Способ автоматического прослушивания газовых и газоконденсатных скважин на месторождениях крайнего севера



Способ автоматического прослушивания газовых и газоконденсатных скважин на месторождениях крайнего севера
Способ автоматического прослушивания газовых и газоконденсатных скважин на месторождениях крайнего севера
Способ автоматического прослушивания газовых и газоконденсатных скважин на месторождениях крайнего севера
Способ автоматического прослушивания газовых и газоконденсатных скважин на месторождениях крайнего севера
Способ автоматического прослушивания газовых и газоконденсатных скважин на месторождениях крайнего севера
Способ автоматического прослушивания газовых и газоконденсатных скважин на месторождениях крайнего севера
Способ автоматического прослушивания газовых и газоконденсатных скважин на месторождениях крайнего севера
Способ автоматического прослушивания газовых и газоконденсатных скважин на месторождениях крайнего севера

Владельцы патента RU 2645055:

Общество с ограниченной ответственностью "Газпром добыча Ямбург" (RU)

Изобретение относится к газовой промышленности и может быть использовано для исследования проницаемости пластов газовых и газоконденсатных месторождений Крайнего Севера, оценки газогидродинамической взаимосвязи между отдельными скважинами. Техническим результатом является повышение оперативности получения информации о состоянии разработки месторождения и информативности прослушивания куста скважин в реальном масштабе времени на газовых и газоконденсатных месторождениях. По данным стандартных газодинамических исследований (ГДИ) определяют коэффициенты фильтрационного сопротивления уравнения притока газа к забою скважин и производят сравнение указанных коэффициентов с их величинами, определенными расчетным путем на основе секторной модели куста скважин, построенной по данным геофизических исследований и лабораторных исследований керна, и если коэффициенты не совпадают, уточняют фильтрационно-емкостные свойства (ФЕС) секторной модели куста скважин используя фактические данные по притоку газа к забою скважин, полученные по результатам ГДИ, добиваясь совпадения расчетных и фактических коэффициентов уравнения притока газа к забою скважин, и после этого уточнения, используя ФЕС определяют радиус дренирования каждой скважины куста и выполняют ранжирование скважин по степени наложения контуров питания, определяют скважину, имеющую максимальную степень наложения площадей дренирования с остальными скважинами куста, после чего с помощью автоматизированной системы управления технологическими процессами установки комплексной/предварительной подготовки газа (АСУ ТП УКПГ/УППГ) производят остановку указанной скважины средствами систем телемеханики для кустов скважин (СТКС), и с этого момента АСУ ТП УКПГ/УППГ средствами СТКС с заданной дискретностью синхронно фиксирует изменение забойного давления прямым измерением забойного давления или расчетным методом, которое определяется по измеряемому заколонному давлению на устье на всех скважинах куста до его полной стабилизации, а остальные скважины, подключенные к газосборному шлейфу с помощью АСУ ТП УКПГ/УППГ, одновременно отключают от него средства СТКС для исключения искажения результатов измерений из-за их связи через газосборный шлейф. При этом фиксацию изменения забойного давления АСУ ТП УКПГ/УППГ также осуществляет средствами СТКС путем синхронного измерения кривых восстановления давления на всех скважинах с заданным шагом дискретизации и заносит их в свою базу данных (БД) для последующего сравнения и анализа разницы в поведении скважин, а также использования этих данных для уточнения модели разработки месторождения, после чего назначают порядок последовательности запуска скважин куста в эксплуатацию и индивидуальные временные интервалы между пусками скважин для вывода куста на заданный режим эксплуатации с учетом результатов всех предыдущих испытаний с момента ввода месторождения в эксплуатацию, при этом АСУ ТП УКПГ/УППГ средствами СТКС осуществляет запуск скважин в назначенной последовательности и выполняет синхронное измерение кривых изменения заколонного давления на устьях всех скважин куста и их дебит, и заносит их в свою БД для последующего анализа функционирования скважин и комплексного анализа работы газоносного пласта с определением его параметров по результатам остановки-запуска куста газовых скважин для выбора режимов его оптимальной эксплуатации до следующих испытаний. После чего с использованием секторной модели куста на основании данных стабилизации дебитов и забойных давлений возмущающих скважин и данных стабилизации пластового давления в зоне реагирующих скважин производят уточнение эквивалентной проницаемости пласта в межскважинном пространстве. 2 з.п. ф-лы, 3 ил., 1 табл.

 

Изобретение относится к газовой промышленности и может быть использовано для исследования проницаемости пластов газовых и газоконденсатных месторождений Крайнего Севера, оценки газогидродинамической взаимосвязи между отдельными скважинами.

Известен способ прослушивания скважин, включающий установку регистрирующей аппаратуры на реагирующих скважинах за несколько дней до начала исследования, с помощью которого записываются «фоновые» замеры забойного давления [см., например, с. 296, Гриценко А.И., Алиев З.С., Ермилов О.М. и др. Руководство по исследованию скважин. - М.: Наука, 1995, 523 с.]. После записи «фона» выбирают возмущающую скважину. Если возмущающей является скважина, работающая с постоянным дебитом, то ее либо останавливают, либо переводят на работу с другим дебитом, постоянным в течение всего периода исследования. При этом на каждой реагирующей скважине фиксируют изменение забойного давления. Если изменение давления не фиксируется при временах, в 3 раза и более превышающих оценочный временной интервал tmin (минимальное время исследования, начиная с которого возможна регистрация кривой реагирования с заданной точностью), то исследование прекращают и констатируют отсутствие прямой газогидродинамической связи между скважинами. Если изменение давления фиксируется, то исследование продолжают в течение нескольких часов для получения кривой реагирования, обработка которой позволяет определить фазовую проницаемость пласта по газу.

Существенным недостатком этого способа является то, что он требует установки регистрирующей аппаратуры на забое каждой реагирующей скважины перед их исследованием и последующий ее демонтаж по окончании исследований. Кроме этого, помимо самих измерительных приборов или систем требуется определенный комплекс оборудования для проведения спуско-подъемных операций. Это приводит к значительным временным и материальным затратам. Также проведение всех этих работ требует постоянного присутствия обслуживающего персонала на скважинах, что из-за суровых природно-климатических условий Крайнего Севера связано с определенными трудностями.

Наиболее близким по технической сущности к изобретению является способ прослушивания скважин, включающий установку регистрирующей аппаратуры на реагирующих скважинах [см. с. 138, Васильевский В.П., Петров А.И. Исследование нефтяных пластов и скважин. - М.: Недра, 1973, 344 с.].

В качестве регистрирующий аппаратуры используют манометр, показания которого непрерывно воспроизводятся в виде графика зависимости забойного давления во времени ρзаб(t). После запуска в эксплуатацию выбранной соседней скважины с постоянным дебитом Q фиксируют интервал времени t1, после которого давление на забое реагирующей скважины начнет снижаться (т.е. это снижение будет зарегистрировано манометром). Это время зависит от дебита Q возмущающей скважины, расстояния между возмущающей и реагирующей скважинами, гидропроводности и пьезопроводности пласта, а также от чувствительности манометра.

Существенным недостатком указанного способа является большой объем работ, связанных с проведением монтажа и демонтажа регистрирующей аппаратуры. Каждая остановка и запуск скважины в эксплуатацию занимает достаточно долгое время и может привести к осложнениям в работе скважины, к потере добываемого флюида и к другим неоправданным экономическим потерям.

Кроме того, существенным недостатком всех перечисленных выше способов является то, что степень взаимовлияния скважин через систему промыслового сбора газа значительно выше, чем через продуктивный пласт, что объясняется фонтанным режимом эксплуатации. Изменение режима работы или остановка одной из скважин куста при отсутствии регулирующих воздействий вызовет перераспределение нагрузки и изменение дебита остальных, что приводит к значительным погрешностям при определении пластовых параметров по данным стабилизации дебита и пластового давления.

Предлагаемое техническое решение направлено на повышение оперативности получения информации о состоянии разработки месторождения и информативности прослушивания куста скважин в реальном масштабе времени на газовых и газоконденсатных месторождениях Крайнего Севера.

Поставленная цель достигается тем, что по данным стандартных газодинамических исследований (ГДИ) скважин определяют коэффициенты фильтрационного сопротивления уравнения, описывающего приток газа к забою скважин, и производят сравнение указанных коэффициентов с их величинами, определенными расчетным путем по секторной модели куста скважин, построенной по данным геофизических исследований и лабораторных исследований керна. В случае несовпадения расчетных и фактических коэффициентов уточняют фильтрационно-емкостные свойства (ФЕС) секторной модели куста скважин, используя фактические данные по притоку газа к забою скважин, полученные по результатам ГДИ, и добиваются совпадения расчетных и фактических коэффициентов уравнения притока газа к забою скважин.

Одновременно определяют радиус дренирования каждой скважины куста на основе уточненных ФЕС и выполняют ранжирование скважин по степени наложения их контуров питания. По этим данным определяют скважину, имеющую максимальную степень наложения площадей дренирования с остальными скважинами куста. Затем с помощью автоматизированной системы управления технологическими процессами (АСУ ТП) установки комплексной/предварительной подготовки газа (УКПГ/УППГ) производят остановку указанной скважины средствами систем телемеханики для кустов скважин (СТКС), и с этого момента АСУ ТП УКПГ/УППГ средствами СТКС с заданной дискретностью синхронно фиксирует изменение забойного давления прямым измерением забойного давления или расчетным методом, которое определяется по измеряемому заколонному давлению на устье, на всех скважинах куста до полной стабилизации давления. Остальные скважины, подключенные к газосборному шлейфу с помощью АСУ ТП УКПГ/УППГ, одновременно отключают от него средства СТКС для исключения искажения результатов измерений из-за их связи через газосборный шлейф. При этом фиксацию изменения забойного давления в остальных скважинах АСУ ТП УКПГ/УППГ также осуществляет средствами СТКС путем синхронного измерения кривых восстановления давления на всех скважинах с заданным шагом дискретизации. Получаемые данные система заносит в свою базу данных (БД) для последующего сравнения и анализа разницы в поведении скважин, а также использования этих данных для уточнения модели разработки месторождения.

После завершения процесса измерения кривых восстановления давления назначают порядок последовательности запуска скважин куста в эксплуатацию и индивидуальные временные интервалы между пусками скважин для вывода куста на заданный режим эксплуатации. При этом учитывают результаты всех предыдущих испытаний с момента ввода месторождения в эксплуатацию. После этого АСУ ТП УКПГ/УППГ средствами СТКС осуществляет запуск скважин в эксплуатацию в назначенной последовательности и осуществляет синхронное измерение кривых изменения заколонного давления на устьях всех скважин куста и их дебит. Результаты измерений система заносит в свою БД для последующего анализа функционирования скважин и комплексного анализа работы газоносного пласта с определением его параметров по результатам остановки-запуска куста газовых скважин для выбора режимов его оптимальной эксплуатации до следующих испытаний. После вывода куста газовых скважин на заданный режим эксплуатации, используя секторную модель куста и данные стабилизации дебитов и забойных давлений возмущающих скважин, а также данные стабилизации пластового давления в зоне реагирующих скважин, производят уточнение эквивалентной проницаемости пласта в межскважинном пространстве.

Для того чтобы исключить влияние на процесс восстановления давления исследуемых скважин, которое может оказать режим работы скважин близлежащих кустов за счет их взаимодействия через единую газосборную сеть, дебит указанных скважин АСУ ТП УКПГ/УППГ средствами СТКС регулируют таким образом, чтобы он оставался постоянным.

Для оценки времени фиксации возмущения давления в реагирующей скважине с момента пуска возмущающей скважины используют параметры: L - расстояние между возмущающей и реагирующей скважинами, м, и PERM - абсолютную проницаемость пласта, мД. Саму оценку производят используя, например, зависимость

Т=(1016205BS408*L1.81231643773242)*PERM-0.889,

где Т - время, за которое изменение давления от пуска возмущающей скважины достигнет реагирующей скважины, сутки.

Заявляемый способ реализуется следующим образом.

По данным стандартных ГДИ определяют коэффициенты фильтрационного сопротивления уравнения притока газа к забою скважины [например, см. с. 175 - Газогидродинамические методы исследование скважин при стационарных режимах фильтрации и с. 257 - Газогидродинамические методы исследование скважин при нестационарных режимах фильтрации, Гриценко А.И., Алиев З.С., Ермилов О.М. и др. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.].

Производят сравнение указанных коэффициентов с величинами, определенными расчетным путем по секторной модели куста скважин, полученной по данным геофизических исследований и лабораторных исследований керна. В случае несовпадения расчетных и фактических коэффициентов уточняют фильтрационно-емкостные свойства (ФЕС) секторной модели куста скважин, используя фактические данные по притоку газа к забою скважин, полученные по результатам ГДИ, и добиваются совпадения расчетных и фактических коэффициентов уравнения притока газа к забою скважин.

На основе уточненных ФЕС определяют радиус дренирования каждой скважины куста или по формуле [например, см. с. 6, Методика обработки кривых восстановления давления, полученных при исследовании газовой скважины, Интернет ресурс

http://www.asbur.ru/upload/File/obrabotka_kvd_gaz.doc]

где χ - пьезопроводность пласта, Т - продолжительность кривой восстановления давления.

По окончании определения радиусов дренирования выполняют ранжирование скважин по степени наложения контуров питания и определяют скважину, имеющую максимальную степень наложения площадей дренирования с остальными скважинами куста.

После этого в плановом порядке с помощью АСУ ТП УКПГ/УППГ производят остановку указанной скважины средствами СТКС, и с этого момента АСУ ТП УКПГ/УППГ средствами СТКС с заданной дискретностью синхронно фиксирует изменение забойного давления прямым измерением забойного давления или расчетным методом, который определяется по измеряемому заколонному давлению на устье на всех скважинах куста до полной стабилизации давления. (Эти работы можно проводить и во время планово-предупредительных работ на промыслах, которые, как правило, проводятся летом).

Остальные скважины, подключенные к газосборному шлейфу с помощью АСУ ТП УКПГ/УППГ, одновременно отключают от него средства СТКС для исключения искажения результатов измерений из-за их связи через газосборный шлейф. При этом фиксацию изменения забойного давления АСУ ТП УКПГ/УППГ также осуществляет средствами СТКС путем синхронного измерения кривых восстановления давления на всех скважинах с заданным шагом дискретизации. Получаемые данные система заносит в свою БД для последующего сравнения и анализа разницы в поведении скважин, а также использования этих данных для уточнения модели разработки месторождения.

Эти измерения длятся до полного восстановления давления. В ряде случаев, при необходимости после восстановления давления СТКС продолжает измерять его с заданным шагом дискретизации в течение интервала времени до пяти часов для оценки «фона». В этом процессе СТКС в реальном масштабе времени производит с заданным дискретным шагом измерения: либо давление на забое скважины, если забой скважины оснащен датчиком давления (Рз.и.), либо заколонного давления на устье Ри и устьевой температуры Ту.и газа на скважинах и передает в АСУ ТП УКПГ/УППГ. Получаемые данные АСУ ТП УКПГ/УППГ записывает в свою БД.

Если забой скважины не оснащен датчиком для измерения давления, в зависимости от конструкции и паспортных данных скважин, расчетным путем по измеряемым параметрам при каждом цикле опроса СТКС в АСУ ТП УКПГ/УППГ определяют значения забойного давления Рз.р скважин из соотношения [см. например, с. 110, формула (3.3), Гриценко А.И., Алиев З.С., О.М. Ермилов и др. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.]:

где ;

Ри - статическое давление заколонны на устье скважины, измеряют средствами СТКС;

- относительная плотность газа;

L - глубина скважины;

zcp - среднее значение коэффициента сверхсжимаемости газа;

Тср - средняя температура газа в интервале между нейтральным слоем земли в данном регионе и глубиной L.

Очевидно, что при этом Рз.р.пл.

Среднюю температуру газа Tcp определяют по формуле

где Тнс - температура нейтрального слоя земли;

TL - температура газа на глубине L, т.е. на расчетной глубине.

А если с момента остановки скважины прошло не более десяти часов, то среднюю температуру газа Тср определяют по формуле:

где Ту.и - температура газа на устье скважины.

Чтобы повысить точность расчета по формуле (1) ее уточняют по полученным результатам стандартных ГДИ скважин. Это позволяет получить значения забойного давления по точности измерения, практически равной точности тех датчиков, которые используются при стандартных ГДИ скважин для измерения давления. Как известно [например, см. с. 467, Гриценко А.И., Алиев З.С., Ермилов О.М. и др. Руководство по исследованию скважин. - М.: Наука, 1995. 523 с.], приведенная погрешность существующих датчиков давления, используемых при исследовании скважин, находится в интервале 0,1-0,25%. В существующих системах СТКС точность используемых датчиков давления находится в пределе в диапазоне изменения давления от 0,05 МПа до 100% шкалы прибора [см. Датчик комплексный с вычислителем расхода «ГиперФлоу-ЗПм», Руководство по эксплуатации, КРАУ 1.456.001-06 РЭ, Государственный Реестр средств измерений №15646-08].

После завершения процесса измерения кривых восстановления давления назначают порядок последовательности запуска скважин куста в эксплуатацию и индивидуальные временные интервалы между пусками скважин для вывода куста на заданный режим эксплуатации. При этом учитывают результаты всех предыдущих испытаний с момента ввода месторождения в эксплуатацию. После этого с помощью АСУ ТП УКПГ/УППГ средствами СТКС осуществляют запуск скважин в эксплуатацию в назначенной последовательности. При этом АСУ ТП УКПГ/УППГ средствами СТКС осуществляет синхронное измерение кривых изменения заколонного давления на устьях всех скважин куста и их дебит. Результаты измерений АСУ ТП УКПГ/УППГ заносит в свою БД для последующего анализа функционирования скважин и комплексного анализа работы газоносного пласта с определением его параметров по результатам остановки-запуска куста газовых скважин для выбора режимов его оптимальной эксплуатации до следующих испытаний. После вывода куста газовых скважин на заданный режим эксплуатации, используя секторную модель куста и данные стабилизации дебитов и забойных давлений возмущающих скважин, а также данные стабилизации пластового давления в зоне реагирующих скважин, производят уточнение эквивалентной проницаемости пласта в межскважинном пространстве.

Для того чтобы исключить влияние на процесс восстановления давления исследуемых скважин, которое может оказать режим работы скважин близлежащих кустов за счет их взаимодействия через единую газосборную сеть, дебит указанных скважин АСУ ТП УКПГ/УППГ средствами СТКС регулируют таким образом, чтобы он оставался постоянным.

Для оценки времени фиксации возмущения давления в реагирующей скважине с момента пуска возмущающей скважины используют параметры: L - расстояние между возмущающей и реагирующей скважинами, м, PERM - абсолютную проницаемость пласта, мД. Саму оценку производят, используя, например, зависимость

T=(а*Lb)*PERMd,

где Т - время, за которое изменение давления, вызванное пуском возмущающей скважины, достигнет реагирующей скважины, сутки;

a, b, d - коэффициенты, определяемые из характеристик продуктового пласта и используемой для его описания секторной моделью.

Данная зависимость для оценки времени фиксации возмущения давления в реагирующей скважине получена расчетным путем на секторной модели пласта по реально измеряемым данным. Процесс получения этих характеристик представлен ниже в виде примера.

Исходные данные:

Модель однородного пласта с пористостью 0,15 д.ед., эффективной толщиной 18 м, газонасыщенностью 0,7 д.ед., начальным пластовым давлением - 30 МПа. Количество ячеек по X - 162, по Y - 81, по Z - 9. Сеточная аппроксимация модели с двумя скважинами представлена на фиг. 1.

Две скважины первые три месяца эксплуатируются с депрессией на пласт 2,5 МПа. Далее обе скважины останавливают на месяц, после чего одна вновь вводится в эксплуатацию с режимом, который был до остановки. Вторая скважина продолжает простаивать, и по ней регистрируется динамика изменения пластового давления.

Результаты:

Изменяя в модели расстояние между скважинами и проницаемость пласта, определяем количество дней до регистрации волны возмущения от работы соседней скважины, которое представлено в таблице.

По данным, приведенным в таблице, на фиг. 2 определена зависимость времени регистрации волны возмущения от проницаемости коллектора при различном расстоянии между скважинами. Она в общем виде описывается уравнением вида Т=С*PERMd. Для рассматриваемого примера пласта с конкретными характеристиками

T=C*PERM-0.899.

Коэффициент С в этом уравнении зависит от расстояния между работающей (возмущающей) и реагирующей скважинами. Эта зависимость описывается соотношением вида С=а*Lb и для рассматриваемого примера имеет вид, представленный на фиг. 3. Соответственно для этого примера а=101620588408, b=1.81231643773242 и коэффициент С имеет вид

С=101620588408*L1.81231643773242.

Таким образом, время распространения волны приблизительно описывается соотношением

Т=(101620588408*L1.81231643773242)*PERM-0.889.

В целом погрешность полученного тренда для условий однородного пласта и работе возмущающей скважины с депрессией 2,5 МПа, находится в пределах 20%, что в абсолютной величине составляет порядка 10 дней.

В процессе запуска скважин АСУ ТП УКПГ/УППГ средствами СТКС осуществляет синхронное измерение кривых изменения заколонного давления на устье с заданным шагом дискретизации на устьях всех скважин и их дебит (в том числе и нулевой, пока скважина не введена в эксплуатацию). Получаемые результаты измерений АСУ ТП УКПГ/УППГ заносит в свою БД для последующего анализа функционирования скважин и комплексного анализа работы газоносного пласта с определением его параметров по результатам остановки-запуска куста газовых скважин для выбора режимов его эксплуатации до следующих испытаний.

Остальные скважины куста запускают в работу последовательно, регулируя их дебиты так, чтобы они соответствовали тем, которые были зафиксированы до остановки.

Порядок запуска скважин устанавливается по степени уменьшения степени перекрытия зон дренирования.

Для предварительной оценки изменения давления в каждой реагирующей скважине строится оценочная кривая реагирования ΔP(t) по формуле [см. например, с. 296, Гриценко А.И., Алиев З.С., Ермилов О.М. и др. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.]:

где i - число возмущающих скважин, i=1,2,3,…n. При этом в процессе расчетов необходимо учитывать последовательность ввода скважин в эксплуатацию, т.е. последовательное увеличение числа возмущающих скважин в процессе ввода куста в эксплуатацию, и соответственно снижение числа реагирующих скважин;

Рпл - пластовое давление, МПа;

Рз - забойное давление, МПа;

μ - коэффициент динамической вязкости газа, Па⋅с;

z - коэффициент сверхсжимаемости газа;

Рат - атмосферное давление, МПа;

Тпл - пластовая температура газа, К;

k - коэффициент проницаемости пласта, мкм2;

h - толщина пласта, м;

Тст - стандартная температура, К;

ΔQi - изменене дебита возмущающих скважин, м3/с;

k - коэффициент пьезопроводности (проводимость давления), характеризующий тип перераспределения давления, м2/с;

t - время работ скважин, с;

Ri - расстояние между возмущающими и наблюдательными скважинами, м.

При этом kh/μ и k берутся как средние их значения, характеризующие зону возмущающих и реагирующих скважин. Этот график используется для оценки пригодности измерительного средства, для регистрации кривой реагирования и определения продолжительности исследования. Минимальное значение изменения давления ΔРмин определяется, исходя из класса точности измерительного средства. Выбранное значение ΔРмин наносится на оценочную кривую реагирования ΔP(t) и определяется время исследования tмин, начиная с которого возможна регистрация кривой реагирования с заданной точностью. Очевидно, если изменение значения давления в течение времени Δt будет меньше, чем предел погрешности измерительных средств δ, тогда очевидно измерительное средство не может фиксировать изменения значения измеряемого параметра. Отсюда следует, что

где ΔР - изменение давления за промежуток времени Δt,

δ - предел погрешности используемых измерительных средств.

Используя секторную модель куста, на основании данных стабилизации дебитов и забойных давлений возмущающих скважин и данных стабилизации пластового давления в зоне реагирующих скважин производят уточнение эквивалентной проницаемости пласта в межскважинном пространстве.

Изобретение отработано и реализовано на газовых промыслах ООО «Газпром добыча Ямбург».

Применение заявленного способа позволяет вести параллельно стандартным ГДИ специальные исследования скважин (гидропрослушивание) с целью уточнения текущих параметров пласта, что существенно повышает оперативность управления промыслом и снижает издержки производства при добыче природного газа.

Использование АСУ ТП УКПГ/УППГ и средств СТКС для прослушивания скважин позволяет этот процесс и обработку получаемых данных автоматизировать и проводить в любое время года, что повышает оперативность получения дополнительной информации, необходимой для оптимальной разработки пласта, а также модели эксплуатации месторождения.

1. Способ прослушивания скважин на кустах газовых и газоконденсатных скважин месторождений Крайнего Севера, включающий регистрацию изменения заколонного давления на устье реагирующих скважин при проведении испытаний, отличающийся тем, что по данным стандартных газодинамических исследований (ГДИ) определяют коэффициенты фильтрационного сопротивления уравнения притока газа к забою скважин и производят сравнение указанных коэффициентов с их величинами, определенными расчетным путем на основе секторной модели куста скважин, построенной по данным геофизических исследований и лабораторных исследований керна, и если коэффициенты не совпадают, уточняют фильтрационно-емкостные свойства (ФЕС) секторной модели куста скважин, используя фактические данные по притоку газа к забою скважин, полученные по результатам ГДИ, добиваясь совпадения расчетных и фактических коэффициентов уравнения притока газа к забою скважин, и после этого уточнения, используя ФЕС, определяют радиус дренирования каждой скважины куста и выполняют ранжирование скважин по степени наложения контуров питания, определяют скважину, имеющую максимальную степень наложения площадей дренирования с остальными скважинами куста, после чего с помощью автоматизированной системы управления технологическими процессами установки комплексной/предварительной подготовки газа (АСУ ТП УКПГ/УППГ) производят остановку указанной скважины средствами систем телемеханики для кустов скважин (СТКС), и с этого момента АСУ ТП УКПГ/УППГ средствами СТКС с заданной дискретностью синхронно фиксирует изменение забойного давления прямым измерением забойного давления или расчетным методом, которое определяется по измеряемому заколонному давлению на устье на всех скважинах куста до его полной стабилизации, а остальные скважины, подключенные к газосборному шлейфу с помощью АСУ ТП УКПГ/УППГ, одновременно отключают от него средства СТКС для исключения искажения результатов измерений из-за их связи через газосборный шлейф, при этом фиксацию изменения забойного давления АСУ ТП УКПГ/УППГ также осуществляет средствами СТКС путем синхронного измерения кривых восстановления давления на всех скважинах с заданным шагом дискретизации и заносит их в свою базу данных (БД) для последующего сравнения и анализа разницы в поведении скважин, а также использования этих данных для уточнения модели разработки месторождения, после чего назначают порядок последовательности запуска скважин куста в эксплуатацию и индивидуальные временные интервалы между пусками скважин для вывода куста на заданный режим эксплуатации с учетом результатов всех предыдущих испытаний с момента ввода месторождения в эксплуатацию, при этом АСУ ТП УКПГ/УППГ средствами СТКС осуществляет запуск скважин в назначенной последовательности и выполняет синхронное измерение кривых изменения заколонного давления на устьях всех скважин куста и их дебит, и заносит их в свою БД для последующего анализа функционирования скважин и комплексного анализа работы газоносного пласта с определением его параметров по результатам остановки-запуска куста газовых скважин для выбора режимов его оптимальной эксплуатации до следующих испытаний, после чего с использованием секторной модели куста на основании данных стабилизации дебитов и забойных давлений возмущающих скважин и данных стабилизации пластового давления в зоне реагирующих скважин производят уточнение эквивалентной проницаемости пласта в межскважинном пространстве.

2. Способ по п. 1, отличающийся тем, что во избежание влияния на процесс восстановления давления исследуемых скважин, которое может оказать режим работы скважин близлежащих кустов за счет их взаимодействия через единую газосборную сеть, дебит указанных скважин АСУ ТП УКПГ/УППГ средствами СТКС регулируют таким образом, чтобы он оставался постоянным.

3. Способ по п. 1, отличающийся тем, что оценку времени фиксации возмущения давления в реагирующей скважине с момента пуска возмущающей скважины производят по параметрам: L - расстояние между возмущающей и реагирующей скважинами, м, PERM - абсолютная проницаемость пласта, мД, используя, например, зависимость

Т=(a*Lb)*PERMd,

где Т - время, за которое изменение давления, вызванное пуском возмущающей скважины, достигнет реагирующей скважины, сутки;

a, b, d - коэффициенты, определяемые из характеристик продуктивного пласта и используемой для его описания секторной моделью.



 

Похожие патенты:

Предложены способ и устройство для управляемого компьютером определения рабочих параметров вычислительной модели скважинного оборудования для бурения скважин в формации.

Изобретение относится к области бурения нефтяных и газовых скважин и может быть использовано для оптимального управления процессом. Техническим результатом является увеличение точности оптимального управления режимом бурения и увеличение механической скорости проводки скважины за счет оптимизации управления по математической модели с тремя регулируемыми параметрами и контролем достижения оптимума по минимуму вибрации бурильной колонны.

Изобретение относится к калибровке программ моделирования бурения и к оценке растяжения труб с целью выполнения коррекций в отношении измерений наклона и азимута и к оценке скручивания труб для выполнения коррекций в настройках передней поверхности режущего инструмента в режиме реального времени.

Изобретение относится к способам гидравлического разрыва пласта за счет поддержания неоднородности текучей среды с проппантом в процессе ее закачки в трещины продуктивного пласта.

Изобретение относится к устройствам общего управления технологическими процессами на различных объектах, функционирование которых предусматривает необходимость наблюдения текущего состояния и управления траекторией развития.

Изобретение относится к преобразовательной технике, предназначенной для имитации характеристик аккумуляторных батарей, и может быть использовано при испытаниях систем электропитания, работающих в режиме заряда и разряда.

Изобретение относится к производству деталей. Техническим результатом является повышение точности, а также упрощение сборки деталей.

Группа изобретений относится к горному делу и может быть применена при гидроразрыве пластов. Предлагается способ выполнения гидроразрыва на буровой площадке в подземном пласте с сетью трещин и с естественной трещиноватостью.

Изобретение относится к системе и способу для мониторинга и диагностики резервуаров. Техническим результатом является повышение эффективности мониторинга и диагностики резервуаров.

Изобретение относится к геостатистическим технологиям и, в частности, к системам компьютерного геомоделирования. Техническим результатом является автоматизированный выбор вариантов реализации фациальной модели на основе кумулятивной функции распределения полезных объемов фации.

Изобретение относится к области исследования капиллярных свойств пород-коллекторов нефти и газа. Заявленный капилляриметр для проведения исследований в барических условиях содержит блок кернодержателей, блок создания, регулировки и поддержания давления гидрообжима, блок создания, регулировки и поддержания давления на входе в кернодержатели, сепаратор, блок измерения электрического сопротивления образцов в кернодержателях, при этом блок кернодержателей представляет собой n секций, каждая их которых состоит из m кернодержателей, каждый из которых снабжен манжетой из витона и имеет электрическую изоляцию входного плунжера от корпуса, все кернодержатели в одной секции во время эксперимента поддерживаются при одинаковом давлении обжима и одинаковом капиллярном давлении, причем в разных секциях могут быть установлены разные значения давлений обжима и капиллярного давления в отдельных кернодержателях, блок создания, регулировки и поддержания давления гидрообжима состоит из масляного пневмонасоса и ручного пресса, к каждой секции кернодержателей присоединен гидроаккумулятор, представляющий собой сосуд высокого давления, разделенный эластичной мембраной, в одной половине которого находится масло, а в другой азот при давлении обжима, блок создания, регулировки и поддержания давления на входе в кернодержатели состоит из регуляторов давления, количество которых соответствует числу планируемых точек на графике капиллярного давления водонасыщенности, подключенных к линии сжатого воздуха для создания давлений, сепаратор представляет собой ряд модулей, по числу секций с кернодержателями, при этом каждый модуль состоит из стеклянных градуированных трубок, жестко закрепленных в вертикальном положении, в нижние концы трубок вставлены штуцеры с резиновыми уплотнительными кольцами, к которым подведены трубки с выхода кернодержателей, высоту и внутренний диаметр стеклянных мерных трубок выбирают, исходя из предполагаемого полного объема выходящей воды и среднего объема воды, выделяющейся на одной ступени капиллярного давления, блок измерения электрического сопротивления образцов в кернодержателях содержит прибор для измерения электрического сопротивления.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности.

Изобретение относится к области геологии и может быть использовано для моделирования многофазного потока текучей среды. Структура пор горных пород и других материалов может быть определена посредством микроскопии и подвержена цифровому моделированию для определения свойств потоков текучей среды, проходящих сквозь материал.

Изобретение относится к области геологии и может быть использовано для моделирования многофазного потока текучей среды. Структура пор горных пород и других материалов может быть определена посредством микроскопии и подвержена цифровому моделированию для определения свойств потоков текучей среды, проходящих сквозь материал.

Предлагаемое изобретение относится к области исследований параметров грунтов, а конкретней к способам измерения коэффициента фильтрации плывунного грунта. Заявленный способ измерения коэффициента фильтрации плывунного грунта, подверженного воздействию раствора глифосата, по которому через образец грунта пропускают поток воды, на поверхности образца грунта размещают грузик, фиксируют начало погружения грузика, измеряют параметры образца и потока воды, по измеренным показателям рассчитывают коэффициент фильтрации грунта, при этом фиксируют величину концентрации глифосатав в потоке воды, прошедшем через образец грунта, и при снижении величины концентрации более 10% от начального значения, в поток воды, направляемый в образец грунта, вводят раствор глифосата, восстанавливая величину его концентрации в потоке воды, прошедшем через образец грунта до начального значения.

Изобретение относится к области исследований показателей качества материалов и изделий, в частности - к оценке защитных свойств воздухопроницаемых материалов на основе активированных углеродсодержащих сорбентов при воздействии паров химических веществ.

Изобретение относится к области исследования фазовых проницаемостей коллекторов нефти и газа. Техническим результатом является повышение точности измерения электрического сопротивления образца, что в свою очередь обеспечивает повышение точности определения его водонасыщенности.

Изобретение может быть использовано для определения сплошности диэлектрических (например, полимерных) покрытий на металлическом прокате (например, стальном) в процессе выполнения деформации образцов с диэлектрическими покрытиями.

Изобретение относится к материалам и технологиям, применяемым при обработке подземных пластов, в частности к инструментальным методам и устройствам, подходящим для моделирования прохождения жидкостей для обработки скважины через трещину, образованную в подземном пласте.

Изобретение относится к способу исследования буровых скважин и к бурильной системе, а также к устройству для исследования скважин. Способ исследования буровых скважин содержит первый этап обеспечения для обеспечения бурового инструмента (1), содержащего по меньшей мере одну бурильную штангу (2) и узел (3) бурового долота, второй этап обеспечения для обеспечения инструмента для исследования скважин, содержащего сенсорное устройство для измерения параметров скважины (6), этап размещения для размещения инструмента для исследования скважин внутри бурового инструмента (1), этап бурения для бурения с помощью бурового инструмента (1) скважины (6) посредством процесса бурения, включающего в себя, по меньшей мере, ударное бурение, этап измерения для измерения параметров скважины (6) посредством инструмента для исследования скважин с получением данных о скважине (6), и этап обработки для обработки данных о скважине (6) устройством (7) обработки данных, чтобы получить информацию о состоянии скважины.

Изобретение относится к газовой промышленности и может быть использовано для исследования проницаемости пластов газовых и газоконденсатных месторождений Крайнего Севера, оценки газогидродинамической взаимосвязи между отдельными скважинами. Техническим результатом является повышение оперативности получения информации о состоянии разработки месторождения и информативности прослушивания куста скважин в реальном масштабе времени на газовых и газоконденсатных месторождениях. По данным стандартных газодинамических исследований определяют коэффициенты фильтрационного сопротивления уравнения притока газа к забою скважин и производят сравнение указанных коэффициентов с их величинами, определенными расчетным путем на основе секторной модели куста скважин, построенной по данным геофизических исследований и лабораторных исследований керна, и если коэффициенты не совпадают, уточняют фильтрационно-емкостные свойства секторной модели куста скважин используя фактические данные по притоку газа к забою скважин, полученные по результатам ГДИ, добиваясь совпадения расчетных и фактических коэффициентов уравнения притока газа к забою скважин, и после этого уточнения, используя ФЕС определяют радиус дренирования каждой скважины куста и выполняют ранжирование скважин по степени наложения контуров питания, определяют скважину, имеющую максимальную степень наложения площадей дренирования с остальными скважинами куста, после чего с помощью автоматизированной системы управления технологическими процессами установки комплекснойпредварительной подготовки газа производят остановку указанной скважины средствами систем телемеханики для кустов скважин, и с этого момента АСУ ТП УКПГУППГ средствами СТКС с заданной дискретностью синхронно фиксирует изменение забойного давления прямым измерением забойного давления или расчетным методом, которое определяется по измеряемому заколонному давлению на устье на всех скважинах куста до его полной стабилизации, а остальные скважины, подключенные к газосборному шлейфу с помощью АСУ ТП УКПГУППГ, одновременно отключают от него средства СТКС для исключения искажения результатов измерений из-за их связи через газосборный шлейф. При этом фиксацию изменения забойного давления АСУ ТП УКПГУППГ также осуществляет средствами СТКС путем синхронного измерения кривых восстановления давления на всех скважинах с заданным шагом дискретизации и заносит их в свою базу данных для последующего сравнения и анализа разницы в поведении скважин, а также использования этих данных для уточнения модели разработки месторождения, после чего назначают порядок последовательности запуска скважин куста в эксплуатацию и индивидуальные временные интервалы между пусками скважин для вывода куста на заданный режим эксплуатации с учетом результатов всех предыдущих испытаний с момента ввода месторождения в эксплуатацию, при этом АСУ ТП УКПГУППГ средствами СТКС осуществляет запуск скважин в назначенной последовательности и выполняет синхронное измерение кривых изменения заколонного давления на устьях всех скважин куста и их дебит, и заносит их в свою БД для последующего анализа функционирования скважин и комплексного анализа работы газоносного пласта с определением его параметров по результатам остановки-запуска куста газовых скважин для выбора режимов его оптимальной эксплуатации до следующих испытаний. После чего с использованием секторной модели куста на основании данных стабилизации дебитов и забойных давлений возмущающих скважин и данных стабилизации пластового давления в зоне реагирующих скважин производят уточнение эквивалентной проницаемости пласта в межскважинном пространстве. 2 з.п. ф-лы, 3 ил., 1 табл.

Наверх