем на треть и на треть больше таковой группы контроля (ООП 46,09±1,74%), на данном сроке достигая значений, близких с ООП коллагена I нормальной (около 70,0%) костной ткани [8]. ООП коллагена I типа эндостальной мозоли в КГ начинает уменьшаться только на 61 сутки - 8,87±0,05%, подтверждая только начавшийся процесс редукции эндостальной мозоли, тогда как в ОГ ООП коллагена I типа составляет 8,01±0,02%, достигая значений, близких с ООП коллагена I нормальной костной ткани (около 7,0-8,0%). ООП коллагена II типа КГ - 2,9±0,03%, в ОГ - 1,09±0,02%. Индекс заживления опытной группы (81,4±3,1 сут) на 20 суток превышает ИЗ КГ (61,9±2,3 сут).

Таким образом, в ходе вычисления индекса заживления (ИЗ) в опытной и контрольной группах была объективно определена динамика остеорепаративного процесса и установлена эффективность стимулирующего воздействия препарата по результатам характера заживления открытого перелома большеберцовой кости крыс - опережения в опытной группе по сравнению с контролем на разных сроках репаративного процесса (см. Фиг. 4), что в примере конкретного использования подтверждается более ранними сроками (с опережением на 20 суток) органотипической консолидации перелома диафиза большеберцовой кости в опытной группе животных (на 61 сутки эксперимента).

Технический результат

Существенными отличиями предлагаемого метода являются:

1) вычисление на цифровой микрофотографии иммуногистохимического препарата зоны периостальной и интермедиарной костной мозоли, при помощи морфометрических программ площади участков иммуногистохимически окрашенных белковых структур;

2) определение относительной объемной плотности (ООП) остеокальцина, коллагена I и коллагена II в опытной и контрольной группах по значениям вычисленных площадей участков иммуногистохимически окрашенных белковых структур в цифровых микрофотографиях, что позволяет судить об органотипичности формирующегося костного регенерата;

3) включение полученных значений ООП в формулу: ИЗ=-7,00041+34,93413×ОС+0,46838×Col-I-0,22592×Col-II и установление динамики остеорепаративного процесса с последующей объективной оценкой характера заживления открытого перелома большеберцовой кости крыс на разных сроках репаративного процесса в опытной и контрольных группах. Таким образом, каждое из существенных отличий ново и необходимо и в совокупности представляет новый способ оценки заживления переломов трубчатых костей крыс в эксперименте.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Крамарский В.А., Дудакова В.Н., Мащакевич Л.И. Патент RU 2169370 С1, 20.06.2001. Способ оценки заживления раны на матке после операции кесарево сечение.

2. Крамарский В.А., Раевская Л.Ю., Дудакова В.Н. Патент RU 2216275 С1, 26.07.2001. Способ прогнозирования характера заживления раны матки после операции кесарево сечение.

3. Крамарский В.А., Дудакова В.Н., Мащакевич Л.И. Патент RU 2175524 С1, 10.11.2001. Способ оценки заживления раны на матке после операции кесарево сечение.

4. Осинцев Е.Ю., Слободской А.Б. Патент RU 2102755, 20.01.1998. Способ определения скорости заживления раневой поверхности.

5. Анисимов А.И., Грязнухин Э.Г., Корнилов Н.В., Каныкин А.Ю., Абдурахманов И.Т., Мазуркевич Е.А., Парвез Али. Патент RU 2181031, 10.04.2002. Способ диагностики хода сращения переломов трубчатых костей.

6. Минасов Т.Б., Минасов И.Б. Патент RU 2286716, 10.11.2006. Способ диагностики выраженности репаративного процесса при переломах длинных трубчатых костей.

7. Прототип - Барабаш А.П., Гордиенко В.П., Тишков Н.В. Патент RU 2194448 С2, 20.12.2002. Способ диагностики сращения переломов длинной кости.

8. Вавилова Т.П. Биохимия тканей и жидкостей полостей рта: учебное пособие. - 2-е изд., испр. и доп. - 2008. - 208 с.

Способ оценки заживления переломов трубчатых костей крыс в эксперименте, отличающийся тем, что используют цифровую микрофотографию иммуногистохимического препарата зоны периостальной и интермедиарной костной мозоли, при помощи морфометрических программ измеряют площади участков иммуногистохимически окрашенных белковых структур в цифровых изображениях, с последующим вычислением относительного содержания белков межклеточного матрикса по формуле: ООП(%)=(Sa/St)×100, где ООП - относительная объемная плотность, Sa - суммарная площадь всех областей исследуемого белка, St - общая площадь цифровой микрофотографии, полученные значения относительной объемной плотности включают в формулу: ИЗ=-7,00041+34,93413×OC+0,46838×Col-I - 0,22592×Col-II, где ИЗ - индекс заживления, ОС - относительная объемная плотность остеокальцина, Col-I - относительная объемная плотность коллагена I, Col-II - относительная объемная плотность коллагена II и при значении индекса заживления выше контрольных показаний на любом сроке от начала лечения судят о ускоренной динамике заживления перелома кости.



 

Похожие патенты:

Изобретение относится к медицине, а именно к нейрохирургии, и может быть использовано при микрохирургической реконструкции спинного мозга. Для этого при моделировании у животного частичного повреждения спинного мозга путем гемосекции используют гидрогель ММ-гель-Р.
Изобретение относится к медицине, в частности к экспериментальной фармакологии, и может быть использовано для коррекции микроциркуляторных нарушений в плаценте. Способ включает воспроизведение ADMA-подобной модели гестоза у лабораторных беременных крыс линии Wistar ежедневным внутрибрюшинным введением с 14 по 20 день беременности ингибитора NO- синтазы L-NAME в дозе 25 мг/кг/сутки.
Изобретение относится к медицине, в частности к фармакологии и офтальмологии, и может быть использовано для профилактики ишемических состояний сетчатки в эксперименте.
Изобретение относится к медицине, в частности к экспериментальной фармакологии и офтальмологии, и может быть использовано для профилактики ишемической нейропатии зрительного нерва.

Изобретение относится к медицине, а именно к экспериментальной кардиофармакологии, и может быть использовано в комплексной оценке активности фармакологических средств на изолированном сердце крысы.

Изобретение относится к медицине, в частности к экспериментальной фармакологии и неврологии, и может быть использовано для профилактики ишемических состояний головного мозга.

Изобретение относится к экспериментальной медицине и может быть применимо для моделирования реконструкции передней крестообразной связки коленного сустава. Измеряют диаметр полученного трансплантата, сложенного вдвое.
Изобретение относится к экспериментальной медицине, а именно к патофизиологии, и может быть использовано для прогноза развития патогенетического процесса по культивируемому и некультивируемому типу при инфекционных заболеваниях.
Изобретение относится к экспериментальной медицине, а именно к нейрохирургии, и может быть использовано для моделирования тяжелой черепно-мозговой травмы с грубыми стойкими нарушениями неврологических и когнитивных функций.

Изобретение относится к медицине, в частности к экспериментальной токсикологии, и может быть использовано при исследовании механизмов токсического действия растворимых форм бериллия.

Представлен способ выявления ракового биомаркера у субъекта in vitro. Охарактеризованный способ включает получение от субъекта биологического образца; измерение уровня RISC-белка во фракции экзосом образца и/или активности процессинга первичной микроРНК или активности процессинга предшественника микроРНК во фракции экзосом образца и эталонного образца; идентификацию того, что субъект обладает раковым биомаркером, на основании (i) выявления RISC-белка во фракции экзосом образца, полученного от субъекта, или (ii) выявления активности процессинга микроРНК во фракции экзосом образца, которая отсутствует в эталонном образце.

Настоящее изобретение относится к области биотехнологии, а именно способам и композициям для терапевтического и диагностического применения в лечении заболеваний и расстройств, которые вызваны нейрофибриллярными клубками или связаны с ними.

Изобретения относятся к клеткам и тестам, которые могут использоваться для идентификации модуляторов рецепторов сладкого вкуса. Предложены способ идентификации модулятора ощущения сладкого вкуса и выделенная клетка U2-OS.

Настоящее изобретение относится к новым ДНК-аптамерам, способным прочно и специфически связываться с гельзолином. Кроме того, изобретение относится к применению этих аптамеров для оценки уровня гельзолина в данном образце и для очистки немеченного гельзолина и его аналогов в большом объёме.

Изобретение относится к применению коагулирующих композиций, содержащих в основном выделенные или по меньшей мере частично очищенный активатор протромбина змеиного яда, а также к контейнерам, содержащим указанные коагулирующие композиции, и к родственным способам применения.9 н.

Изобретение относится к отбору проб, в частности к отбору и подготовке пробы клеток конъюнктивы для проведения бактериологического, вирусологического и иммунологического исследований с целью выявления этиологии воспалительных заболеваний переднего отрезка глаза.
Изобретение относится к области экологии и может быть использовано для экологического картирования, выявления неблагоприятных участков исследуемых регионов и дифференцированной оценки Cа-Sr статуса различных по площади территорий.

Изобретение относится к области медицины и предназначено для диагностики светлоклеточного почечно-клеточного рака (скПКР). В качестве исследуемых образцов используют образцы ткани почки в предположительно опухолевой и гистологически нормальной ткани пациента.

Способ определения коэффициентов отражения зеркал, размещаемых в комбинацию параллельно друг другу, состоит из последовательности этапов измерений, связанных с заменой зеркал в комбинации, измерением мощности излучения после отражений от них в каждой из комбинаций.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности.

Изобретение относится к области медицины, а именно к оториноларингологии. Для дифференциальной диагностики токсико-аллергической и простой форм хронического тонзиллита проводят ультразвуковую визуализацию регионарных верхнебоковых шейных лимфатических узлов.
Наверх