Держатель образца для сквид-магнитометра типа mpms

Изобретение относится к устройствам для измерения переменных магнитных величин и может быть использовано при проведении магнитных измерений в следующих областях: физика магнитных явлений, физика конденсированного состояния. Держатель образца для СКВИД-магнитометра типа MPMS содержит цилиндрическую трубку из органического материала, при этом он дополнительно содержит размещенный внутри трубки немагнитный цилиндр, имеющий по меньшей мере один прямоугольный паз, к плоскости которого жестко крепится образец. Техническим результатом изобретения является возможность выполнения высококачественного исследования анизотропных свойств образцов за счет точной ориентации относительно направления намагничивающего поля, увеличение точности и снижение погрешности магнитных измерений. 2 ил.

 

Изобретение относится к устройствам для измерения переменных магнитных величин и может быть использовано при проведении магнитных измерений в следующих областях: физика магнитных явлений, физика конденсированного состояния.

СКВИД-магнитометр (магнитометр со сверхпроводящим квантовым интерференционным датчиком) представляет собой прибор для измерения магнитных полей и их градиентов. Его действие основано на эффекте Джозефсона [Кларк Дж. Принципы действия и применение СКВИДов. - ТИИЭР, 1989, т. 77, №8, с. 118-137].

Известна конструкция держателя образца для СКВИД-магнитометра типа MPMS (прототип), серийно выпускаемого фирмой «Quantum Design» (Сан-Диего, США), содержащая цилиндрическую трубку из органического материала, внутрь которой по центру вставляется короткий отрезок такой же трубки, внутрь которого помещен исследуемый образец [Quantum Design. Magnetic Property Measurement System. MPMS MultiVu Application User's Manual. Part Number 1014-110C, p. 3-2]. Снизу в держатель вставляется пробка, а верхней частью держатель крепится к штоку, с помощью которого по вертикальному каналу помещается в источник намагничивающего поля - сверхпроводящий соленоид. При этом силовые линии поля направлены вдоль оси трубки.

Недостатки штатного держателя образца для СКВИД-магнитометра типа MPMS:

1) при исследовании анизотропии магнитных свойств монокристаллических образцов невозможно точно сориентировать грани кристалла относительно направления намагничивающего поля;

2) в случае тонких пленок невозможно точно сориентировать плоскость пленки относительно направления намагничивающего поля;

3) отсутствует жесткая фиксация образца в держателе, вследствие чего ориентация образца изменяется под воздействием намагничивающего поля, что приводит к увеличению погрешности магнитных измерений.

Техническим результатом изобретения является возможность выполнения высококачественного исследования анизотропных свойств образцов за счет точной ориентации относительно направления намагничивающего поля, увеличение точности и снижение погрешности магнитных измерений.

Технический результат достигается тем, что в держателе образца для СКВИД-магнитометра типа MPMS, содержащем цилиндрическую трубку из органического материала, новым является то, что он дополнительно содержит размещенный внутри трубки немагнитный цилиндр, имеющий по меньшей мере один прямоугольный паз, к плоскости которого жестко крепится образец.

Сопоставительный анализ с прототипом показывает, что заявляемое устройство отличается наличием новых компонентов: цилиндра из немагнитного материала, в котором наличествует прямоугольный паз (пазы), плоскость паза используется для жесткого крепления образца.

Эти признаки позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна».

При изучении других известных технических решений в данной области техники признаки, отличающие заявляемое изобретение от прототипа, не выявлены и поэтому они обеспечивают заявляемому техническому решению соответствие критерию «изобретательский уровень».

Сущность изобретения поясняется с помощью графических материалов. На фиг. 1 в двух проекциях изображена конструкция держателя образца для СКВИД-магнитометра типа MPMS. На фиг. 2 представлен альтернативный вариант держателя.

Держатель образца для СКВИД-магнитометра типа MPMS (см. фиг. 1) содержит цилиндр 1 из немагнитного материала, который вставлен в цилиндрическую трубку 2. Трубка 2 из органического материала представляет собой стандартную трубку для изготовления держателей, она поставляется в комплекте со СКВИД-магнитометром типа MPMS. В центральной части цилиндра 1 изготовлен прямоугольный паз 3. К одной из плоскостей 4, 5 паза 3 жестко крепится исследуемый образец 6. Такая конструкция позволяет по-разному ориентировать образец относительно направления намагничивающего поля Н, в зависимости от того, к какой плоскости крепится образец.

Снизу в трубку 2 вставляется штатная пробка (не показана), которая предотвращает выпадение цилиндра 1 из трубки 2. Верхней частью трубка 2 крепится к штоку (не показан), с помощью которого по вертикальному каналу (не показан) помещается в источник намагничивающего поля - сверхпроводящий соленоид (не показан). После чего проводятся магнитные измерения.

Для выполнения магнитных измерений при другой ориентации образца необходимо вынуть держатель с образцом из установки и закрепить образец на держателе в новом положении.

Вместо одного узкого паза в цилиндре 1 могут быть сделаны два широких паза 3, 3' от краев почти до центра цилиндра (см. фиг. 2). Для того чтобы сигнал от держателя был минимальным, его поперечное сечение должно быть по возможности однородным на всей длине держателя.

Пример

Цилиндр 1 изготовлен из органического стекла, его диаметр равен 4,95 мм, а длина - 180 мм. Трубка 2 представляет собой стандартную трубку для изготовления держателей, она поставляется в комплекте со СКВИД-магнитометром типа MPMS. Внешний диаметр трубки равен 5,3 мм, внутренний диаметр - 5 мм, длина - 198 мм. Паз 3 шириной 5 мм и глубиной 3 мм прорезан в центральной части цилиндра 1. Образец 6 - монокристалл Mn2GeO4 в виде параллелепипеда размерами 0,5×1×3 мм3 одной и той же гранью поочередно жестко крепился клеем БФ-2 к плоскостям 4, 5 (к плоскости 4 - дважды, второй раз - с поворотом на 90°) паза 3 и помещался в канал магнитометра. Таким образом были проведены магнитные измерения монокристалла в трех взаимно ортогональных ориентациях, соответствующих направлениям кристаллографических осей, по отношению к направлению намагничивающего поля Н [Volkov N.V., Mikhashenok N.V., Sablina K.A., Bayukov О.A., Gorev М.V., Balaev A.D., Pankrats A.I., Tugarinov V.I., Velikanov D.А., Molokeev М.S., and Popkov S.I. Magnetic phase diagram of the olivine-type Mn2GeO4 single crystal estimated from magnetic, resonance, and thermodynamic properties // J. Phys.: Condens. Matter. - 2013. - V. 25. - p. 136003].

Таким образом, с помощью заявляемого держателя появляется возможность выполнения высококачественного исследования анизотропных свойств образцов за счет точной ориентации относительно направления намагничивающего поля, соответственно увеличивается точность и снижается погрешность магнитных измерений.

Держатель образца для СКВИД-магнитометра типа MPMS, содержащий цилиндрическую трубку из органического материала, отличающийся тем, что он дополнительно содержит размещенный внутри трубки немагнитный цилиндр, имеющий по меньшей мере один прямоугольный паз, к плоскости которого жестко крепится образец.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для автоматического мониторинга магнитного поля Земли в труднодоступных местах, не имеющих стационарных источников питания.

Группа изобретений относится к медицинской технике, а именно к диагностическим магнитно-резонансным устройствам визуализации. Устройство содержит систему магнитно-резонансной визуализации для сбора данных магнитного резонанса от субъекта в зоне визуализации, систему сфокусированного ультразвука высокой интенсивности, процессор, причем исполнение команд побуждает процессор управлять системой магнитно-резонансной визуализации, чтобы собирать данные магнитного резонанса, используя импульсную последовательность, при этом импульсная последовательность содержит импульсную последовательность визуализации, используя силу акустического излучения, которая содержит возбуждающий импульс, многомерный градиентный импульс, подаваемый во время импульса радиочастотного возбуждения для выборочного возбуждения интересующей области, который является двумерным, так что интересующая область имеет двумерное поперечное сечение, причем двумерное поперечное сечение имеет вращательную симметрию относительно оси интересующей области, при этом ось интересующей области и ось пучка коаксиальны.

Изобретение относится к испытаниям технических средств. Способ оценки технических средств на соответствие требованиям на восприимчивость к внешнему воздействующему электромагнитному излучению заключается в проведении испытаний в заданном диапазоне частот количественно ограниченной выборки технических средств и в сравнении результатов испытаний с критериальными показателями.

Изобретение относится к электромагнитным испытаниям технических средств. Способ оценки технических средств на соответствие требованиям по уровню излучаемого электромагнитного поля заключается в проведении измерений уровней электрической составляющей излучаемого электромагнитного поля в заданном диапазоне частот количественно ограниченной выборки технических средств и в сравнении результатов испытаний с критериальными показателями качества.

Изобретение относится к электрическим испытаниям транспортных средств. В способе испытаний электрооборудования автотранспортных средств на восприимчивость к внешнему электромагнитному полю испытываемое электрооборудование устанавливают в бортовую сеть транспортного средства и подвергают воздействию внешнего излучения с заданными параметрами.

Изобретение относится к метрологии, в частности к способам для измерения плотности потока энергии электромагнитного излучения от мобильного телефона. Измерения проводят в заданных точках, равномерно расположенных в плоскости, параллельной плоскости передней панели мобильного телефона, зафиксировав мобильный телефон напротив указанной плоскости на заданном расстоянии от нее, из полученных значений формируют матрицу распределения плотности потока энергии.

Изобретение относится к устройствам для бесконтактной внетрубной диагностики технического состояния подземных ферромагнитных нефтяных и газовых труб. Устройство для бесконтактной диагностики технического состояния подземных трубопроводов с возможностью калибровки в полевых условиях, содержащее узел датчиков постоянного магнитного поля, состоящий по меньшей мере из двух однокомпонентных датчиков, соединенных креплениями из немагнитного непроводящего материала, устройство сложения и вычитания сигналов постоянного магнитного поля, блок сбора данных и управления (БСДУ) и полевой компьютер, при этом дополнительно введены катушки с соленоидальными обмотками, создающими калибрующее переменное низкочастотное магнитное поле, расположенные в центральной части креплений датчиков из немагнитного непроводящего материала, блок прецизионных резисторов, генератор, измерительный блок, при этом катушки с соленоидальными обмотками с помощью бифилярного провода соединены с блоком прецизионных резисторов и генератором, кроме того, блок прецизионных резисторов соединен с БСДУ, который, в свою очередь, соединен с полевым компьютером.

Изобретение относится к области измерения и может быть использовано при измерении магнитных полей. Датчик магнитного поля содержит вентиль, чувствительный элемент, включающий в себя индуктивность L с сердечником и два резистора, триггер Шмитта, при этом в него дополнительно введены источник опорного напряжения, выходы которого подключены к прецизионному пороговому устройству с нижним и верхним порогами срабатывания, и к прецизионному формирователю напряжения, вход которого соединен с выходом вентиля, а выход подключен к чувствительному элементу, соединенному с прецизионным пороговым устройством с нижним и верхним порогами срабатывания, выход которого подключен к входу триггера Шмитта, выход которого является входом вентиля.

Изобретение относится к области магнитных измерений, в частности к приборам, предназначенным для измерений компонент и полного вектора индукции магнитного поля Земли, а также к средствам автоматизированного контроля магнитометров.

Изобретение относится к измерительной технике, представляет собой многоканальное устройство измерения пространственно неоднородного магнитного поля и может быть использовано при регистрации исходных данных, необходимых для построения диаграммы распределения магнитного поля.

Изобретение относится к устройствам для измерения переменных магнитных величин и может быть использовано при проведении магнитных измерений в следующих областях: физика магнитных явлений, палеомагнетизм, биомагнетизм.

Изобретение относится к измерительной технике, представляет собой СКВИД-магнитометр для фотомагнитных исследований и может быть использовано для измерения переменных магнитных величин при проведении магнитных измерений при изучении физики магнитных явлений, фотоиндуцированного магнетизма, биомагнетизма.

Изобретение относится к устройствам для измерения переменных магнитных величин и может быть использовано при проведении магнитных измерений в следующих областях: физика магнитных явлений, геофизика, медицина, биомагнетизм.

Изобретение относится к области промыслово-геофизического исследования скважин и может быть использовано как телеметрическая система с электромагнитным каналом связи по породе для передачи технологической информации о забойных параметрах бурения, например, от инклинометра.

Изобретение относится к магнитометрии биологических объектов и может быть использовано в медицине и биологии. .

Изобретение относится к устройствам для измерения переменных магнитных величин и может быть использовано при проведении магнитных измерений в следующих областях: физика магнитных явлений, геофизика, медицина, биомагнетизм.

Изобретение относится к электромагнитным измерениям, в частности, переменных магнитных полей и может быть использовано в измерительной технике, радиоастрономии, геофизике, а также медицине, например, для измерения магнитных полей сердца и головного мозга человека.

Изобретение относится к способам измерения физических свойств ВТСП-материалов. .
Наверх