Способ контроля телеметрической информации

Изобретение относится к технологиям многопараметрического контроля телеметрической информации. Техническим результатом является расширение арсенала технических средств контроля телеметрической информации. Предложен способ контроля телеметрической информации. Способ основан на сравнении реальных значений телеметрических параметров с их эталонными значениями, представленными в виде кадров с символьной информацией. Согласно способу кадры формируют в виде слоев, причем один из слоев отображают черными символами на белом фоне, а другой слой - белыми символами на черном фоне. Слой с реальными значениями телеметрических параметров накладывают на слой с эталонной значениями, изменяют степень непрозрачности слоя с реальными значениями до появления однотонного серого изображения, по которому судят о совпадении реальных и эталонных значений. Фиксируют появление белых и черных фрагментов символов на сером фоне, по которым судят о несоответствии сравниваемых значений. 1 з.п. ф-лы, 7 ил.

 

Настоящее изобретение относится к области информационных технологий и вычислительной техники. Способ предназначается преимущественно для многопараметрического контроля телеметрической информации. Изобретение может найти применение в различных областях науки и техники, производственных процессах, а именно в системах автоматики, при решении задач дистанционного контроля и управления объектами, анализа ТМИ.

Известен способ (см. Автоматическая аппаратура контроля радиоэлектронного оборудования / Под ред. Пономарева Н.Н. - М.: Советское радио, 1975, с. 5-10 и 293-318) [1], включающий выбор с помощью коммутатора параметров, измерение параметров, преобразование параметров в цифровые данные, удобные для обработки на ЭВМ, регистрацию этих данных и их анализ, а также отображение и документирование результатов анализа.

Недостатком данного известного способа является его узкая специализация, ограниченная возможностями контроля технического состояния радиоэлектронного оборудования, что является недостаточным для оценки эффективности больших систем.

Известен способ (см. Патент РФ №2210112 - Унифицированный способ Чернякова / Петрушина для оценки эффективности больших систем, МПК: G06F 17/00, дата приоритета 07.06.2001) [2] оценки эффективности больших систем, включающих большое число контролируемых параметров.

Недостатком данного известного способа является его относительно невысокая достоверность и оперативность оценки состояния многопараметрических систем (МПС).

Известен способ (см. Патент РФ №2427875 - Способ контроля и анализа многопараметрических систем, дата приоритета 29.01.2010) [3], который позволяет отказаться от традиционного алгоритмического анализа МПС. Процедура оценки выполняется на основе массива данных, полученных от МПС, выстраивая самоорганизующийся алгоритм контроля параметров МПС. Массив нормативов, необходимый для контроля, содержит информацию о соответствии каждому из параметров установленному значению, тем самым представляя собой множество параметров системы. Элементы этого оценочного множества могут принимать два оценочных значения: «соответствует, не соответствует».

Недостаток состоит в том, что для его реализации требуется разработка спецматобеспечения (СМО) для проведения сравнительной оценки каждого из контролируемых параметров с их эталонными значениями в реальном времени.

При контроле бортовых систем КА количество контролируемых параметров может составлять несколько тысяч. Так, например, на корабле Союз их число составляет величину порядка 1000, на российском сегменте международной космической станции около 25000 параметров (см. В.А. Соловьев, Л.Н. Лысенко, В.Е. Любинский. Управление космическими полетами, МГТУ им. Н.Э. Баумана, М., 2009) [4].

Для разработки, сертификации и внедрения СМО требуются значительные материальные и временные затраты. Дополнительные трудности могут возникнуть для внедрения такого СМО непосредственно на борту КА, особенно для вновь разработанных или аварийных режимов. Кроме того, для бортового применения могут возникнуть ограничения по бортовым вычислительным средствам (память, быстродействие…), связанные со значительными естественными ограничениями по массе и объему аппаратуры.

В [4] описаны способы контроля и анализа телеметрической информации, получаемой с борта космического аппарата. В качестве наиболее близкого анализа (прототипа) выбран способ, основанный на сравнении реальной информации с эталоном, представленным в виде информации со значениями контролируемых параметров. В качестве эталонов используются результаты математического моделирования операций КА. Процесс контроля заключается в последовательном сравнении каждого контролируемого параметра с его эталонным значением. Сравнение осуществляется либо специалистом-оператором или автоматически с использованием разработанных алгоритмов анализа.

Проведению детального анализа бортовых систем КА предшествует сравнительный контроль соответствующих ТМ параметров, характеризующих их состояние на предмет соответствия или несоответствия реальных значений параметров эталонным значениям. В случае соответствия, дальнейший анализ не требуется. При обнаружении несоответствий потребуется дополнительный анализ для идентификации возможной нештатной ситуации. Проведение сравнительного контроля ТМИ занимает подавляющую часть времени и является довольно рутинной операцией, не требующей особого интеллекта, но не снижающей ответственности и требующей постоянного внимания. Операторы центра управления манипулируют сотнями параметров в режиме реального времени. Ошибки обходятся очень дорого. Наиболее распространенные способы оценки контролируемых параметров заключаются в сравнении полученных данных с матрицей нормальных состояний или с данными, полученными на математических моделях.

В известных способах контроля отображение результатов осуществляется в виде таблиц (формуляров), в которых представлены цифровые значения параметров, соответствующие определенному значению времени.

Для многопараметрических систем при реализации известных способов требуется большое количество систем отображения информации, что обуславливается ограничением максимального размера экрана видеотерминала и минимального размера формуляра таблицы данных из-за потери наглядности. Это затрудняет возможность визуального сравнительного анализа множества параметров одновременно. При многооконном отображении формуляров на одном экране приходится либо уменьшать размер формуляров либо накладывать их друг на друга, при этом часть информации обрезается (скрывается) верхним формуляром, а качество контроля снижается.

В процессе управления полетом КА приходится осуществлять оперативный анализ больших объемов ТМИ в реальном масштабе времени. Информацию в ЦУП отображают в виде таблиц (формуляров), в которых представлены значения контролируемых ТМ параметров. Пример таких формуляров представлен на фиг. 1. Как правило, анализ информации осуществляют путем сравнения текущих значений параметров с их ожидаемыми (эталонными) значениями. Эталонные значения приводятся в инструкциях операторов для различных бортовых операций. Одной из наиболее сложных с точки зрения оперативного контроля операций является закладка на борт КА больших массивов цифровой информации, значения которых становятся известными незадолго до закладки. Требуется значительное время для поочередного сравнения каждого параметра с эталоном, переключая взгляд с одного формуляра на другой. Кроме затрат времени, этот процесс не исключает ошибок при большом количестве параметров.

Технический результат - повышение оперативности и надежности контроля ТМИ, а также снижение затрат на разработку спецматобеспечения.

Технический результат достигается тем, что в способе контроля телеметрической информации, основанном на сравнении реальных значений телеметрических параметров с их эталонными значениями, представленными в виде кадров с символьной информацией, кадры формируют в виде слоев, причем один из слоев отображают черными символами на белом фоне, а другой слой - белыми символами на черном фоне, слой с реальными значениями телеметрических параметров накладывают на слой с эталонной значениями, изменяют степень непрозрачности слоя с реальными значениями до появления однотонного серого изображения, по которому судят о совпадении реальных и эталонных значений, фиксируют появление белых и черных фрагментов символов на сером фоне, по которым судят о несоответствии сравниваемых значений, при появлении несоответствий степень непрозрачности слоя с реальными значениями изменяют до появления полного изображения символов реальных значений аномальных параметров, и соответствующих им названий, которые фиксируют для последующего определения причин несоответствий.

Предлагаемый способ позволяет также в режиме интегрального контроля освободить значительную площадь экрана для другой информации путем уменьшения масштаба контролируемого формата. При наличии однотонного серого изображения уменьшают масштаб отображаемых значений, а при появлении белых и черных фрагментов масштаб увеличивают. Это не помешает контролировать наличие однотонного серого тона. При появлении черных и белых символов в местах несоответствий масштаб контролируемого формата может быть восстановлен.

Следует отметить, что предлагаемый способ обладает быстродействием, сопоставимым с быстродействием автоматизированных программных средств контроля.

Суть изобретения поясняется следующими материалами:

на фиг. 1 показан кадр контроля эталонных значений параметров;

на фиг. 2 показан кадр контроля реальных значений параметров, совпадающий с эталонным;

на фиг. 3 показан кадр контроля реальных значений параметров, не совпадающий с эталонным;

на фиг. 4 показано комбинированное изображение при появлении несоответствий;

на фиг. 5 показано комбинированное изображение при появлении несоответствий в процессе изменения степени непрозрачности слоя реального изображения;

на фиг. 6 показано уменьшенное комбинированное изображение при полном совпадении сравниваемой информации;

на фиг. 7 показано уменьшенное комбинированное изображение при появлении несоответствий;

Фиг. 1, 2 и 3 демонстрируют исходные изображения, используемые для сравнительного контроля состояния телеметрических параметров. На одном изображении (фиг. 1) эталонная информация отображается белыми символами на черном фоне, а на других (фиг. 2, 3) реальная информация отображается черными символами на белом фоне (практически являются негативами относительно эталона). При напряженной оперативной работе это к тому же позволяет не перепутать кадры с реальной и эталонной информацией. При этом реальные значения параметров на фиг. 2 совпадают с эталоном, а на фиг. 3 отличаются от него. Можно убедиться на этом примере, что выявление несоответствий требует значительного времени.

Как видно из фиг. 6, после наложения одного слоя изображения на другой и изменения его степени непрозрачности, получили однотонное серое изображение при полном совпадении реальной информации с эталоном. Достаточно бросить взгляд, чтобы убедиться в отсутствии каких-либо несоответствий. Таким образом, контроль осуществляется практически мгновенно, ошибки исключены. В этом режиме для экономии экранного места масштаб формуляра может быть уменьшен и сдвинут на периферию, а контроль возможен периферийным зрением.

Как видно из фиг. 4, 7, легко выделяются области несоответствий по факту появления фрагментов белых и черных символов.

Как видно из фиг. 5, после изменения степени непрозрачности реального кадра возможно определение реального значения аномального параметра и его наименования.

Реализация предлагаемого решения может быть осуществлена при помощи полупрозрачной пленки с напечатанными на ней символами эталонных значений параметров, накладываемой на экран монитора. Кроме того, для работы с полупрозрачными слоями можно использовать программы, получившие широкое распространение, например фотошоп и др. Эти программы позволяют осуществлять все необходимые действия (изменения масштаба, сдвиги, изменения цвета, степени непрозрачности, фиксации результирующих суммарных (наложенных) форматов (см. Легейда B.B. Photoshop CS2. Настоящий САМОУЧИТЕЛЬ. - К.: ВЕК+, СПб.: КОРОНА принт, 2006) [5].

Литература

1. Автоматическая аппаратура контроля радиоэлектронного оборудования / Под ред. Пономарева Н.Н. - М.: Советское радио, 1975, с. 5-10 и 293-318.

2. Патент РФ №2210112 - Унифицированный способ Чернякова / Петрушина для оценки эффективности больших систем, МПК: G06F 17/00, дата приоритета 07.06.2001.

3. Патент РФ №2427875 - Способ контроля и анализа многопараметрических систем, МПК: G06F 17/00, дата приоритета 29.01.2010

4. В.А. Соловьев, Л.Н. Лысенко, В.Е. Любинский Управление космическими полетами, МГТУ им. Н.Э. Баумана, М., 2009 - прототип.

5. Легейда B.B. Photoshop CS2. Настоящий САМОУЧИТЕЛЬ. - К.: ВЕК+, СПб.: КОРОНА принт, 2006.

1. Способ контроля телеметрической информации, основанный на сравнении реальных значений телеметрических параметров с их эталонными значениями, представленными в виде кадров с символьной информацией, отличающийся тем, что кадры формируют в виде слоев, причем один из слоев отображают черными символами на белом фоне, а другой слой - белыми символами на черном фоне, слой с реальными значениями телеметрических параметров накладывают на слой с эталонной значениями, изменяют степень непрозрачности слоя с реальными значениями до появления однотонного серого изображения, по которому судят о совпадении реальных и эталонных значений, фиксируют появление белых и черных фрагментов символов на сером фоне, по которым судят о несоответствии сравниваемых значений, при появлении несоответствий степень непрозрачности слоя с реальными значениями изменяют до появления полного изображения символов реальных значений аномальных параметров, и соответствующих им названий, которые фиксируют для последующего определения причин несоответствий.

2. Способ контроля телеметрической информации по п. 1, отличающийся тем, что при наличии однотонного серого изображения уменьшают масштаб отображаемых значений, а при появлении белых и черных фрагментов масштаб увеличивают.



 

Похожие патенты:

Изобретение относится к вычислительной технике. Технический результат заключается в повышении точности определения местоположения и расположения в местной системе координат целевого объекта.

Группа изобретений относится к технологиям оптического распознавания символов (OCR). Техническим результатом является исключение необходимости ручного ввода текста с помощью клавиатуры в процессе верификации результатов OCR.

Группа изобретений относится к технологиям оптического распознавания символов (OCR). Техническим результатом является повышение качества извлекаемых данных и обеспечение шумоусточивости.

Изобретение относится к способам и системам автоматического определения ориентации областей изображений отсканированных документов. Технический результат – обеспечение возможности преобразования в соответствующие электронные документы печатных документов, содержащих текст на неалфавитных языках.

Изобретение относится к автоматической обработке изображений отсканированных документов. Технический результат заключается в повышении точности преобразования печатных документов, содержащих текст на арабском языке и текст на других языках.

Группа изобретений относится к технологиям автоматической обработки изображений отсканированных документов, содержащих текст. Техническим результатом является повышение эффективности оптического распознавания символов текста на различных языках.

Изобретение относится к области техники распознавания изображений. Техническим результатом является повышение скорости для распознавания логотипов телевизионных станций за счет уменьшения области для определения совпадения.

Изобретение относится к средствам распознавания документов. Техническим результатом является повышение достоверности определения наличия в тексте китайских, японских или корейских символов.

Изобретение относится к технологиям обработки, генерации данных изображения, анализу изображения, в том числе текстуры, визуализации трехмерного изображения. Техническим результатом является обеспечение ограничения доступа пользователю к формированию среды дополненной реальности за счет осуществления проверки действительности кода активации.

Группа изобретений относится к технологиям распознавания символов, соответствующих изображениям символов, полученных из изображения отсканированного документа или другого изображения, содержащего текст.

Изобретение относится к вычислительной технике, а именно к области систем безопасности и контроля. Технический результат – повышение точности выявления живого человека на последовательности кадров.

Изобретение относится к обработке изображений. Технический результат заключается в выделении гистограммы ориентированных градиентов.

Изобретение относится к обработке изображений. Технический результат заключается в выделении гистограммы ориентированных градиентов.

Изобретение относится к области вычислительной техники и может быть использовано для обнаружения и распознавания голограмм в видеопотоке. Технический результат заключается в повышении точности определения голографических элементов, содержащихся в документе, который представляет собой изображение видеопотока.

Изобретение относится к области радиотехники и предназначено для кодирования и декодирования изображений. Технический результат – повышение качества изображений путем повышения эффективности кодирования и декодирования видеосигналов в режиме внутрикадрового предсказания.

Изобретение относится к области радиотехники и предназначено для кодирования и декодирования изображений. Технический результат – повышение качества изображений путем повышения эффективности кодирования и декодирования видеосигналов в режиме внутрикадрового предсказания.

Изобретение относится к способам и системам симплификации кривой. Технический результат заключается в повышении скорости симплификации кривой.

Изобретение относится к области обработки изображений, документов и текстов. Технический результат – обеспечение распознавания символов, не полностью представленных на изображении.

Изобретение относится к области обработки изображений. Технический результат – обеспечение сворачивания изображений для создания серий изображений, в соответствии с различными требованиями к сходству изображений различных пользователей.

Изобретение относится к области обработки изображений. Техническим результатом является повышение точности определения положения символьной области каждого слова.

Изобретение относится к средствам планирования Web-обходчиков в соответствии с поиском по ключевым словам. Технический результат заключается в расширении арсенала средств планирования Web-обходчиков в соответствии с поиском по ключевым словам.
Наверх