Способ испытания строительной конструкции при сверхнормативном ударном воздействии

Изобретение относится к области испытаний и может быть использовано для испытания строительных конструкций при сверхнормативном ударном воздействии. Испытуемую конструкцию подвергают сверхнормативному ударному воздействию. Силоизмерителем определяют значение максимальной динамической нагрузки в момент разрушения строительной конструкции при ударном воздействии, а также мгновенные значения кратковременной динамической нагрузки в зафиксированном интервале времени от начала до окончания ударного воздействия. Одновременно в этом же интервале времени с помощью датчиков опорных реакций, установленных симметрично с двух сторон испытуемого образца, определяют мгновенные значения опорных реакций. Полученные данные обрабатывают с помощью измерительно-вычислительного комплекса. Строят графики зависимостей относительной кратковременной динамической нагрузки, относительной суммарной опорной реакции, а также коэффициентов результирующей силы от времени ударного воздействия. Относительную кратковременную динамическую нагрузку и относительную суммарную опорную реакцию определяют отношением величин их мгновенных значений к значению максимальной динамической нагрузки. Значения коэффициентов результирующей силы вычисляют по формулам, исходными значениями для которых являются мгновенные значения кратковременной динамической нагрузки, мгновенные значения опорных реакций и значение максимальной динамической нагрузки. Технический результат заключается в повышении точности и достоверности измерении нагрузок и состояния строительной конструкции и оценке ее реакций на сверхнормативное динамическое воздействие. 5 ил.

 

Изобретение относится к области строительства и может быть использовано при испытании элементов или конструкций зданий и сооружений с оценкой их реакции на воздействие сверхнормативных кратковременных динамических нагрузок по величине коэффициента результирующей силы, а также при анализе данных, полученных вследствие мониторинга зданий и сооружений при опасных природных и техногенных воздействиях.

Известен способ испытания конструкции на ударные воздействия (патент RU 2362136, G01M 7/08, опубл. 20.07. 2009 г.), согласно которому предварительно определяют резонансным методом низшую собственную частоту колебаний конструкции, после чего, не меняя положения испытуемой конструкции, производят разрушающий удар, полученные данные обрабатывают и фильтруют высшие гармоники собственных колебаний, соответствующие гармоникам в момент разрушения конструкции, от низшей гармоники, частота которой соответствует измеренной низшей собственной частоте колебаний конструкции. По полученным данным судят о реальных значениях динамических параметров.

Достоинством способа является повышенная точность измерения динамических параметров конструкции в процессе ее разрушения. Однако, хотя способ и позволяет проводить испытания на действие сверхнормативной ударной испытательной нагрузки, не учитывается результирующая сила, воздействующая на испытываемую конструкцию, и не производится оценка реакции конструкции на воздействие по величине коэффициента результирующей силы.

Прототипом заявляемого изобретения является способ испытания и определения степени живучести строительных конструкций (патент RU 2477459 C1, G01M 7/08 (2006.01), опубл. 10.03.2013), согласно которому сначала резонансным методом определяют низшую собственную частоту колебаний конструкции, затем, не меняя положения испытуемой конструкции, конструкцию подвергают сверхнормативному ударному воздействию, полученные данные обрабатывают с помощью измерительно-вычислительного комплекса и фильтруют высшие гармоники собственных колебаний, соответствующие гармоникам в момент разрушения конструкции, от низшей гармоники, частота которой соответствует измеренной низшей собственной частоте колебаний конструкции, и по полученным данным судят о реальных значениях динамических параметров. После динамического нагружения испытуемую конструкцию дополнительно подвергают пошаговому статическому нагружению до полного ее разрушения и определяют величину остаточной несущей способности qs конструкции по разности значения максимальной динамической нагрузки qd в момент разрушения конструкции и значения приложенной максимальной статической нагрузки. Дополнительно, например, с помощью лазерной рулетки производят измерения длин строительной конструкции до и после каждого вида нагружения и определяют величины относительных деформаций. Учитывая величины относительных деформаций после динамического и статического нагружения конструкции и величины остаточной несущей способности после испытания и максимальной динамической нагрузки в момент разрушения конструкции, определяют коэффициент степени живучести конструкции.

Достоинством способа является возможность точного измерения динамической нагрузки в момент разрушения строительной конструкции, остаточного ресурса и деформаций строительной конструкции в процессе испытания, но данный способ не учитывает величину результирующей силы в зависимости от времени.

В последние годы все чаще возникает необходимость проектирования железобетонных конструкций, на которые возможно воздействие интенсивных кратковременных динамических сверхнормативных нагрузок. Опасность действия на сооружения ударных волн возрастает вследствие возможных взрывов обычных взрывчатых веществ при их хранении, аварийном падении грузов, террористических актов, природных и техногенных катастроф и т.д. Возникающие при этом специфические нагрузки часто вызывают значительные повреждения конструкций и даже их полное или частичное разрушение, которое может привести к травмам и гибели людей, а также порче дорогостоящего оборудования и, следовательно, значительным материальным затратам.

Из литературных источников (например, Попов Н.Н., Расторгуев Б.С. Динамический расчет железобетонных конструкций М., Стройиздат, 1974, 207 с.) известно, что при кратковременном динамическом нагружении прочность строительных конструкций выше, чем при статическом нагружении, что объясняется изменением физико-механических характеристик бетона и арматуры по сравнению со статическим состоянием. При кратковременном динамическом нагружении происходит неравномерное развитие и определенное запаздывание деформаций по сравнению с результатами статических испытаний.

В связи с этим, при проектировании и расчете несущих железобетонных конструкций учет и определение различных динамических параметров во времени, в том числе величин результирующей силы является актуальной технической проблемой.

Технический результат при реализации изобретения заключается в получении данных о распределении во времени величины результирующей силы и численной оценке результирующей силы в строительной конструкции в процессе ее разрушения по коэффициентам результирующей силы в строительной конструкции при действии сверхнормативной кратковременной динамической ударной испытательной нагрузки.

Технический результат достигается следующим образом. Как и по способу, принятому за прототип, согласно заявленному способу испытуемую конструкцию подвергают сверхнормативному ударному воздействию, силоизмерителем определяют значение максимальной динамической нагрузки в момент разрушения строительной конструкции при ударном воздействии, процесс динамического нагружения регистрируют компьютерной измерительной системой и полученные данные обрабатывают с помощью измерительно-вычислительного комплекса.

В отличие от прототипа фиксируют начало и окончание ударного воздействия, измеряя с помощью силоизмерителя мгновенные значения кратковременной динамической нагрузки qs(t) в указанном интервале времени, при этом дополнительно в этом же интервале времени определяют мгновенные значения опорных реакций qop,i(t) с помощью датчиков опорных реакций, установленных симметрично с двух сторон испытываемого образца, затем строят графики зависимостей относительной кратковременной динамической нагрузки и относительной суммарной опорной реакции от времени ударного воздействия, где qs(t) - мгновенное значения кратковременной динамической нагрузки при сверхнормативном ударном воздействии по показаниям силоизмерителя; qop,i(t) - мгновенное значение показания i-го датчика опорной реакции; qsmax - максимальное значение динамической нагрузки приложенного сверхнормативного ударного воздействия по показаниям силоизмерителя; а также график зависимости коэффициентов результирующей силы k(t) от времени ударного воздействия, при этом мгновенные k(t) и усредненное k значения коэффициентов результирующей силы в строительной конструкции при ударном разрушении определяют по формулам:

где k(t) - мгновенное значение коэффициента результирующей силы в строительной конструкции при ударном разрушении;

k - усредненное значение коэффициента результирующей силы в строительной конструкции при ударном разрушении на интервале времени t1-t2;

t1, t2 - времена начала и окончания ударного воздействия,

n - число датчиков опорных реакций при испытаниях;

qs(t) - мгновенное значение кратковременной динамической нагрузки при сверхнормативном ударном воздействии по показаниям силоизмерителя;

qор,i(t) - мгновенное значение показания i-го датчика опорной реакции;

qsmax - максимальное значение динамической нагрузки приложенного сверхнормативного ударного воздействия по показаниям силоизмерителя; и по коэффициентам результирующей силы и построенным графикам судят о процессе изменения напряженно деформированного состояния строительной конструкции в интервале действия сверхнормативной ударной нагрузки, а также доле тепловых потерь в затраченной энергии на разрушение конструкции.

Экспериментальные исследования показывают, что также имеет место запаздывание опорных реакций относительно действующей нагрузки, это приводит к смещению по времени друг относительно друга пиковых значений кратковременной динамической нагрузки и опорных реакций.

Несмотря на то что согласно принципу Даламбера, система при кратковременном динамическом нагружении в любой момент времени находится в равновесии за счет действия сил инерции, для корректной оценки результатов экспериментальных исследований и обоснования момента наступления предельного состояния в конструкции по зарегистрированным данным необходимо учитывать время запаздывания, а если учесть, что запаздывание во время динамического воздействия не является постоянной величиной, то необходим подход для постоянного отслеживания соотношения значений действующей нагрузки и опорных реакций в процессе динамического воздействия. Такой величиной может служить коэффициент результирующей силы, а детальную информацию об изменении параметров динамической нагрузки и опорных реакций можно получить из построенных графиков.

Применение заявляемого способа по сравнению со способом прототипа позволяет достоверно определить мгновенные и усредненные значения коэффициента результирующей силы.

В результате обработки данных проведенного экспериментального исследования получают: мгновенные значения силы приложенного сверхнормативного ударного воздействия (кратковременной динамической нагрузки) по показаниям силоизмерителя - qs(t) и мгновенные значения показаний каждого из n датчиков опорной реакции qop,i(t) на интервале времени от t1 до t2 (времена начала и окончания ударного воздействия).

Нужно отметить, что для регистрации значений сверхнормативной кратковременной динамической нагрузки обычно необходимо и достаточно одного силоизмерителя, а для фиксации значений опорных реакций может использоваться любое четное число датчиков (для линейных конструкций при двух опорах).

Для перевода полученных данных в относительные величины каждое из мгновенных значений qs(t) и qop,i(t) делится на qsmax - максимальное значение силы приложенного сверхнормативного ударного воздействия по показаниям силоизмерителя.

Перевод в относительные величины необходим для удобства использования данных при сопоставительном анализе с результатами серии аналогичных испытаний.

Определение мгновенного значения коэффициента результирующей силы k(t) производится путем нахождения разности между мгновенным значением силы qs(t) и суммой мгновенных значений n датчиков опорных реакций, деленной на максимальное значение силы, т.е.

Определение усредненного значения коэффициента результирующей силы k на временном интервале от t1 до t2 производится путем нахождения разности между площадью, ограниченной графиком силы с временной осью, и площадью, ограниченной графиком суммарной опорной реакции с временной осью, деленной на площадь, ограниченную графиком силы с временной осью, т.е.

Указанная совокупность технических признаков, характеризующая заявленный способ, получена впервые и в известных технических решениях не обнаружена, что подтверждает новизну изобретения. Изобретение соответствует условию изобретательского уровня, поскольку явным образом предложенное техническое решение не следует из уровня техники. Не выявлены из уровня техники решения, которые имеют признаки, совпадающие с отличительными признаками заявленного способа.

Изобретение промышленно применимо, поскольку его можно многократно использовать при испытании строительных элементов или конструкций зданий, сооружений при сверхнормативных кратковременных динамических ударных нагрузках, а также при анализе данных полученных вследствие мониторинга зданий и сооружений при опасных природных и техногенных воздействиях.

Применение предложенного способа рассмотрено на конкретном примере испытания изгибаемого железобетонного элемента на кратковременное сверхнормативное динамическое воздействие.

На фиг. 1 изображен стенд для испытания изгибаемого железобетонного элемента на сверхнормативное кратковременное динамическое воздействие (фото).

На фиг. 2 изображен силоизмеритель для определения значения кратковременной динамической нагрузки.

На фиг. 3 показаны датчики опорных реакций, установленные в опоре (фото).

На фиг. 4 изображен изгибаемый железобетонный элемент после сверхнормативного кратковременного динамического воздействия (фото).

На фиг. 5 изображены графики изменения относительно кратковременной динамической нагрузки и относительной суммарной опорной реакции во времени в процессе кратковременного сверхнормативного динамического воздействия для изгибаемого железобетонного элемента, а также график изменения значений коэффициента результирующей силы во времени.

Способ выполняют следующим образом.

Экспериментальны образец 1 испытывается при помощи копровой установки 2, установленной на силовом полу 3. Создающий сверхнормативную кратковременную динамическую нагрузку груз 4 падает на силоизмеритель 5, который в сою очередь установлен на распределительной траверсе 6. Экспериментальный образец 1 установлен на специально изготовленных опорах 7 с датчиками опорных реакций 8. Максимальная динамическая нагрузка qsmax равна 6,27 т. Процесс динамического нагружения в процессе испытания регистрируется компьютерными измерительными системами.

В дальнейшем производится обработка полученных данных и строятся графики зависимости относительной кратковременной динамической нагрузки и суммарной относительной опорной реакции с синхронизацией по времени t (графики 1 и 2 на фиг. 5). На графике видно начальное запаздывание относительной опорной реакции относительно относительной динамической нагрузки на 2,22 мс и смещение пиков на 3,87 мс.

Затем путем вычислений по представленным формулам определяют значения мгновенного и усредненного коэффициента результирующей силы. Зависимость, показывающая изменение с течением времени значений коэффициента результирующей силы, приведена на графике 3 на фиг. 5. Для представленного в качестве примера испытания значения мгновенного коэффициента результирующей силы изменяются в пределах от +0,75 до -0,48. При этом знак (+) показывает превышение динамической нагрузки над опорной реакцией, а знак (-) - наоборот. На представленных графиках можно выделить четыре характерных временных интервала t1…t4, где t1 - временной интервал запаздывания опорной реакции относительно кратковременно динамической нагрузки (зависит в основном от скорости нагружения); t2 - временной интервал развития в экспериментальном образце вначале упругих, а затем пластических деформаций; t3 - временной интервал, характеризующий время разрушения образца (временной участок, на котором деформации бетона достигают своих предельных значений, а напряжения в арматуре достигают предела текучести); t4 - временной интервал значительного развития пластических деформаций.

Точка Т1 - точка «статического» равновесия. В данный момент времени кратковременная динамическая нагрузка равна по величине суммарной опорной реакции.

Усредненное значение коэффициента результирующей силы по сути равно разнице между площадями, ограниченными графиками 1 и 2 и временной осью на фиг. 5. Эти площади также находятся путем интегрирования по представленным формулам. Для представленного в качестве примера испытания площадь под графиком 1 составляет 11,678, а площадь под графиком 2 - 9,86. Усредненный коэффициент результирующей силы составляет . Полученное значение показывает долю энергии, затраченную на выделение тепла в процессе испытания строительной конструкции на кратковременную динамическую сверхнормативную нагрузку.

Для получения абсолютных значений разности между мгновенными показаниями силоизмерителя и суммарной опорной реакции необходимо помножить мгновенное значение коэффициента результирующей силы k(t) на максимальное значение силы приложенного сверхнормативного ударного воздействия по показаниям силоизмерителя qsmax.

Для получения абсолютного значения разности площадей под графиками 1 и 2 на фиг. 5 необходимо помножить усредненное значение коэффициента результирующей силы k на абсолютное значение площади под графиком 1, то есть на значение интеграла .

Полученные значения мгновенного k(t) и усредненного k коэффициентов результирующей силы в строительной конструкции показывают распределение во времени и численную оценку результирующей силы в строительной конструкции в процессе ее разрушения, а значение коэффициента k численно равно доле тепловых потерь в затраченной энергии на разрушение конструкции.

Предложенный способ испытания позволяет точно и достоверно получить значение коэффициента результирующей силы в строительной конструкции для заданного значения сверхнормативной ударной испытательной нагрузки, при изменении конструктивных параметров строительной конструкции в большую или меньшую сторону и изменении длительности импульса удара. Мгновенные и усредненные значения коэффициентов результирующей силы можно использовать как общеприменимые параметры при сопоставительном анализе реакций строительных конструкций на сверхнормативное динамическое воздействие при различных параметрах нагрузки и конструкции образцов.

Способ испытания строительной конструкции при сверхнормативном ударном воздействии, согласно которому испытуемую конструкцию подвергают сверхнормативному ударному воздействию, силоизмерителем определяют значение максимальной динамической нагрузки в момент разрушения строительной конструкции при ударном воздействии, процесс динамического нагружения регистрируют компьютерной измерительной системой и полученные данные обрабатывают с помощью измерительно-вычислительного комплекса, отличающийся тем, что фиксируют начало и окончание ударного воздействия, измеряя с помощью силоизмерителя мгновенные значения кратковременной динамической нагрузки в указанном интервале времени, при этом дополнительно в этом же интервале времени определяют мгновенные значения опорных реакций с помощью датчиков опорных реакций, установленных симметрично с двух сторон испытываемого образца, затем строят графики зависимостей относительной кратковременной динамической нагрузки и относительной суммарной опорной реакции от времени ударного воздействия, где qs(t) - мгновенное значения кратковременной динамической нагрузки при сверхнормативном ударном воздействии по показаниям силоизмерителя; qop,i(t) - мгновенное значение показания i-го датчика опорной реакции; qsmax - максимальное значение динамической нагрузки приложенного сверхнормативного ударного воздействия по показаниям силоизмерителя; а также график зависимости коэффициентов результирующей силы k(t) от времени ударного воздействия, при этом мгновенные k(t) и усредненное k значения коэффициентов результирующей силы в строительной конструкции при ударном разрушении определяют по формулам:

,

где k(t) - мгновенное значение коэффициента результирующей силы в строительной конструкции при ударном разрушении;

k - усредненное значение коэффициента результирующей силы в строительной конструкции при ударном разрушении на интервале времени t1-t2;

t1, t2 - времена начала и окончания ударного воздействия,

n - число датчиков опорных реакций при испытаниях;

qs(t) - мгновенное значения кратковременной динамической нагрузки при сверхнормативном ударном воздействии по показаниям силоизмерителя;

qop,i(t) - мгновенное значение показания i-го датчика опорной реакции;

qsmax - максимальное значение динамической нагрузки приложенного сверхнормативного ударного воздействия по показаниям силоизмерителя;

и по коэффициентам результирующей силы и построенным графикам судят о процессе изменения напряженно деформированного состояния строительной конструкции в интервале действия сверхнормативной ударной нагрузки, а также доле тепловых потерь в затраченной энергии на разрушение конструкции.



 

Похожие патенты:

Изобретение относится к способам определения травмобезопасности средств индивидуальной бронезащиты, преимущественно шлемов для головы. Способ заключается в выполнении следующих операций: наносят удары с известной энергией по защищенному штатным средством – бронешлемом - имитатору объекта защиты и аналогичные удары по защищенному проектируемым средством – бронешлемом - имитатору.

Изобретение относится к испытательному оборудованию. Стенд содержит основание, на котором расположены дополнительные плиты с закрепленными на них виброизолируемыми аппаратами и регистрирующая аппаратура.

Изобретение относится к испытательному оборудованию. Стенд для исследования систем виброизоляции содержит основание, на котором расположены дополнительные плиты с закрепленными на них виброизолируемыми аппаратами и регистрирующая аппаратура, на основании установлена аппаратура летательных аппаратов, например два одинаковых бортовых компрессора для получения сжатого воздуха на борту летательного аппарата, при этом один компрессор установлен на штатных резиновых виброизоляторах, а другой компрессор установлен на исследуемой двухмассовой системе виброизоляции, включающей в себя резиновые виброизоляторы и упругодемпфирующую промежуточную плиту с виброизоляторами, например, в виде пластин из полиуретана, которые так же как и штатные резиновые виброизоляторы компрессора установлены на жесткой переборке, которая через вибродемпфирующую прокладку установлена на основании, а на жесткой переборке, между компрессорами, закреплен вибродатчик, сигнал с которого поступает на усилитель и регистрирующую аппаратуру, например октавный спектрометр, работающий в полосе частот (Гц): 2; 4; 8; 16; 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000, а затем сравнивают полученные амплитудно-частотные характеристики от работы каждого из компрессоров и делают выводы об эффективости виброизоляции каждой системы, на которой они установлены.

Изобретение относится к испытательному оборудованию. Стенд содержит основание, на котором расположены дополнительные плиты с закрепленными на них виброизолируемыми аппаратами, и регистрирующая аппаратура, на основании установлена аппаратура летательных аппаратов, например два одинаковых бортовых компрессора для получения сжатого воздуха на борту летательного аппарата.

Изобретение относится к испытательному оборудованию и может быть использовано для испытания систем виброизоляции. Способ заключается в том, что на основании располагают дополнительные плиты с закрепленными на них виброизолируемыми объектами, и настраивают регистрирующую аппаратуру, а на основании устанавливают два одинаковых бортовых компрессора для получения сжатого воздуха на борту летательного аппарата.

Изобретение относится к методам определения чувствительности взрывчатых веществ (ВВ) к механическим воздействиям. Способ включает помещение образца ВВ на наковальню, в центре которой выполнена выемка круглого сечения, проведение ударных испытаний с использованием груза с центральным бойком, характеризующегося переменными параметрами и установленного с возможностью совершения возвратно-поступательных перемещений по вертикальным направляющим, регистрацию и анализ результатов измерений.

Изобретение относится к испытательной технике, в частности к устройствам для испытаний на ударные воздействия различных приборов и оборудования. Стенд состоит из силового каркаса в виде прямоугольной рамы на ножках с продольными направляющими для установки через амортизаторы подпружиненной платформы, выполненной в виде резонансной плиты, поперечная собственная частота которой соответствует частоте перехода на требуемом ударном спектре ускорений, и рамы для крепления маятника с бойком, состоящим из стержня с профилированным торцом и резьбой, для установки и фиксации дополнительных грузов.

Изобретение относится к испытательной технике и может быть использовано в строительстве при расчете ограждающих конструкций зданий. Способ заключается в том, что в исследуемом месте ограждающей конструкции на всю глубину кирпичной кладки отбирают два керна, первый керн отбирают по центру ложковой стороны наружного ряда кирпичей, второй керн отбирают так, чтобы слой раствора находился в центре керна.

Изобретение относится к области испытания конструкции на воздействие подводной ударной волны и может быть использовано для регистрации сотрясений на элементах подводного аппарата при воздействии подводной ударной волны.

Изобретение относится к устройствам для испытаний на ударные воздействия и может быть использовано при испытаниях на высокоинтенсивные ударные воздействия различных, в том числе и пространственных систем.

Изобретение относится к области неразрушающего контроля и касается способа обнаружения ударных повреждений конструкции. Способ включает в себя нанесение на поверхность конструкции люминесцентного покрытия люминесцирующего в видимой области спектра под воздействием УФ-излучения, просмотр покрытия при облучении конструкции УФ-излучением и обнаружение ударных повреждений за счет цветовых различий. Люминесцентное покрытие является многослойным и содержит индикаторный слой с люминофором и защитный слой с рабочим компонентом, поглощающим УФ-излучение. Для создания индикаторного слоя используют раствор связующего на основе кремнийорганических блок-сополимеров в толуоле с добавлением люминофора, представляющего собой пивалатный комплекс европия с гетероциклическим диимином в количестве до 1,4 мас.% относительно связующего. Защитный слой получают путем распыления раствора связующего на основе кремнийорганических блок-сополимеров в толуоле с добавлением рабочего компонента β-дикетон дибензоилметана с концентрацией 2÷6⋅10-2 моль/л. Технический результат заключается в упрощении способа и повышении оперативности, точности и достоверности обнаружения малозаметных ударных повреждений. 4 ил.

Изобретение относится к области промышленной безопасности опасных производственных объектов и может быть использовано для определения зон возможных разрушений и поражений человека осколками при авариях на объектах с обращением сжатого газа. Изобретение позволяет определять максимальную дальность разлета осколков при разгерметизации цилиндрического сосуда с газом и зону безопасного пребывания человека. Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа, заключается в том, что определяют принадлежность аварийного объекта газотранспортной системы к подземному трубопроводу или наземному сосуду со сжатым газом; для наземного сосуда со сжатым газом определяют его Моб - массу оболочки сосуда (кг), ρоб - плотность материала (кг/м3) оболочки сосуда и V0 - объем (м3) сосуда; для подземного трубопровода определяют D - диаметр (м) трубопровода; h - заглубление (м) трубопровода (по нижней образующей); 2ψ - ожидаемый угол (град) раствора котлована; определяют начальную скорость первичных осколков U0=U(t=0) (м/с) при авариях на объектах газотранспортной системы; определяют безразмерный коэффициент W, являющийся параметром инварианта движения и описывающий разлет осколков при аварии в предположении равновероятной их ориентации по направлению вектора скорости: где Scp - площадь миделя (м2); m - масса осколка (кг); Сх - коэффициент сопротивления осколка;ρ0 - плотность воздуха (кг/м3);g - ускорение силы тяжести (м/с2); по полученному значению безразмерного коэффициента W определяют максимальную дальность полета осколков (м):определяют вероятность поражения человека (Рчел) отдельным осколком, учитывая, что человека моделируют цилиндром с радиусом r (м) и высотой l (м), который находится на максимальном расстоянии ΔRmax (м) от аварийного объекта, с учетом того, что попадание любого осколка - смертельно; строят график зависимости вероятности поражения человека (Рчел) осколком или осколками аварийного объекта от расстояния ΔR, на котором находится человек, по указанному графику определяют зону безопасного пребывания человека. Технический результат - расширение функциональных возможностей, позволяющих установить пространственное распределение параметров осколочного поражения, образующегося при взрывной разгерметизации трубопроводов и сосудов, содержащих природный газ под высоким начальным давлением, и обеспечить возможность предупреждения поражения человека осколочным воздействием. 2 ил.

Изобретение относится к оборудованию для испытаний приборов на вибрационные и ударные воздействия. Сущность: на основании закрепляют жесткую переборку с датчиком уровня вибрации, на которую устанавливают два одинаковых бортовых компрессора на различных системах их виброизоляции и проводят измерения их амплитудно-частотных характеристик. Один компрессор устанавливают на штатных резиновых виброизоляторах, а другой компрессор устанавливают на исследуемой двухмассовой системе виброизоляции. На жесткой переборке закрепляют датчик уровня вибрации, который соединяют с усилителем и спектрометром, затем включают первый компрессор и снимают амплитудно-частотные характеристики системы, после чего выключают первый компрессор и включают второй компрессор, который установлен на исследуемой двухмассовой системе виброизоляции. Снимают амплитудно-частотные характеристики, после чего сравнивают полученные характеристики от работы каждого из компрессоров и делают выводы об эффективности виброизоляции каждой системы, на которой они установлены. Для определения собственных частот каждой из исследуемых систем виброизоляции производят имитацию ударных импульсных нагрузок на каждую из систем с помощью диагностического ударного устройства, содержащего корпус, пьезоэлектрический динамометр, ударный элемент и дополнительную массу. Дополнительную массу диагностического ударного устройства выполняют в виде цилиндра и располагают над основной массой, которая содержит полость, заполненную жесткими шариками, которые при определении собственных частот каждой из исследуемых систем виброизоляции выполняют функцию случайного стохастического воздействия, накладываемого на ударную нагрузку. Технический результат: расширение технологических возможностей испытаний объектов, имеющих несколько упругих связей с корпусными деталями летательного объекта. 6 ил.

Изобретение относится к области испытаний и может быть использовано для испытания строительных конструкций при сверхнормативном ударном воздействии. Испытуемую конструкцию подвергают сверхнормативному ударному воздействию. Силоизмерителем определяют значение максимальной динамической нагрузки в момент разрушения строительной конструкции при ударном воздействии, а также мгновенные значения кратковременной динамической нагрузки в зафиксированном интервале времени от начала до окончания ударного воздействия. Одновременно в этом же интервале времени с помощью датчиков опорных реакций, установленных симметрично с двух сторон испытуемого образца, определяют мгновенные значения опорных реакций. Полученные данные обрабатывают с помощью измерительно-вычислительного комплекса. Строят графики зависимостей относительной кратковременной динамической нагрузки, относительной суммарной опорной реакции, а также коэффициентов результирующей силы от времени ударного воздействия. Относительную кратковременную динамическую нагрузку и относительную суммарную опорную реакцию определяют отношением величин их мгновенных значений к значению максимальной динамической нагрузки. Значения коэффициентов результирующей силы вычисляют по формулам, исходными значениями для которых являются мгновенные значения кратковременной динамической нагрузки, мгновенные значения опорных реакций и значение максимальной динамической нагрузки. Технический результат заключается в повышении точности и достоверности измерении нагрузок и состояния строительной конструкции и оценке ее реакций на сверхнормативное динамическое воздействие. 5 ил.

Наверх