Перистальтический насос на пьезоэлектрических элементах

Изобретение относится к устройствам для перекачивания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. Устройство для перекачивания текучих сред содержит пьезомодули, установленные в замкнутом объеме, и электрическую систему, подающую возбуждающее трехфазное напряжение на пьезомодули по принципу, согласно которому, сдвигая обмотки в пространстве при определенном питании этих обмоток со сдвигом по фазе, образуют бегущее магнитное поле. Пьезомодули выполнены в виде трех модулей, изготовленных из пакета шайб пьезоэлементов, расположенных в замкнутом пространстве, содержащем центральные и внешние полости, разделенные между собой. Центральные и внешние полости модулей сочленены между собой с помощью шлангов. Технический результат, достигаемый при реализации изобретения, заключается в повышении напора насоса, а также в увеличении КПД. 4 з.п. ф-лы, 8 ил.

 

Изобретение относится к устройствам для перекачивания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред.

Известен насос, выполненный на пьезоэлектрических элементах, описанный в патенте RU 2452872 С1, 10.06.2012.

Насос содержит корпус, в котором расположен вытеснитель, выполненный из пьезоэлектрических элементов, т.е. из материала, способного изменять свои габаритные размеры при подведении к нему электрического потенциала. Перекачивание текучей среды происходит за счет изменения габаритных размеров вытеснителя, расположенного во внутреннем канале.

Недостаток известного технического решения заключается в низкой эффективности насоса, выполненного согласно данному устройству. Кроме того, пьезоэлементы насоса быстро нагреваются, что вынуждает останавливать процесс перекачивания на время остывания.

Ближайшим аналогом заявленного технического решения является устройство перистальтического насоса текучих сред, описанного в статье: А.Н. Виноградов, Г.Е. Духовенский «Исследование пьезэлектрических микронасосов для медицинской и космической техники» (см. в интернете на сайте «http://nuclphys.sinp.msu.ru/school/s11/11_16.pdf».

Известный перистальтический насос текучих сред содержит пьезомодули, с замкнутым объемом с внутренних и внешних сторон омываемые текучей средой, и электрическую систему, подающую возбуждающее трехфазное напряжение на пьезомодули по принципу, широко применяемому в электрических машинах переменного тока, согласно которому, сдвигая обмотки в пространстве при определенном питании этих обмоток со сдвигом по фазе, образуют бегущее магнитное поле, генерируемое обмотками. Бегущее поле образуется от последовательного сжатия и растяжения пьезоэлементов.

Недостатком известного насоса является то обстоятельство, что он предназначен для перемещения малых объемов текучей среды и может быть применен в лишь микроаналитических системах.

Задача, на решение которой направлено настоящее техническое решение, состоит в создании эффективного и надежного насоса, способного проталкивать текучую среду через центральные и внешние каналы пьезоэлементов.

Технический результат, достигаемый при реализации изобретения, заключается в повышении производительности насоса, а также в увеличении его КПД.

Для решения поставленной задачи с достижением технического результата в известном устройстве для перекачивания текучих сред, содержащем пьезомодули, установленные в замкнутом объеме, и электрическую систему, подающую возбуждающее трехфазное напряжение на пьезомодули по принципу, согласно которому, сдвигая обмотки в пространстве при определенном питании этих обмоток со сдвигом по фазе, образуют бегущее силовое поле, согласно изобретению пьезомодули выполнены в виде трех отдельных узлов, каждый из которых изготовлен из шайб пьезоэлементов, плотно примыкающих друг к другу и расположенных в замкнутом пространстве, содержащем центральные и внешние полости, разделенные между собой, причем и центральные, и внешние полости модулей каждые сочленены между собой с помощью своих шлангов.

Узлы модулей могут быть расположены последовательно на одной оси.

Узлы модулей могут быть расположены последовательно змейкой так, что их оси параллельны друг другу.

Электрическая система, подающая возбуждающее трехфазное напряжение на пьезомодули, может содержать регулятор частоты.

Электрическая система, подающая возбуждающее трехфазное напряжение на пьезомодули, может содержать регулятор переменного напряжения.

Выполнение пьезомодулей в виде трех узлов, изготовленных из пакета шайб пьезоэлементов, расположенных в замкнутом пространстве, содержащем центральные и внешние полости, каждые из которых разделены между собой и сочленены с помощью своих шлангов, позволяет повысить производительность насоса и, тем самым, поднять его КПД.

Расположение узлов модулей последовательно по одной оси ведет к снижению потерь на трение при протекании текучих сред.

Расположение узлов модулей последовательно змейкой, так, что их оси параллельны друг другу, обеспечивает большую компактность насоса.

Наличие регулятора частоты в электрической системе, подающей возбуждающее трехфазное напряжение на пьезомодули, позволяет управлять скоростью потока текучей среды.

Наличие регулятора напряжения в электрической системе, подающей возбуждающее трехфазное напряжение на пьезомодули, позволяет управлять давлением потока текучей среды.

Указанные преимущества изобретения, а также его особенности поясняются лучшими вариантами выполнения со ссылками на чертежи.

Фиг. 1 - Силовой блок насоса, выполненный из пьезоэлементов в виде шайб.

Фиг. 2 - Разрез одного пьезоэлектрического модуля в сборе (провода не изображены).

Фиг. 3 - Общий вид насоса текучей среды.

Фиг. 4 - Расположение модулей последовательно змейкой.

Фиг. 5 - Вид на модули по фиг. 4 сверху.

Фиг. 6 - Блок электропитания одного узла пьезоэлектрического нагнетателя.

Фиг. 7 - Графики ЭДС, подаваемых на три узла пьезоэлементов.

Фиг. 8 - Структурная система управления узлами насоса.

Перистальтический насос на пьезоэлектрических элементах 1 (фиг. 1) содержит блок шайб 2, изготовленных из пьезоэлементов, плотно прилегающих друг к другу и расположенных в виде столба, с центральной полостью 3.

Поверхности каждой шайбы снабжены электродами (на фиг. 1 не показаны). Электроды получают питание от цепи переменного тока через трансформатор и преобразователь (на фиг. 1 не показана). Внутренняя и внешняя поверхности столба из шайб залиты слоем из термостойкой резины (не показан).

С одной стороны от блока шайб расположена наружная шайба 4 с отверстием по середине с выходным штуцером 5. С другой стороны имеется такая же шайба 6 с отверстием по середине и штуцером 7. Шайба 4 и шайба 6 вместе с блоком из пьезоэлементов залиты наружным слоем терморезины. Блок шайб помещают внутри трубчатого корпуса 8 (фиг. 2), выполненного из плотной пластмассы или металла. С двух сторон корпус 8 снабжен крышками 9 и 10. Сквозь крышки через сальники 11 и 12 проходят штуцеры: через сальник 11 проходит штуцер 5; сквозь сальник 12 проходит штуцер 7. Между крышкой 9 и наружной шайбой 4 установлена кольцевая прокладка 13, выполненная из пружинистого материала, например синтетической резины. Аналогичная прокладка 14 установлена между крышкой 10 и шайбой 6. Указанные прокладки делят внутреннее пространство трубчатого корпуса 8 на центральную полость 3 и внешнюю полость 15, проходящую между внутренней поверхностью трубчатого корпуса 8 и внешней поверхностью 1 шайб 2. Обе полости оказываются изолированными друг от друга. Трубчатый корпус 8 с двух сторон снабжен отверстиями 16 и 17, расположенными диаметрально по отношению друг к другу. Эти отверстия необходимы для связи внешней полости с окружающей средой. В эти отверстия вставлены трубки соответственно 18 и 19. В свою очередь штуцеры 5 и 7 снабжены трубками соответственно 20 и 21.

Каждый трубчатый корпус 8 с пьзоэлементами со своими двумя полостями (фиг. 2) представляет собой узел, обозначенный соответственно А, В или С.

Центральные полости узла А, В, С расположены последовательно (фиг. 3). Их внешние полости также последовательно отдельно соединяют между собой. При этом входная трубка центральной полости объединенного трехзвенного узла обозначена на фиг. 3 индексом 20А, а выходная трубка центрального объединенного трехзвенного узла обозначена индексом 21С. В свою очередь, внешние полости трехзвенного узла соединены по стрелкам: 19А - 18В, 19В - 18С. Входная трубка трехзвенного внешнего узла обозначена индексом 18А, а выходная трубка трехзвенного внешнего узла обозначена индексом 19С.

В варианте технического решения узлы А, В и С расположены последовательно змейкой (фиг. 4). При этом их центральные оси расположены параллельно. Внешние поверхности узлов примыкают друг к другу. На фиг. также показаны трубки, соединяющие их центральные полости. Центральные полости соединены последовательными трубками. Входная трубка обозначена 20А, а выходная обозначена 21С. В свою очередь внешние полости сочленены между собой по тому же принципу, что и на фиг. 3. Внешние полости на фиг. 5, так же как и на фиг. 3, имеют следующую нумерацию: 19А - 18В, 19В - 18С. Узлы расположены так, что их боковые поверхности примыкают друг к другу. Для наглядности узлы на фиг. 5 разнесены между собой.

Электрическая схема питания каждого пьезоэлектрического модуля содержит понижающий трансформатор 22 (фиг. 4), в котором имеется обмотка высокого напряжения с проводами 23 и 24 и набор обмоток низкого напряжения. Провода низкого напряжения обозначены на схеме цифрами: провода 25, 26, подающие питание к первой пьезоэлектрической шайбе; провода 27, 28 для питания второй пьезоэлектрической шайбы; провода 29, 30 для питания третьей пьезоэлектрической шайбы и т.д. В схеме показан также регулятор напряжения 31. Частота питания трансформатора определяет производительность нагнетателя.

Каждый трансформатор модуля получает питание от своей фазы переменного трехфазного тока. В частности, трансформатор модуля А получает питание от фазы А, трансформатор модуля В получает питание от фазы В, а трансформатор модуля С питается от фазы С. Поскольку фазы А, В и С сдвинуты по отношению друг к другу на 120° (фиг. 5), а модули разнесены в пространстве, то в результате получаем бегущую волну напряжений питания трансформаторов и, соответственно, модулей. Структурная система управления модулей нагнетателя состоит из блока выпрямления 32 (фиг. 6), промежуточного блока управления 33 и инвертора 34. Последний преобразует постоянный ток в переменный трехфазный ток требуемой частоты. Напряжение, подаваемое на систему питания модулей, регулируется для всех трех фаз одновременно с помощью системы управления 35.

Перистальтический насос на пьезоэлектрических элементах действует следующим образом.

При подаче переменного тока на провода 25, 26, 27, 28 и т.д. (фиг. 5) и на шайбы из пьезоэлементов (фиг. 1, 2) пьезоэлектрические элементы каждого узла одновременно начинают изменять свои габаритные размеры. При определенной полярности сигнала внутренний и внешний размеры всех пьезоэлементов увеличиваются, при противоположной полярности эти размеры уменьшаются. В процессе увеличения внутреннего размера 1 (фиг. 1, 2) текучая среда будет стремиться заполнить образующийся частичный вакуум, а при сжатии текучая среда будет вытолкнута во внешнее пространство. При наличии кольцевых прокладок 13 и 14 текучая среда поступает в центральную полость 3 при его расширении и выдавливается наружу по трубкам 20 и 21 (фиг. 2). В то же время внешняя полость 15 при расширении пьезоэлементов 2 будет выжимать из себя текучую среду и, наоборот, втягивать ее внутрь при сжатии указанных элементов. На модули А, В и С подается переменное трехфазное возбуждающее напряжение (фиг. 5). Если ЭДС одной фазы (например, фазы А) принять за исходную и считать ее начальную фазу равной нулю, то выражения мгновенных значений ЭДС можно записать в виде eA = Em sin t, eB = Em sin (ωt-120°), еС = Em sin (ωt - 240°) = Em sin (ωt + 120°). Поэтому пакеты пьезоэлементов будут последовательно, поочередно изменять свой объем. В результате создается перистальтическая бегущая волна деформаций замкнутых объемов узлов. Особенность этой волны заключается в том, что в такой системе нет необходимости в обратных клапанах. В то же время такую волну легко повернуть вспять. Для этого достаточно изменить чередование любых двух фаз.

Скорость бегущей волны деформации V изменяют путем регулирования частоты бегучей волны (фиг. 6), согласно уравнению V=2fτ, где f - частота, τ=V/2f - полюсное деление, т.е. расстояние равно полуторной длине модуля с учетом длины соединительных трубок между модулями (фиг. 3). С помощью той же системы управления меняют и давление нагнетаемой среды путем регулирования переменного напряжения.

Оба образованных таким образом потока, один из которых выходит из трубки 21С, а другой из трубки 19С, соединяют на выходе в общей выходной трубе (не показана) в суммарный.

Перистальтический насос текучих сред на пьезоэлектрических элементах может быть использован и на транспорте, и в промышленности, и в сельском хозяйстве, и в быту при перекачивании жидкостей с высоким напором и относительно небольшой подачей, где по массогабаритным показателям и показателям эффективности использование насосов других типов затруднено.

1. Устройство для перекачивания текучих сред, характеризующееся тем, что содержит пьезомодули, установленные в замкнутом объеме, и электрическую систему, подающую возбуждающее трехфазное напряжение на пьезомодули по принципу, согласно которому, сдвигая обмотки в пространстве при определенном питании этих обмоток со сдвигом по фазе, образуют бегущее силовое поле, пьезомодули выполнены в виде трех отдельных узлов, каждый из которых изготовлен из шайб пьезоэлементов, плотно примыкающих друг к другу и расположенных в замкнутом пространстве, содержащем центральные и внешние полости, разделенные между собой, причем и центральные, и внешние полости модулей каждые сочленены между собой с помощью своих шлангов.

2. Устройство по п. 1, отличающееся тем, что узлы модулей расположены последовательно на одной оси.

3. Устройство по п. 1, отличающееся тем, что узлы модулей расположены последовательно змейкой так, что их оси параллельны друг другу.

4. Устройство по п. 1, отличающееся тем, что электрическая система, подающая возбуждающее трехфазное напряжение на пьезомодули, содержит регулятор частоты.

5. Устройство по п. 1, отличающееся тем, что электрическая система, подающая возбуждающее трехфазное напряжение на пьезомодули, содержит регулятор переменного напряжения.



 

Похожие патенты:

Изобретение относится к концевому соединению для трубы, помещенной в полость, и способу установки трубы в полость с использованием компрессионного кольца, которое определяет пустоту, имеющую осевой размер и радиальный размер.

Изобретение относится к способам для нагнетания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред.

Изобретение относится к перистальтическим насосам с электромагнитным приводом и может быть использовано при перекачивании пастообразных высоковязких веществ, а также хрупких жидкостей и гелей.

Изобретение относится к перистальтическим насосам с электромагнитным приводом для использования в нефтедобывающей промышленности, в частности при отборе жидкости из скважины.

Изобретение относится к перистальтическим насосам с электромагнитным приводом и предназначено для использования в нефтедобывающей промышленности, в частности, при отборе жидкости из скважины и в других отраслях промышленности и сельского хозяйства.

Изобретение относится к насосам перистальтического действия для транспортировки жидкости. Насос содержит рукав 6 для транспортировки проводимой в рукаве 6 жидкости с несколькими прижимными элементами 3, станиной 2 с входом 2а, выходом 2b рукава и вспомогательной опорой 4.

Изобретение относится к перистальтическим насосам с электромагнитным приводом, может быть использовано при перекачивании сильно сгущенных веществ, высоковязких, а также хрупких жидкостей и гелей.

Группа изобретений относится к медицинской технике. Усовершенствованный линейный перистальтический насос содержит центральный элемент, установленный с возможностью вращения вокруг центрального вала, несколько планетарных шестерней, установленных на осях в центральном элементе, кольцевое зубчатое колесо, находящееся в зацеплении с каждой из планетарных шестерней, ролик, расположенный на каждой из упомянутых планетарных шестерней со смещением от соответствующей оси планетарной шестерни.

Изобретение относится к перистальтическому насосу, например, для диализного аппарата. Содержит пластину, являющуюся корпусом 3 насоса 1, которая содержит плоскую поверхность 32, напротив которой расположена гибкая трубка 5 для прохождения текучей среды.

Изобретение относится к перистальтическим насосам с электромагнитным приводом и предназначено для использования в нефтедобывающей промышленности, в частности при отборе жидкости из скважины.

Изобретение относится к способам для нагнетания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред.

Группа изобретений относится к области выработки экологически чистой электроэнергии по технологии ограниченного давлением осмоса в замкнутом контуре посредством последовательности с периодической загрузкой или посредством непрерывной последовательности с использованием двух секций.

Изобретение относится к устройствам для нагнетания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред.

Изобретение относится к устройствам подъема жидкости из резервуара и может быть использовано для перекачивания жидкости для промышленных и хозяйственных нужд в энерго- и ресурсосберегающем режимах.

Изобретение относится к устройствам, в частности, для подачи жидкого горючего материала для обогревателя транспортного средства. Включает в себя образующий камеру (14) насоса трубчатый корпус (12).

Изобретение относится к области насосостроения и может быть использовано для преобразования электроэнергии в энергию давления жидкости, обеспечения синхронизации движения поршней пьезонасоса в противофазе.

Изобретение относится к устройствам для перекачивания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред.

Изобретение относится к средствам для перекачивания малых количеств жидкости и может быть использовано в приборостроении для перемещения малых объемов жидкости в микроаналитических системах.

Изобретение относится к гидравлическим насосам, агрегатированным с двигателями особого типа, в частности с энергопреобразователем, использующим энергию осмоса (энергию смешения разноминерализованных растворов через полупроницаемую мембрану), и может быть использовано для закачки и перекачки высокоминерализованных растворов, например попутных вод нефтегазодобычи или отходов гидроминерального производства.

Изобретение относится к области компрессоро- и насосостроения, в частности к герметичным центробежным насосам с магнитной муфтой. .

Изобретение относится к перистальтическим насосам и предназначено для использования в нефтедобывающей промышленности, в частности, при отборе жидкости из скважины. Перистальтический насос состоит из соединенных между собой отдельных секций, где каждая секция содержит внутри корпуса эластичное тело. Внутри эластичного тела установлен кулачковый вал, контактирующий с поршнями, которые связаны с эластичным телом непосредственно, или через жидкость, или газ. Упрощается конструкция насоса, снижается себестоимость. 5 ил.
Наверх