Способ определения содержания частиц сажи в выхлопной струе авиационного газотурбинного двигателя в полёте



Способ определения содержания частиц сажи в выхлопной струе авиационного газотурбинного двигателя в полёте
Способ определения содержания частиц сажи в выхлопной струе авиационного газотурбинного двигателя в полёте

Владельцы патента RU 2645173:

Акционерное общество "Лётно-исследовательский институт имени М.М. Громова" (RU)

Изобретение относится к способу определения частиц сажи в выхлопной струе газотурбинного двигателя (ГТД) в полете. Для осуществления способа измеряют в полете ток нейтрализации с электростатических разрядников самолета электрических зарядов, генерируемых частицами сажи в выхлопной струе газа ГТД, определяют расход газа через сопло двигателя, измеряют значение электризации аэрозолей атмосферы за счет соприкосновения их с поверхностями самолета, определяют среднее значение плотности электрического заряда струи газа на всех режимах полета, определяют содержание частиц сажи в струе по градуированным зависимостям «чисел дымности» от среднего значения плотности электрического заряда и влияния аэрозолей атмосферы. Обеспечивается повышение эффективности определения содержания частиц сажи в выхлопной струе газа ГТД при различных метеорологических условиях. 2 ил., 1 пр.

 

Изобретение относится к исследованию свойств веществ, а именно к способу определения содержания частиц сажи в выхлопной струе газа авиационного газотурбинного двигателя (ГТД) самолета при расширении метеорологических условий испытаний в полете и может быть использовано для определении уровня дымления двигателя самолета в полете.

Было обнаружено наличие электрических зарядов на вылетающих из газотурбинных двигателей частицах сажи, причем концентрация частиц в выхлопной струе оказалась связанной со средней плотностью электрического заряда струи на всех режимах полета.

Выброс электрических зарядов вызывает образование адекватного заряда на корпусе самолета, причем с обратным знаком. Последний, суммируясь с зарядом, обусловленным соприкосновением корпуса самолета с аэрозолями атмосферы: частицами облаков и осадков - (так называемая внешняя электризация) стекает через электростатические разрядники самолета в атмосферу. Для разделения вкладов в электростатический заряд на корпусе самолета, а следовательно, и вкладов в токи электростатических разрядников обоих видов электризаций, следует установить снаружи самолета в месте контакта с аэрозолями атмосферы специальную «токоприемную» пластину, по данным с которой можно рассчитать ток зарядки «внешней» электризации.

Известны устройства для измерения содержания твердых частиц в выхлопах газах двигателя фотоэлектрическим методом. Фотоэлектрические устройства используют оптическую плотность выхлопных газов, которая пропорциональна концентрации сажи. Оптическая плотность определяется при пропускании выхлопных газов через специальную магистраль или непосредственно путем измерений на выходе двигателя, Stachame Т. Betz Н. Study of Exhaust Visible Smoke from Aircraft Jet Engines SAF Prepz №710428, 1971 г., «Образование и выгорание сажи при сжигании углеводородных топлив». –М.:Машиностроение. 1989 г.

Недостатком фотоэлектрических устройств является низкая точность, их применение связано с большими затратами и необходимостью решения сложных технических проблем, особенно для измерений в полете.

Известен способ оценки склонности углеводородного топлива к сажеобразованию при горении топлива в лабораторных условиях путем сравнения ламинарного диффузионного пламени испытуемого и эталонного топлива в течение фиксированных отрезков времени. Этот способ не может быть реализован при экспериментах на двигателях самолетов ни в полете, ни на земле (Патент на изобретение RU №2199737 С2, кл. G01N 33/22, опубл. 23.04.2001 г.).

Известен способ определения содержания твердых частиц в запыленных газах путем измерения зарядов частиц и определение по результатам измерений содержания твердых частиц (А.С. СССР №240325, кл. G01N 15/00, опубл. 21.03.1969 г.)

Этот способ обладает невысокой эффективностью при использовании его для изучения струй ГТД, так как дает лишь локальные значения регистрации заряженных частиц. Кроме того, его использование связано с необходимостью разработки специальных датчиков и достаточно сложной экспериментальной аппаратуры.

Наиболее близким к предложенному способу является «Способ определения содержания твердых частиц в газовой струе», предлагающий замерять в полете токи нейтрализации электрических зарядов с электростатических разрядников самолета и замерять расход воздуха через двигатель с последующим определением содержания твердых частиц сажи по градуируемым зависимостям числа дымности от удельного заряда струи из двигателя (А.С. СССР №1019300А, опубл. 23.05.83 г.).

Недостатком способа является ограничение применения при полетах в облаках и осадках, поскольку в таких полетах имеет место электризация корпуса самолета за счет контакта с аэрозолями атмосферы. Указанная электризация увеличивает значение токов с электростатических разрядников, которые, суммируясь с токами, вызванными генерируемыми двигателем заряженными частицами, и приведет к ошибке при определении содержания твердых частиц в газовой струе.

Технический результат, на достижение которого направлено изобретение, заключается в повышении эффективности способа определения содержания частиц сажи в выхлопной струе газа ГТД при расширении метеорологических условий испытаний в полете.

Для достижения названного технического результата в предлагаемом способе определения содержания частиц сажи в выхлопной струе авиационного ГТД в полете, включающем измерение в полете тока нейтрализации электрических зарядов с электростатических разрядников самолета, генерируемыми ГТД заряженными частицами сажи в выхлопной струе газа, определение расхода газа через сопло двигателя Gг[кГм-3], в виде суммы расхода воздуха через двигатель и расхода топлива с последующим определением содержания частиц сажи в струе по градуируемым зависимостям «числа дымности» от среднего значения плотности электрического заряда выхлопной струи газа двигателя, при этом содержание частиц сажи в струе определяют в полете самолета в атмосфере с аэрозолями. Для этого, после предварительных испытаний на обледенение, определяют площадь зон захвата самолетом аэрозолей атмосферы, снаружи самолета на внешней передней кромке крыла или оперения устанавливают токоприемную пластину. Во время полета определяют ток электризации самолета аэрозолями атмосферы, возникающий за счет соприкосновения лобовых поверхностей корпуса самолета с аэрозолями атмосферы. Измеряют локальный ток In заряжения токоприемной пластины и определяют ток «внешней» электризации Iв самолета по формуле:

где In - локальный ток заряжения токоприемной пластины;

S - площадь захвата лобовыми поверхностями корпуса самолета аэрозолей атмосферы;

Sn - площадь токоприемной пластины.

Токи нейтрализации электрических зарядов Ii с электростатических разрядников поступают на входы вычислителя, в котором суммируют и определяют ток Iр по формуле: Iр≅Σ(Ii), где i - число всех электростатических разрядников самолета.

Ток электризации самолета I∂, вызванный генерируемыми ГТД заряженными частицами сажи, вычисляют по формуле: I∂≅(Iр-Iв), [мкА] После этого в вычислителе определяют среднее значение плотности электрического заряда струи газа на всех режимах полета по формуле:

Затем определяют содержание частиц сажи в струе по градуированным зависимостям «числа дымности - SN», безразмерной величины, от среднего значения плотности (ρср) электрического заряда струи газа SN=F(ρcp), где «число дымности - SN» нормировано для каждого типа ГТД по методике ICAO. Оценивают влияние на дымность наличия на входе в двигатель аэрозолей атмосферы.

Предлагаемый способ поясняется чертежами, где:

на фиг. 1 показана блок-схема устройства, размещенного на самолете, для осуществления предложенного способа;

на фиг. 2 - зависимость числа дымности - SN от средней плотности электрического заряда ρср в струе газа.

На блок-схеме (фиг. 1) показаны расположенные внутри корпуса 1 самолета: датчик 2 расхода газа, проходящего через сопло двигателя 6, и измерительная схема 5. Снаружи корпуса установлены электростатические разрядники 3. На внешней передней кромке крыла или оперения установлена токоприемная пластина 4. Выход датчика 2 расхода газа через сопло двигателя 6, выходы электростатических разрядников 3 самолета 1, токоприемной пластины 4 связаны с входами измерительной схемы 5, выполненной в виде вычислителя.

Способ осуществляется следующим образом.

При полете самолета в атмосфере с аэрозолями определяют ток электризации самолета с ГТД аэрозолями атмосферы, возникающий за счет соприкосновения корпуса самолета с аэрозолями атмосферы, для этого после предварительных испытаний на обледенение определяют площадь зон захвата самолетом аэрозолей атмосферы. Снаружи самолета на внешней передней кромке крыла или оперения устанавливают токоприемную пластину 4, фиг. 1. Измеряют локальный ток In заряжения токоприемной пластины 4 и определяют ток «внешней» электризации Iв самолета по формуле (1). Токи нейтрализации электрических зарядов Ii с электростатических разрядников поступают на входы вычислителя 5, в котором суммируют и определяют ток Iр по формуле: Iр≅Σ(Ii), где i-число всех электростатических разрядников самолета.

Ток электризации самолета I∂, вызванный генерируемыми ГТД заряженными частицами сажи, вычисляют в вычислителе 5 по формуле:

I∂≅(Iр-Iв), [мкА],

Измеряют расход газа Gг через двигатель (датчик 2).

В вычислителе 5 определяют среднее значение плотности электрического заряда струи газа на всех режимах полета по формуле (2) и определяют «число дымности» -SN, введенная по методике ICAO безразмерная величина. В вычислителе 5 последовательно осуществляют операции вычисления по формуле (1), затем по формуле (2) определяют и интерпретируют среднее значение плотности электрического заряда струи газа на всех режимах полета ρср в искомые значения универсальной градуируемой зависимости SN=F(ρcp) по графику (фиг. 2).

Пример

Предложенный способ был опробован в ходе летных исследований. Определяют ток зарядки самолета в атмосфере в полете в облаках или осадках. Для этого снаружи самолета на внешней передней кромке крыла или оперения устанавливают токоприемную пластину. Измеряют локальный ток заряжения токоприемной пластины аэрозолями атмосферы - In и определяют ток «внешней» электризации Iв самолета по формуле (1).

Расход газа через сопло двигателя Gг определяется как сумму расхода воздуха через двигатель и расхода топлива. Расход воздуха через двигатель определяется по снятой на стенде дроссельной характеристике и измеренному значению приведенных оборотов. Расход топлива измеряется топливным расходомером.

В наземных условиях с применением фильтрационного устройства была получена универсальная градуируемая зависимость SN=F(ρcp), (фиг. 2), где SN - безразмерная величина, введенная по методике ICAO, называемая «числом дымности» и нормированная для каждого типа ГТД.

Таким образом, предлагаемый способ определения содержания частиц сажи в выхлопной струе газа авиационного газотурбинного двигателя самолета в полете позволяет существенно расширить метеорологические условия проведения испытаний.

Способ определения содержания частиц сажи в выхлопной струе авиационного газотурбинного двигателя (ГТД) в полете, включающий измерение в полете самолета с ГТД тока нейтрализации электрических зарядов с электростатических разрядников самолета, генерируемыми ГТД заряженными частицами сажи в выхлопной струе газа двигателя, определение расхода газа через сопло двигателя Gr [кгм-3] в виде суммы расхода воздуха через двигатель и расхода топлива, с последующим определением содержания частиц сажи в струе по градуируемым зависимостям «числа дымности» от среднего значения плотности электрического заряда выхлопной струи газа двигателя, отличающийся тем, что определяют содержание частиц сажи в струе при полете самолета с ГТД в атмосфере с аэрозолями, для этого, после предварительных испытаний на обледенение, определяют площадь зон захвата самолетом аэрозолей атмосферы S, снаружи самолета на внешней передней кромке крыла или оперения устанавливают токоприемную пластину, во время полета определяют ток электризации самолета аэрозолями атмосферы, возникающий за счет соприкосновения лобовых поверхностей корпуса самолета с аэрозолями атмосферы, измеряют локальный ток In заряжения токоприемной пластины и определяют ток «внешней» электризации Iв самолета по формуле:

где In - локальный ток заряжения токоприемной пластины;

S - площадь захвата лобовыми поверхностями корпуса самолета аэрозолей атмосферы;

Sn - площадь токоприемной пластины;

токи нейтрализации электрических зарядов Ii с электростатических разрядников поступают на входы вычислителя, в котором суммируются и определяют ток Ip по формуле: Ip≅Σ(Ii), где i - число всех электростатических разрядников самолета,

ток электризации самолета I∂, вызванный генерируемыми ГТД заряженными частицами сажи, вычисляют в вычислителе по формуле:

I∂≅(Iр-Iв), [мкА],

определяется среднее значение плотности электрического заряда струи газа на всех режимах полета по формуле:

затем определяют содержание частиц сажи в струе по градуированным зависимостям «числа дымности - SN» (безразмерная величина) от среднего значения плотности (ρср) электрического заряда струи газа SN=F(ρcp) и влияние на дымность наличия на входе в двигатель аэрозолей атмосферы.



 

Похожие патенты:

Изобретение относится к электротехническим измерениям и предназначено для экспрессного наблюдения изменений поверхностной плотности заряда и его среднего положения в плоских диэлектриках при различных воздействиях на его поверхность.

Изобретение относится к электротехническим измерениям и предназначено для измерения поверхностной плотности полного (реального) заряда диэлектрических материалов плоской формы.
Изобретение относится к измерительной технике, а именно к средствам определения электрофизических параметров диэлектрических композиционных слоев на проводящей подложке, а также к способам измерения плотности электростатического заряда материалов.

Использование: для определения эффективных зарядов ионов в жидких металлических растворах. Сущность изобретения заключается в том, что способ определения эффективного заряда ионов в жидких металлических растворах включает получение исследуемого жидкого металлического раствора в результате контактного плавления образцов, составляющих эвтектическую систему, при одновременном пропускании электрического тока, отличающийся тем, что в процессе роста жидкой прослойки электрический ток пропускают в направлении, ускоряющем рост жидкой прослойки по сравнению с бестоковым, диффузионным, режимом, а сила тока уменьшается обратно пропорционально квадратному корню из времени, чем достигается псевдодиффузионный режим роста жидкой прослойки, при котором протяженность жидкой прослойки растет пропорционально квадратному корню из времени, что позволяет определить эффективные заряды ионов в полученном жидком металлическом растворе путем сравнения скорости роста жидкой прослойки в псевдодиффузионном и диффузионном режимах.

Изобретение относится к способам получения водорода в местах его применения, минуя стадию его хранения, и касается способа определения количества свободного углерода при конверсии углеводородов в конверторах.

Изобретение относится к области автомобилестроения, в частности к системам двигателя с датчиком влажности. Представлены способы и системы эксплуатации двигателя с емкостным датчиком влажности.

Изобретение относится к технологии получения высокочувствительного резистивного газового сенсора на озон на основе оксидных пленок в системе In2O3-SnO2. Способ получения наноструктурированного газового сенсора на озон включает совместную кристаллизацию растворов солей или их соосаждение, при этом в качестве исходных реагентов используют растворы солей-прекурсоров (SnSO4, In(NO3)3*xH2O), получают оксидные порошки методом золь-гель совместной кристаллизации и соосаждения, после чего полученные порошки прокаливают при 120-400°С и обжигают при 650°С до получения твердого раствора на основе In2O3 с размером ОКР ~ 27-29 нм, затем приготавливают пасту со связующим на основе этилцеллюлозы [С6Н7O2(ОН)3-x(ОС2Н5)x]n и скипидара, причем в первой серии к навеске порошка добавляют 10 мас.% этилцеллюлозы и 5 мл скипидара, а для второй серии порошок смешивают с 30 мас.% этилцеллюлозы и 8 мл скипидара, затем после интенсивного перемешивания полученную пасту наносят на корундовые подложки трафаретной печатью, после чего образцы обжигают при 700°С в течение 5 часов на первом этапе и затем при 1100°С в течение 3 часов.

Изобретение относится к устройствам для определения влажности зерна. Каждый зерновой бункер содержит блок сбора данных, соединенный с множеством емкостных кабелей для измерения влажности, причем каждый содержит множество сенсорных узлов, расположенных вдоль него с шагом.

Изобретение относится к детекторному устройству, а именно к детекторам для спектрометров, которые могут быть использованы для обнаружения таких веществ как взрывчатка, наркотики, отравляющих веществ кожно-нарывного и нервнопаралитического действия и т.п.

Изобретение относится к методам неразрушающего контроля и позволяет обнаруживать дефекты малых размеров и глубокого залегания в сварных швах, соединяющих, преимущественно, неферромагнитные материалы.

Группа изобретений относится к оборудованию для проведения исследований в области медицины и физиологии. Коннектор для хронической стимуляции электровозбудимых клеток содержит основание и крышку, выполненные с возможностью герметичного соединения друг с другом, микроэлектродную матрицу, выполненную в виде массива из металлических микроэлектродов, сформированных на подложке, с чашей для культуры клеток и с контактными площадками по периметру, соединенными посредством токопроводящих дорожек с микроэлектродами, и плату с отверстием, с выступом, с прижимными пружинными контактами, соединенными токопроводящими дорожками.

Изобретение относится к способу контроля состояния впитывания впитывающего изделия, содержащему предоставление блока регистратора, получение состояния впитывания впитывающего изделия и запись данных, указывающих полученное состояние впитывания впитывающего изделия, в блок регистратора, причем получение состояния впитывания впитывающего изделия и запись данных, указывающих полученное состояние впитывания впитывающего изделия, в блок регистратора выполняются непрерывно в течение периода контроля впитывающего изделия.

Использование: для определения адгезионной прочности несплошных наноструктурированных покрытий. Сущность изобретения заключается в том, что способ определения адгезионной прочности покрытий к подложке включает выбор области покрытия, проведение воздействия на выбранную область, регистрацию данных о воздействии, анализируя которые судят об адгезионной прочности покрытий к подложке, при выборе области покрытия выделяют ряд участков покрытия, содержащих в совокупности по меньшей мере семь одиночных одномерных пьезоэлектрических нанообъектов, на каждый из выбранных участков проводят воздействие электрическим полем в режиме силовой микроскопии пьезоотклика, при этом регистрируют в виде изображения топографии участков и изображения пьезоотклика, визуально анализируя которые выявляют наличие ступенчатых переходов на изображениях пьезоотклика, которые характеризуют разделение одиночных одномерных пьезоэлектрических нанообъектов выбранных участков на часть нанообъектов, жестко закрепленную на подложке, и часть нанообъектов, незакрепленную на подложке, по изображениям топографии выбранных участков определяют общее количество содержащихся на участках нанообъектов и по изображениям пьезоотклика определяют количество нанообъектов на участках, характеризующихся ступенчатым переходом, по отношению (А) между общим количеством выявленных нанообъектов и количеством нанообъектов, характеризующихся ступенчатым переходом, судят об адгезионной прочности всего покрытия, при А<0,3 определяют отсутствие адгезионной прочности, при А>0,7 определяют максимальную адгезионную прочность.

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний турбореактивных двигателей (ТРД). Способ испытания ТРД включает подогрев и наддув воздуха на входе в двигатель.

Изобретение относится к способу определения частиц сажи в выхлопной струе газотурбинного двигателя в полете. Для осуществления способа измеряют в полете ток нейтрализации с электростатических разрядников самолета электрических зарядов, генерируемых частицами сажи в выхлопной струе газа ГТД, определяют расход газа через сопло двигателя, измеряют значение электризации аэрозолей атмосферы за счет соприкосновения их с поверхностями самолета, определяют среднее значение плотности электрического заряда струи газа на всех режимах полета, определяют содержание частиц сажи в струе по градуированным зависимостям «чисел дымности» от среднего значения плотности электрического заряда и влияния аэрозолей атмосферы. Обеспечивается повышение эффективности определения содержания частиц сажи в выхлопной струе газа ГТД при различных метеорологических условиях. 2 ил., 1 пр.

Наверх