Активная часть электрической машины, радиальный магнитный подшипник и способ изготовления радиального магнитного подшипника

Изобретение относится к области электротехники, в частности к активной части электрической машины. Технический результат – улучшение магнитных характеристик. Активная часть содержит зубцы, каждый из которых имеет ножку и высоту зубца, размещенные между зубцами открытые или закрытые пазы, введенные в пазы обмотки, окружающие соответственно по меньшей мере один из зубцов. При этом активная часть имеет толщину активной части, которая больше, чем высота зубца. Активная часть, исходя от соответствующей ножки зубца до предельной глубины, которая максимально равна высоте зубца, содержит первый материал с первой магнитной проницаемостью, и, начиная от предельной глубины, содержит второй материал с второй магнитной проницаемостью, причем первая магнитная проницаемость больше, чем вторая магнитная проницаемость. Согласно изобретению предельная глубина составляет от 20% до 100% от высоты зубца. 4 н. и 16 з.п. ф-лы, 7 ил.

 

Изобретение относится к активной части электрической машины, содержащей зубцы, каждый из которых имеет ножку зубца и высоту зубца, расположенные между зубцами открытые или закрытые пазы и введенные в пазы обмотки, которые, соответственно, окружают по меньшей мере один из зубцов, причем активная часть от внешней поверхности соответствующих ножек зубцов и в продолжении зубцов имеет толщину активной части, которая больше, чем высота зубца, причем активная часть, начиная от соответствующей ножки зубца, до предельной глубины, которая максимально равна высоте зубца, содержит первый материал с первой магнитной проницаемостью и от предельной глубины содержит второй материал с второй магнитной проницаемостью, причем первая магнитная проницаемость больше, чем вторая магнитная проницаемость. Кроме того, изобретение относится к такой электрической машине, радиальному магнитному подшипнику с такой активной частью, а также к способу изготовления такого радиального магнитного подшипника.

Электрические машины могут быть выполнены, например, как двигатели, такие как линейные двигатели и вращательные двигатели, как генераторы или как магнитные подшипники, особенно радиальные магнитные подшипники.

Подобная активная часть используется, например, в активном радиальном магнитном подшипнике, который включает в себя статор и ротор. Статор обычно состоит из листового пакета сердечника с несколькими катушками. Эти катушки генерируют магнитное поле, которое оказывает силовое воздействие на ротор. При этом достижимая плотность мощности зависит, среди прочего, от квадрата плотности магнитного потока. Для того чтобы создать компактный магнитный подшипник, нужно иметь возможность получения максимально возможной плотности потока. Максимальная плотность потока ограничена свойствами материала используемого листового материала. Магнитные подшипники, как правило, работают с магнитными плотностями потока в диапазоне от 1,2 до 1,5 Тл.

Известный способ увеличения плотности магнитного потока состоит в использовании листового материала из сплавов кобальта с железом (Со-Fe-сплавов). При этом возможны плотности потока до 2 Тл. Это примерно соответствует удвоению плотности мощности. Недостатком такого решения является очень дорогостоящий материал по сравнению со стандартным листовым материалом. Кроме того, лист из сплава кобальта с железом доступен только в таких размерах, которые при больших магнитных подшипниках, например с диаметром более 300 мм, делают необходимой сегментацию.

Динамоэлектрические вращательные машины и радиальные магнитные подшипники часто имеют, в случае когда они выполнены в виде машины с внутренним ротором, листовые статоры с пазами, расположенными между радиально обращенными внутрь зубцами, в которых размещены системы обмоток, такие как хордовые обмотки или катушки зубцов. Листы электротехнической (динамной) стали статора имеют при этом обусловленную материалом заданную магнитную проницаемость.

Из US 2011/0316376 A1 известен радиальный магнитный подшипник, который имеет активную часть, выполненную в виде статора, имеющего форму полого цилиндра, с зубцами и обмотками, намотанными вокруг некоторых из зубцов, причем соответствующие три смежных зубца с намотанными вокруг зубцов обмотками образуют Е-образные электромагниты. При этом электромагниты могут состоять, например, из сплава кобальта и железа. Кроме того, предусмотрены клинья на радиально внешней кромке между электромагнитами, а также корпус, вмещающий электромагниты и клинья, причем как клинья, так и корпус состоят из немагнитного материала.

Из JP 2009 247060 А известен электродвигатель со статором, который имеет зубцы статора. Для подавления нежелательных высокочастотных компонентов намагниченности зубцы статора с высотой L зубца имеют вершину зубца до L/20 из материала с более высокой магнитной проницаемостью, чем соответствующий остальной зубец статора.

В основе изобретения лежит задача обеспечить активную часть, которая имеет относительно хорошие магнитные свойства и при этом является экономичной в изготовлении.

Эта задача решается с помощью активной части вышеуказанного типа тем, что предельная глубина составляет от 20% до 100% от высоты зубца.

Также эта задача решается с помощью способа указанного выше типа посредством следующих этапов способа:

- изготовление отдельных зубцов,

которые, если предельная глубина меньше, чем высота зубца, изготавливаются исходя от соответствующей ножки зубца до предельной глубины, из листов сплава кобальта и железа,

которые, если предельная глубина равна высоте зубца, изготавливаются из листов сплава кобальта и железа,

при этом листы укладывают в стопку в осевом направлении радиального магнитного подшипника,

- размещение обмотки на каждом зубце,

- изготовление внутреннего полого цилиндра статора, который собирается из зубцов, размещенных в окружном направлении и, соответственно, снабженных обмоткой зубца, причем ножки зубцов ориентированы радиально внутрь,

- изготовление внешнего полого цилиндра статора из листовой стали, причем листы уложены в стопку в осевом направлении радиального магнитного подшипника,

- сборка внутреннего полого цилиндра статора и внешнего полого цилиндра статора для получения статора активной части, имеющего форму полого цилиндра.

Изобретение состоит в том, что только те части статора изготавливаются из материала с высокой магнитной проницаемостью, которые во время работы подвергаются воздействию высоких плотностей потока. Это относится, в случае активной части, в частности, в случае статора магнитного подшипника, к магнитным полюсам, то есть частям зубцов от ножки зубца до самой глубокой точки паза.

При работе активной части тем самым хотя и достигаются плотности потока, которые меньше, чем в случае активной части, которая полностью изготовлена из материала с высокой магнитной проницаемостью, однако, возможны более высокие плотности потока, чем в случае обычных листовых материалов.

Преимуществом является комбинация обоих свойств, а именно что могут достигаться более высокие плотности потока, чем при обычных листовых материалов, и одновременно достигаются преимущества по стоимости по сравнению с активными частями, которые состоят исключительно из материала с высокой магнитной проницаемостью. Это достигается тем, что только те части активной части состоят из более дорогого материала с высокой магнитной проницаемостью, в которых в процессе работы возникают самые высокие плотности магнитного потока. В соответствии с изобретением, таким образом, предусматривается, что предельная глубина составляет от 20% до 100% от высоты зубца, так что соответствующий зубец, исходя от корня зубца до по меньшей мере 20% от высоты зубца, содержит первый материал, имеющий более высокую магнитную проницаемость.

По сравнению с активными частями из обычных листовых материалов можно таким образом изготавливать активную часть особенно экономичным образом, потому что соответствующая электрическая машина может достичь более высокой производительности при тех же габаритных размерах или достигает той же производительности при меньших габаритных размерах. И по сравнению с активными частями, которые состоят исключительно из материала с высокой магнитной проницаемостью, имеются преимущества, поскольку лишь с незначительными потерями в плане магнитных свойств или достижимых производительностей может быть достигнуто значительное снижение стоимости. Это также может обосновываться тем, что объем зубцов от соответствующей ножки зубца до высоты зубца по сравнению с объемом остальной активной части может быть сравнительно малым. При этом объем зубцов от ножки зубца до высоты зубца является решающим для магнитных свойств и достижимой производительности активной части, в то время как объем остальной активной части в этом отношении имеет второстепенное значение. Соответственно, полный зубец от ножки зубца по всей высоте зубца может содержать первый материал, имеющий более высокую магнитную проницаемость, так что предельная глубина равна высоте зубца.

Если пазы, в которых помещены обмотки, являются закрытыми, то ножки зубцов смежных зубцов образуют соединительную перемычку между этими зубцами. Эти соединительные перемычки могут иметь положительное воздействие на высшие гармоники магнитного потока, за счет чего в целом могут быть снижены потери.

В частности, предельная глубина может находиться в пределах от 20% до 80% от высоты зубца или от 40% до 70% от высоты зубца.

В предпочтительном варианте осуществления изобретения предельная глубина составляет от 1/3 до 2/3 высоты зубца. Такая активная часть представляет собой разумный компромисс между достаточно высокими магнитными свойствами, с одной стороны, и связанными с этим расходами - с другой стороны.

В другом предпочтительном варианте осуществления изобретения предельная глубина, по существу, в два раза меньше высоты зубца. Таким образом, предельная глубина, в частности, может находиться в пределах между 45% и 55% от высоты зубца.

Особенно рентабельный вариант активной части может быть реализован тем, что соответствующие зубцы, начиная от ножки зубца до, по существу, только половины высоты зубца, имеют первый материал с высокой магнитной проницаемостью. Таким образом, более дорогостоящий материал с высокой магнитной проницаемостью используется только для тех участков соответствующего магнитного полюса, в котором следует ожидать максимальную плотность магнитного потока.

В другом предпочтительном варианте осуществления изобретения первый материал выполнен из сплава кобальта и железа, причем второй материал выполнен из стали.

За счет выполнения первого материала в виде сплава кобальта и железа в первом материале могут достигаться большие плотности магнитного потока до 2 Тл. Поскольку сравнительно дорогой сплав кобальта и железа используется только там, где достигаются большие плотности потока, использование этого материала является особенно экономичным. Второй материал, который имеет меньшее значение для магнитных свойств и достижимой производительности активной части, с другой стороны, выполняется из особенно экономично изготавливаемой стали.

В другом предпочтительном варианте осуществления изобретения первый материал и/или второй материал выполняется в листовой форме, и соответствующие листы расположены в плоскостях, перпендикулярных пазам.

При этом листы располагаются таким образом, что в них желательные магнитные силовые линии направляются особенно хорошо, и нежелательные вихревые токи могут эффективно предотвращаться. Обычно пазы расположены вдоль определенного направления. Например, в случае вращательных электрических машин, как в случае электродвигателей и радиальных магнитных подшипников со статором и ротором, пазы расположены в осевом направлении ротора. В линейных двигателях, однако, пазы расположены вдоль направления движения ротора. Для предотвращения застревания в пазу направление пазов для вращающихся машин может иметь небольшое отклонение от осевого направления и, соответственно, в линейных двигателях от направления, поперечного к направлению движения. Листы как первого, так и второго материала, таким образом, размещаются перпендикулярно пазам.

Дополнительное преимущество обеспечивается, в частности, в случае особенно крупных активных частей. Поскольку листы из первого материала с высокой магнитной проницаемостью соответствующего зубца, например сплава кобальта и железа, также в случае особенно больших активных частей сравнительно малы, их не требуется разделять на сегменты. Хотя первый материал часто доступен в форме листов лишь небольших размеров по сравнению с обычными стальными листами, доступные размеры листов из популярных материалов с высокой магнитной проницаемостью, таких как сплавы кобальта и железа, однако, достаточны для того чтобы изготавливать сравнительно большие активные части.

В противоположность этому, в случае большой активной части, которая состоит только из листов материала с высокой магнитной проницаемостью, необходимо разделять лист на сегменты, что неизбежно приводит к зазорам между отдельными сегментами. Это, в свою очередь, приводит к недостаткам с точки зрения более высоких потерь при направлении силовых линий магнитного поля через зазоры от одного сегмента к смежному сегменту.

В другом предпочтительном варианте осуществления изобретения обмотки выполнены, соответственно, как катушки зубцов. Это означает, что обмотка проходит в каждом случае только вокруг одного зубца, так что этот зубец образует магнитный полюс, когда через катушку зубца протекает ток. Благодаря предоставлению катушек зубцов конструкция активной части может быть выполнена более компактной, поскольку пазы особенно плотно заполнены обмотками.

В другом предпочтительном варианте осуществления изобретения предельная глубина меньше, чем высота зубца, причем активная часть, начиная от соответствующей ножки зубца до соответствующей дальнейшей предельной глубины, которая, соответственно, больше, чем предельная глубина, и, соответственно, максимально равна высоте зубца, содержит соответствующий дополнительный материал с соответствующей дополнительной магнитной проницаемостью, причем вторая магнитная проницаемость выше, чем соответствующая дополнительная магнитная проницаемость.

Таким образом, активная часть содержит последовательность материалов, причем их магнитная проницаемость уменьшается, начиная от ножки зубца. Таким образом, материал с большей магнитной проницаемостью является ближайшим к воздушному зазору соответствующей электрической машины. Затем материалы расположены в порядке убывания магнитной проницаемости. Таким образом, в примере машины с внутренним ротором материал с самой высокой магнитной проницаемостью расположен радиально внутри, при этом материалы с уменьшающейся магнитной проницаемостью следуют в радиальном направлении наружу.

Во время работы, таким образом, уменьшается плотность силовых линий в соответствующем зубце от ножки зубца, так что требования к магнитной проницаемости зубца снижаются. В той же степени могут применяться сравнительно более дешевые материалы, например, для листов. Каждый из этих материалов может быть оптимизирован таким образом, что он в возникающих рабочих условиях электрической машины не переходит в режим насыщения.

В зависимости от положения предельной глубины дополнительная предельная глубина может составлять, например, от 1/3 до 100% от высоты зубца. Возможно, в частности, что дополнительная предельная глубина, по существу, равна половине, равна 2/3 или равна 80% от высоты зубца.

В другом предпочтительном варианте осуществления изобретения соответствующий зубец, в случае активной части с осью вращения, сужается, по меньшей мере на участке в направлении к соответствующей ножке зубца. Зубцы активной части или статора, таким образом, имеют не параллельные стороны, а выполнены таким образом, что площадь поперечного сечения зубца сужается в радиальном направлении внутрь и образует, в частности, трапецию, предпочтительно равнобедренную трапецию. В частности, в случае вращательных машин зубцы могут быть выполнены таким образом, что ширина соответствующего паза в радиальном направлении, по меньшей мере вдоль по того участка, на котором размещены обмотки, является, по существу, постоянной.

Для максимального использования машины коэффициент заполнения медью пазов также является ключевым свойством, причем увеличение коэффициента заполнения медью пазов по поперечному сечению паза или по ширине окна паза в случае статора, оснащенного катушками зубцов со стороны расточки статора, в принципе ограничено. Благодаря сужающимся радиально внутрь зубцам, таким образом, предоставляется больше места для электрических обмоток в пазах, так что в итоге может быть достигнуто увеличение токовой нагрузки пазов и соответствующее увеличение, например, отдаваемого крутящего момента двигателя.

В целом, коэффициент заполнения медью пазов может быть увеличен без ухудшения магнитной проводимости. Это особенно верно для вышеупомянутых активных частей с несколькими материалами с различной магнитной проницаемостью, которые расположены в их последовательности в соответствующем зубце, начиная от ножки зубца, согласно уменьшающейся магнитной проницаемости. В случае материалов с относительно высокой магнитной проницаемостью геометрические размеры зубца не должны следовать таковым у обычной секции листового металла, но могут быть оптимизированы по своей геометрии, так что не происходит магнитного насыщения материала в желательных рабочих условиях электрической машины или радиального магнитного подшипника.

В другом предпочтительном варианте осуществления изобретения электрическая машина выполнена как линейный двигатель или вращающийся электрический двигатель. При этом двигатели могут быть выполнены, в частности, как синхронные двигатели или асинхронные двигатели, причем активная часть образует статор двигателя.

В другом предпочтительном варианте осуществления изобретения активная часть радиального магнитного подшипника выполнена в виде статора в форме полого цилиндра, причем ножки зубцов относительно полого цилиндра обращены радиально внутрь.

Полый цилиндр статора образован кольцеобразно расположенными зубцами, ножки зубцов которых обращены радиально внутрь. При этом зубцы, исходя от соответствующей ножки зубца до предельной глубины, изготовлены из первого материала с высокой магнитной проницаемостью, а остальная, радиально внешняя часть статора изготовлена из второго материала с меньшей магнитной проницаемостью.

Радиальный магнитный подшипник используется для восприятия радиальных сил вала, размещенного внутри радиального магнитного подшипника, причем катушки радиального магнитного подшипника, как правило, нагружаются током посредством инвертора, причем инвертор, в свою очередь, управляется средством управления. Для того чтобы удерживать вал в плавающем состоянии и предотвращать соприкосновение радиального магнитного подшипника и статора, средство управления может, например, применять данные датчиков или определенные компоненты нагрузочного тока катушки.

Соответствующий изобретению способ предусматривает изготовление листовых зубцов и листового внешнего полого цилиндра статора, причем соединение листов в листовой пакет достигается, например, с помощью сварки или склеивания листов, или тем, что листы покрываются черным лаком, и затем уложенные в стопку листы для соединения нагреваются.

Внутренний полый цилиндр статора и внешний полый цилиндр статора могут, например, быть соединены вместе, при этом внешний полый цилиндр статора нагревается, и внутренний полый цилиндр статора подвергается термоусаживанию.

При этом в активных частях с особенно большим диаметром также возможно, что внешний полый цилиндр статора образован из сегментированных стальных листов, причем, в частности, на два уже соединенных, внутренний и внешний, полых цилиндра статора насаживается в горячем состоянии металлический корпус.

Разумеется, с помощью соответствующего изобретению способа могут изготавливаться не только радиальные магнитные подшипники, но и вращающиеся электродвигатели, которые также имеют статор в форме полого цилиндра.

Если при этом активная часть имеет только ранее поясненную предельную глубину, то отдельные зубцы от предельной глубины в радиальном направлении наружу предпочтительно изготовлены из стальных листов. Если, напротив, предусмотрены одна или несколько предельных глубин, то отдельные зубцы, начиная с радиально самой внешней предельной глубины, предпочтительно выполнены из стальных листов, причем между соответствующими предельными глубинами, соответственно, используются другие материалы, у которых соответствующие магнитные проницаемости уменьшаются в радиальном направлении наружу. Соответственно, могут быть изготовлены дополнительные полые цилиндры статора, которые могут быть собраны вместе с внутренним полым цилиндром статора и внешним полым цилиндром статора для получения полого цилиндра статора активной части.

В дальнейшем изобретение будет описано и объяснено более подробно со ссылкой на варианты осуществления, показанные на чертежах, на которых показано следующее:

Фиг. 1 - поперечное сечение радиального магнитного подшипника согласно предшествующему уровню техники.

Фиг. 2 - первый пример выполнения соответствующей изобретению активной части для линейного двигателя.

Фиг. 3 - второй пример выполнения соответствующей изобретению активной части для линейного двигателя.

Фиг. 4 - фрагмент третьего примера выполнения соответствующей изобретению активной части для радиального магнитного подшипника.

Фиг. 5 - фрагмент четвертого примера выполнения соответствующей изобретению активной части для радиального магнитного подшипника.

Фиг. 6 - фрагмент пятого примера выполнения соответствующей изобретению активной части для радиального магнитного подшипника, и

Фиг. 7 - зубец шестого примера выполнения соответствующей изобретению активной части для радиального магнитного подшипника.

Фиг. 1 показывает поперечное сечение радиального магнитного подшипника в соответствии с предшествующим уровнем техники. Радиальный магнитный подшипник имеет активную часть в форме полого цилиндра, внутри которой концентрично к оси активной части расположен вал, который не показан.

Активная часть образована смежно расположенными зубцами 1, которые имеют высоту 3 зубца и ножку 2 зубца, которая обращена радиально внутрь. Между двумя смежными зубцами 1 размещены аксиально проходящие пазы 4, в которые вводятся обмотки 8. Активная часть имеет толщину 5 активной части, измеряемую в направлении от радиально внутри до радиально снаружи.

В соответствии с предшествующим уровнем техники листы уложены в осевом направлении и изготовлены из одного материала, причем используется сталь или сплав, имеющий сравнительно высокую магнитную проницаемость.

На фиг.2 показан первый пример выполнения соответствующей изобретению активной части для линейного двигателя. Активная часть имеет зубцы 1 с ножками 2 зубцов, причем зубец 1 имеет высоту 3 зубца, и активная часть имеет толщину 5 активной части. Между смежными зубцами 1 размещены открытые пазы 4, в которых помещены обмотки 8. При этом для отдельных зубцов 1, соответственно, предусмотрены катушки зубцов, так что каждый отдельный зубец 1 при обтекании током соответствующих катушек образует магнитный полюс.

Исходя от ножки 2 зубца до предельной глубины 9, которая в этом примере выполнения равна высоте 3 зубца, зубцы 1 активной части 1 изготовлены из первого материала с более высокой магнитной проницаемостью. Остальная область активной части, напротив, изготовлена из второго материала с более низкой магнитной проницаемостью. Например, первый материал может быть выполнен в виде листового сплава кобальта с железом, а второй материал - в виде стального листа, причем соответствующие листы уложены перпендикулярно к направлению пазов 4.

Если активная часть выполнена в виде статора линейного двигателя, то ротор линейного электродвигателя на стороне ножек 2 зубцов выполнен подвижным перпендикулярно пазам 4 и вдоль смежных зубцов 1, то есть в представлении на фиг. 2 справа налево и обратно.

Фиг. 3 показывает второй пример выполнения соответствующей изобретению активной части для линейного двигателя. Те же ссылочные позиции, что и на фиг. 2, обозначают при этом одинаковые элементы. В отличие от первого примера выполнения, пазы 4 в рамках второго примера выполнения выполнены как закрытые пазы 4. Кроме того, предельная глубина 9 теперь равна половине высоты 3 зубцов, так что зубцы 1 от их соответствующей ножки 2 зубца до предельной глубины 9 изготовлены из первого материала, а остальная часть соответствующих зубцов 1 - из второго материала.

Фиг. 4 показывает фрагмент третьего примера выполнения соответствующей изобретению активной части для радиального магнитного подшипника. Показана четвертая часть поперечного сечения активной части в форме полого цилиндра. Фрагмент показывает три зубца 1, каждый из которых имеет обращенную внутрь ножку 2 зубца и высоту 3 зубца. Между соседними зубцами 1 размещены примерно клиновидные пазы 4, в которые введены обмотки 8. При этом обмотки 8 могут быть выполнены, например, как катушки зубцов.

Активная часть от положения радиально внутри, начиная от соответствующих ножек 2 зубцов, в направлении радиально наружу до предельной глубины 9, которая в этом случае равна высоте 3 зубца, выполнена из первого материала, имеющего более высокую магнитную проницаемость. Начиная от предельной глубины 9 до радиально внешней кромки активной части, активная часть выполнена из второго материала, имеющего более низкую магнитную проницаемость. Например, первый материал может быть выполнен как листовой материал сплава кобальта с железом, а второй материал - в виде стального листа, причем соответствующие листы уложены перпендикулярно оси полого цилиндра.

Фиг.5 показывает фрагмент четвертого примера выполнения соответствующей изобретению активной части для радиального магнитного подшипника. Те же ссылочные позиции, что и на фиг. 4, обозначают одинаковые элементы, причем вновь представлена четвертая часть сечения активной части в форме полого цилиндра.

Отдельные зубцы 1 до предельной глубины 9 выполнены из первого материала, причем предельная глубина 9, в отличие от третьего примера выполнения, равна половине высоты 3 зубца. Кроме того, пазы 4 выполнены теперь закрытыми, что ввиду положительного влияния на высшие гармоники магнитного потока может в целом снизить потери. Первый материал может вновь быть выполнен в виде листового материала сплава кобальта с железом, а второй материал - в виде стального листа, причем соответствующие листы уложены перпендикулярно к оси полого цилиндра.

Радиальный магнитный подшипник, активная часть которого была проиллюстрирована в третьем или четвертом примере выполнения, может, например, изготавливаться таким образом, что активная часть выполняется как статор в форме полого цилиндра, который состоит из внутреннего полого цилиндра статора и внешнего полого цилиндра статора. При этом внутренний полый цилиндр статора представляет собой область от ножек 2 зубцов радиально наружу до предельной глубины 9, а внешний полый цилиндр статора представляет область от предельной глубины 9 до радиально внешней кромки активной части.

Фиг.6 показывает фрагмент пятого примера выполнения соответствующей изобретению активной части для радиального магнитного подшипника, причем вновь представлена четвертая часть сечения активной части в форме полого цилиндра.

Исходя от ножки 2 зубца, соответствующий зубец 1 до предельной глубины 9 выполнен из первого материала, имеющего сравнительно высокую магнитную проницаемость. Радиально снаружи до другой предельной глубины 10 примыкает второй материал, имеющий более низкую магнитную проницаемость, чем первый материал. От другой предельной глубины 10 в радиальном направлении наружу, наконец, предусмотрен еще один материал, который в свою очередь имеет более низкую магнитную проницаемость, чем второй материал.

При этом соответствующий зубец 1 сужается в направлении к соответствующей ножке 2 зубца, то есть в радиальном направлении внутрь. Тем самым достигается то, что для находящихся в пазу 4 обмоток 8 предоставляется сравнительно много свободного пространства, и коэффициент заполнения меди может быть увеличен. При этом в настоящем примере выполнения ширина 11 паза каждого паза 4 в радиальном направлении, по существу, постоянна, причем соответствующий зубец 1 окружен катушкой зубца, так что в пазу, соответственно, расположены обмотки двух смежных катушек зубцов.

Одновременно посредством расположения материалов с магнитной проницаемостью в местах с особенно высокой плотностью магнитного поля надежным образом предотвращается насыщение материала соответствующего зубца 1 во время работы радиального магнитного подшипника.

Фиг.7 показывает один зубец согласно шестому примеру выполнения соответствующей изобретению активной части для радиального магнитного подшипника. Зубец 1 сужается на участке в направлении к его ножке 2 зубца. При этом зубец 1 содержит от положения радиально внутри в направлении радиально наружу материалы с различной магнитной проницаемостью, как описано в пятом примере выполнения.

Активная часть с множеством таких зубцов 1 имеет, соответственно, закрытые пазы 4, в которых размещены обмотки 8.

Соответствующая активная часть согласно примерам выполнения с третьего по шестой для радиального магнитного подшипника может быть также использована для вращательного электродвигателя без существенных адаптаций.

Таким образом, настоящее изобретение относится к активной части электрической машины с зубцами, каждый из которых имеет ножку зубца и высоту зубца, расположенными между зубцами открытыми или закрытыми пазами, и введенными в пазы обмотками, которые, соответственно, охватывают по меньшей мере один из зубцов, причем активная часть, начиная от внешней поверхности соответствующих ножек зубцов и в продолжении зубцов, имеет толщину активной части, которая больше, чем высота зубца, причем активная часть, исходя от соответствующей ножки зубца до предельной глубины, которая максимально равна высоте зубца, содержит первый материал с первой магнитной проницаемостью, и от предельной глубины содержит второй материал с второй магнитной проницаемостью, причем первая магнитная проницаемость больше, чем вторая магнитная проницаемость. Кроме того, изобретение относится к такой электрической машине, радиальному магнитному подшипнику, имеющему такую активную часть, а также к способу изготовления такого радиального магнитного подшипника. Для того чтобы обеспечить активную часть, которая имеет сравнительно хорошие магнитные свойства и при этом может изготавливаться экономичным образом, предлагается, что предельная глубина составляет от 20% до 100% от высоты зубца.

1. Активная часть электрической машины, содержащая

зубцы (1), каждый из которых имеет ножку (2) зубца и высоту (3) зубца,

размещенные между зубцами (1) открытые или закрытые пазы (4) и

введенные в пазы (4) обмотки (8), которые окружают соответственно по меньшей мере один из зубцов (1),

причем активная часть от внешней поверхности соответствующих ножек (2) зубцов и в продолжении зубцов (1) имеет толщину (5) активной части, которая больше, чем высота (3) зубца,

причем активная часть,

исходя от соответствующей ножки (2) зубца до предельной глубины (9), которая максимально равна высоте (3) зубца, содержит первый материал с первой магнитной проницаемостью и,

начиная от предельной глубины (9), содержит второй материал с второй магнитной проницаемостью,

причем первая магнитная проницаемость больше, чем вторая магнитная проницаемость,

отличающаяся тем, что

предельная глубина (9) по существу в два раза меньше высоты (3) зубца.

2. Радиальный магнитный подшипник с активной частью электрической машины,

причем активная часть выполнена как статор в форме полого цилиндра,

причем активная часть содержит:

зубцы (1), каждый из которых имеет ножку (2) зубца и высоту (3) зубца,

размещенные между зубцами (1) открытые или закрытые пазы (4) и

введенные в пазы (4) обмотки (8), которые окружают соответственно по меньшей мере один из зубцов (1),

причем активная часть от внешней поверхности соответствующих ножек (2) зубцов и в продолжении зубцов (1) имеет толщину (5) активной части, которая больше, чем высота (3) зубца,

причем активная часть,

исходя от соответствующей ножки (2) зубца до предельной глубины (9), которая максимально равна высоте (3) зубца, содержит первый материал с первой магнитной проницаемостью и,

начиная от предельной глубины (9), содержит второй материал с второй магнитной проницаемостью,

причем первая магнитная проницаемость больше, чем вторая магнитная проницаемость,

причем предельная глубина (9) составляет от 20% до 100% от высоты (3) зубца,

причем ножки (2) зубцов относительно полого цилиндра обращены радиально внутрь.

3. Радиальный магнитный подшипник по п. 2,

причем предельная глубина (9) составляет от 1/3 до 2/3 высоты (3) зубца.

4. Радиальный магнитный подшипник по любому из пп. 2 или 3,

причем предельная глубина (9), по существу, в два раза меньше высоты (3) зубца.

5. Радиальный магнитный подшипник по любому из пп. 2 или 3,

причем первый материал выполнен из сплава кобальта и железа,

причем второй материал выполнен из стали.

6. Радиальный магнитный подшипник по любому из пп. 2 или 3,

причем первый материал и/или второй материал выполнен в листовой форме, и

причем соответствующие листы расположены в плоскостях, перпендикулярных пазам (4).

7. Радиальный магнитный подшипник по любому из пп. 2 или 3,

причем обмотки (8) выполнены, соответственно, в виде катушек зубцов.

8. Радиальный магнитный подшипник по любому из пп. 2 или 3,

причем предельная глубина (9) меньше, чем высота (3) зубца,

причем активная часть, исходя от соответствующей ножки (2) зубца до соответствующей дополнительной предельной глубины (10), которая, соответственно, больше, чем упомянутая предельная глубина (9), и, соответственно, максимально равна высоте зубца (3), содержит соответствующий дополнительный материал с соответствующей дополнительной магнитной проницаемостью, причем вторая магнитная проницаемость больше, чем соответствующая дополнительная магнитная проницаемость.

9. Радиальный магнитный подшипник по п. 4,

причем предельная глубина (9) меньше, чем высота (3) зубца,

причем активная часть, исходя от соответствующей ножки (2) зубца до соответствующей дополнительной предельной глубины (10), которая, соответственно, больше, чем упомянутая предельная глубина (9), и, соответственно, максимально равна высоте зубца (3), содержит соответствующий дополнительный материал с соответствующей дополнительной магнитной проницаемостью, причем вторая магнитная проницаемость больше, чем соответствующая дополнительная магнитная проницаемость.

10. Радиальный магнитный подшипник по п. 5,

причем предельная глубина (9) меньше, чем высота (3) зубца,

причем активная часть, исходя от соответствующей ножки (2) зубца до соответствующей дополнительной предельной глубины (10), которая, соответственно, больше, чем упомянутая предельная глубина (9), и, соответственно, максимально равна высоте зубца (3), содержит соответствующий дополнительный материал с соответствующей дополнительной магнитной проницаемостью, причем вторая магнитная проницаемость больше, чем соответствующая дополнительная магнитная проницаемость.

11. Радиальный магнитный подшипник по п. 6,

причем предельная глубина (9) меньше, чем высота (3) зубца,

причем активная часть, исходя от соответствующей ножки (2) зубца до соответствующей дополнительной предельной глубины (10), которая, соответственно, больше, чем упомянутая предельная глубина (9), и, соответственно, максимально равна высоте зубца (3), содержит соответствующий дополнительный материал с соответствующей дополнительной магнитной проницаемостью, причем вторая магнитная проницаемость больше, чем соответствующая дополнительная магнитная проницаемость.

12. Радиальный магнитный подшипник по п. 7,

причем предельная глубина (9) меньше, чем высота (3) зубца,

причем активная часть, исходя от соответствующей ножки (2) зубца до соответствующей дополнительной предельной глубины (10), которая, соответственно, больше, чем упомянутая предельная глубина (9), и, соответственно, максимально равна высоте зубца (3), содержит соответствующий дополнительный материал с соответствующей дополнительной магнитной проницаемостью, причем вторая магнитная проницаемость больше, чем соответствующая дополнительная магнитная проницаемость.

13. Радиальный магнитный подшипник по любому из пп. 2, 3, 9 - 12,

причем, в случае активной части с осью вращения, соответствующий зубец (1), по меньшей мере на некоторых участках, сужается в направлении соответствующей ножки (2) зубца.

14. Радиальный магнитный подшипник по п.4,

причем, в случае активной части с осью вращения, соответствующий зубец (1), по меньшей мере на некоторых участках, сужается в направлении соответствующей ножки (2) зубца.

15. Радиальный магнитный подшипник по п.5,

причем, в случае активной части с осью вращения, соответствующий зубец (1), по меньшей мере на некоторых участках, сужается в направлении соответствующей ножки (2) зубца.

16. Радиальный магнитный подшипник по п.6,

причем, в случае активной части с осью вращения, соответствующий зубец (1), по меньшей мере на некоторых участках, сужается в направлении соответствующей ножки (2) зубца.

17. Радиальный магнитный подшипник по п.7,

причем, в случае активной части с осью вращения, соответствующий зубец (1), по меньшей мере на некоторых участках, сужается в направлении соответствующей ножки (2) зубца.

18. Радиальный магнитный подшипник по п.8,

причем, в случае активной части с осью вращения, соответствующий зубец (1), по меньшей мере на некоторых участках, сужается в направлении соответствующей ножки (2) зубца.

19. Электрическая машина с активной частью по п. 1,

причем электрическая машина выполнена как линейный двигатель или вращательный электродвигатель.

20. Способ изготовления радиального магнитного подшипника по п. 2 или 3, содержащий следующие этапы способа:

- изготовление отдельных зубцов (1),

которые, если предельная глубина (9) меньше, чем высота (3) зубца, изготавливают, исходя от соответствующей ножки (2) зубца до предельной глубины (9), из листов сплава кобальта и железа,

которые, если предельная глубина (9) равна высоте (3) зубца, изготавливают из листов сплава кобальта и железа,

при этом листы укладывают в стопку в осевом направлении радиального магнитного подшипника,

- размещение обмотки зубца на каждом зубце (1),

- изготовление внутреннего полого цилиндра статора, который собирают из зубцов (1), размещенных в окружном направлении и, соответственно, снабженных обмоткой зубца, причем ножки (2) зубцов обращены радиально внутрь,

- изготовление внешнего полого цилиндра статора из листовой стали, причем листы уложены в стопку в осевом направлении радиального магнитного подшипника,

- сборка внутреннего полого цилиндра статора и внешнего полого цилиндра статора для получения статора активной части, имеющего форму полого цилиндра.



 

Похожие патенты:

Изобретение относится к электротехнике. Технический результат состоит в том, что электрическая машина (1) содержит ротор (4), который установлен с возможностью вращения вокруг проходящей в осевом направлении (3) оси (5) вращения в подшипниковых устройствах (16,17), статор (7) с двумя осевыми концами, воздушный зазор между ротором и статором.

Изобретение относится к области электротехники. Технический результат - повышение частоты вращения ротора и уменьшение в нем дополнительных потерь.

Изобретение относится к области электротехники, в частности к охлаждению электрической машины. Технический результат – улучшение охлаждения.

Изобретение относится к синхронному генератору, в частности к многополюсному синхронному кольцевому генератору безредукторной ветровой турбины для генерирования электрического тока.

Изобретение относится к области электротехники, в частности к ротору электродвигателя. Технический результат – повышение максимальной частоты вращения и мощности электродвигателя.

Изобретение относится к электротехнике. Технический результат состоит в повышении стабильности и к.п.д.

Изобретение относится к области электротехники и предназначено для применения в мощных асинхронных электродвигателях, работающих с источниками питания ограниченной мощности.

Изобретение относится к области электротехники, в частности к конструкции синхронного генератора на постоянных магнитах, используемого в системах автономного электроснабжения.

Статор // 2642431
Изобретение относится к области электротехники, в частности к статору электрической машины. Технический результат – улучшение качества изоляции статора.

Изобретение относится к области электротехники, в частности к электрическим машинам с постоянными магнитами. Технический результат – повышение надёжности крепления магнитов, снижение колебаний крутящего момента.

Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов. Техническим результатом является повышение надежности, механической прочности, энергоэффективности и минимизация тепловыделений электромеханических преобразователей энергии, повышение КПД электромеханических преобразователей энергии на 1-2%, а также повышенная линейная токовая нагрузка электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора. Гибридный магнитопровод статора электромеханических преобразователей энергии содержит ротор, n подковообразных сердечников, набранных из ленты аморфного железа и образующих пазы и зубцы магнитопровода статора, обмотку, уложенную в пазах магнитопровода статора. При этом n подковообразных сердечников размещены таким образом, что между ними образуются аксиальные отверстия охлаждения для аксиальных трубок охлаждения, а по внешней стороне n подковообразных сердечников расположен полый цилиндр из магнитомягкого материала с магнитной индукцией насыщения в 1,5 раз выше, чем у аморфного железа. При этом имеется возможность межполюсного замыкания магнитного потока. 1 ил.

Изобретение относится к насосостроению, а именно к погружным скважинным электрическим насосам, и может быть использовано при производстве электродвигателей к ним. Компенсатор объемного расширения диэлектрического компаунда погружного электродвигателя представляет собой элемент протяженностью не менее длины лобовой части обмотки, не взаимодействующий с диэлектрическим компаундом и расположенный в слое диэлектрического компаунда в полости статора. Полость статора отделена от полости ротора тонкостенной гильзой. Статор электродвигателя выполнен стальным, компенсатор объемного расширения выполнен в виде цилиндра с двойной стенкой, толщина которой составляет 0,3-0,5 мм. Тонкостенная гильза изготовлена из нержавеющей стали, при этом величина разрушающего напряжения при статическом изгибе диэлектрического компаунда, расположенного в полости статора, составляет 20 МПа, величина удельного объемного сопротивления составляет 1×1013 Ом⋅м. Изобретение направлено на увеличение степени деформации компенсатора объемного расширения диэлектрического компаунда погружного электродвигателя, гарантирующего поглощение максимального объемного расширения диэлектрического компаунда на критических режимах работы электродвигателя. 1 ил.

Изобретение относится к области электротехники, в частности к многофазным синхронным реактивным электродвигателям, и может быть использовано для привода различных малонагруженных механизмов, работающих на высокой частоте вращения в течение длительного времени. Технический результат - получение частоты вращения ротора электродвигателя, которая двукратно превышает частоту переменного тока питающей сети. Обмотка статора выполнена в виде двух синусоидально распределенных n-фазных обмоток, одна из которых имеет четное число пар полюсов, вторая - нечетное число пар полюсов, ближайшее к четному, ротор выполнен в виде двух частей, формирующих цилиндр, одна из которых выполнена в форме сектора с углом 235-245° и изготовлена из набора изолированных пластин из электротехнической стали, а другая часть изготовлена из немагнитного материала, обмотки статора параллельно соединены и подключены к n-фазной сети. 4 ил.

Изобретение относится к электротехнике. Технический результат состоит в обеспечении реализации получения импульса силы, действующей в заданном направлении, и может быть использовано на борту космического аппарата с помощью электрической энергии, вырабатываемой, например, солнечными батареями. Указанные обкладки выполнены в виде незамкнутых проводников, выложенных на плоские диэлектрические основы, электрически изолированы и разведены друг от друга после зарядки конденсаторов и расположены на концах стержней, вращающихся на оси, которая может быть расположена на космическом аппарате. Практически не имеющие внешнего магнитного поля обмотки могут быть расположены на космическом аппарате в области магнитного поля движущихся заряженных обкладок наибольшей напряженности. В процессе вращения стержней с обкладками направление тока в каждой обмотке меняется в моменты времени, близкие к моментам, когда какая-либо одна из проекций силы электромагнитного взаимодействия, возникающей на ее витках, на указанной оси трехмерной системы координат меняет свое направление на противоположное заданному, в результате которого появляются суммарная сила и, соответственно, ее импульс, не равные нулю. 4 ил.

Изобретение относится к индукторным сегментным генераторам. Генератор индукторный содержит роторные элементы с валом, статор, элементы крепления и подшипники. Статор выполнен в виде полого прямоугольного профиля, одна сторона которого закреплена на несущем элементе, на противоположной стороне установлен сердечник с рабочей катушкой, а на двух других сторонах расположены постоянные магниты с Г-образными наконечниками. Изобретение направлено на уменьшение массы и габаритов генератора. 2 ил.

Изобретение относится к области электротехники, в частности к устройству роторов электрических машин с возбуждением от постоянных магнитов. Технический результат – повышение энергетических характеристик. Магнитная система ротора с постоянными магнитами содержит кольцевой цилиндр, состоящий из постоянных магнитов, имеющих однонаправленное намагничивание, выполненное в виде двухполюсной магнитной системы. Внутренняя часть кольцевого цилиндра установлена на внешней части магнитопровода ротора, выполненного из высоколегированной стали. Изготовление заявленной магнитной системы ротора осуществляют путем сборки ненамагниченных заготовок постоянных магнитов в кольцевой цилиндр, затем их намагничивания в однонаправленном диаметральном направлении с возможностью образования двухполюсной магнитной системы с магнитным полем, максимально приближенным к синусоиде на внешней стороне кольцевого цилиндра магнита. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области ветроэнергетики, а именно к ветроэлектрогенераторам с преимущественно тихоходными колесами. Технический результат - повышение эффективности использования магнитопровода. В статоре электрогенератора, содержащем магнитопроводы, источники магнитного поля, рабочие катушки и крепежные элементы согласно изобретению, источники магнитного поля выполнены в виде колец с немагнитными внутренними вставками с отверстиями, через которые пропущен немагнитный болт с крепежными элементами. 3 ил.

Изобретение относится к области электротехники. Технический результат – улучшение конструкции ротора. Ротор включает пакет листов, имеющий слои, шихтованные в осевом направлении. Каждый слой имеет несколько листовых областей. При этом имеются барьеры проводимости, которые лежат между граничащими друг с другом листовыми областями. По меньшей мере один барьер проводимости залит неферромагнитной заливочной массой. При этом имеются закрепленные листовые области, которые имеют по меньшей мере по одной вдающейся в заливочную массу перемычке. В каждом слое по меньшей мере одна первая листовая область представляет собой закрепленную листовую область. 6 н. и 8 з.п. ф-лы, 7 ил.

Изобретение относится к области электротехники и может быть использовано в электрических двигателях. Техническим результатом является предотвращение электрической коррозии подшипников в отсутствие проводящего элемента, соединяющего вместе вращающийся вал и корпус. Статор для электрического двигателя включает в себя: сердечник статора, включающий в себя ярмо, имеющее кольцевую форму, и множество зубьев, выступающих от внутренней цилиндрической поверхности ярма в радиальном направлении статора; обмотку статора, намотанную вокруг зубьев, причем обмотка статора выполнена с возможностью генерирования вращающегося магнитного поля при подаче на нее тока; компенсирующую обмотку, проходящую в осевом направлении статора в местоположениях со стороны внутренней цилиндрической поверхности и со стороны наружной цилиндрической поверхности ярма. Компенсирующая обмотка намотана вокруг сердечника статора так, чтобы проходить в радиальном направлении статора, пересекать ярмо в местоположениях вне сердечника статора в осевом направлении статора и образовывать один или несколько замкнутых контуров. 2 н. и 10 з.п. ф-лы, 18 ил.

Изобретение относится к электротехнике и может быть использовано при изготовлении электродвигателей с постоянными магнитами на роторе. Статор электродвигателя содержит катушечный узел, выполненный из одной или нескольких включенных параллельно катушек индуктивности цилиндрического типа намотки, и цилиндрический магнитопровод с полюсами, расположенными на верхнем и нижнем торцах катушечного узла и выполненными отгибанием навстречу друг другу с обеспечением чередования их полярности. Магнитопровод с полюсами выполнен из полосы из электротехнической стали, согнутой в трубку, на которой размещен указанный катушечный узел, намотка которого выполнена либо на каркасе, либо непосредственно на трубку, по обе стороны которой выполнены полюсы в виде чередующихся выступов и впадин так, что напротив полюса с одной стороны выполнена впадина с другой. Также предложены способы изготовления статора. Технический результат при использовании заявленной группы изобретений состоит в упрощении изготовления и увеличении КПД. 3 н.п. ф-лы, 21 ил.

Изобретение относится к области электротехники, в частности к активной части электрической машины. Технический результат – улучшение магнитных характеристик. Активная часть содержит зубцы, каждый из которых имеет ножку и высоту зубца, размещенные между зубцами открытые или закрытые пазы, введенные в пазы обмотки, окружающие соответственно по меньшей мере один из зубцов. При этом активная часть имеет толщину активной части, которая больше, чем высота зубца. Активная часть, исходя от соответствующей ножки зубца до предельной глубины, которая максимально равна высоте зубца, содержит первый материал с первой магнитной проницаемостью, и, начиная от предельной глубины, содержит второй материал с второй магнитной проницаемостью, причем первая магнитная проницаемость больше, чем вторая магнитная проницаемость. Согласно изобретению предельная глубина составляет от 20 до 100 от высоты зубца. 4 н. и 16 з.п. ф-лы, 7 ил.

Наверх