Металлополимерные подшипники скольжения, выполненные из ориентированного полимерного нанокомпозиционного материала

Изобретение относится к машиностроению и может применяться в узлах трения, работающих в условиях сухого трения и химически агрессивных средах. Металлополимерный подшипник скольжения состоит из металлической втулки, на которую нанесен слой антифрикционного полимерного нанокомпозиционного материала. Нанокомпозиционный материал выполнен из сверхвысокомолекулярного полиэтилена с ориентированной структурой. В качестве наполнителя использованы фторированные многостенные углеродные нанотрубки в количестве от 0 до 2 масс. %. Вкладыш подшипника скольжения может быть выполнен из металла или другого полимера. Металлополимерные подшипники скольжения обладают пониженным коэффициентом трения и высокой износостойкостью и могут работать в условиях сухого трения. Подшипники скольжения обладают следующими характеристиками: скорость вращения до 1500 об/мин; нагрузка на контакте до 12 МПа; температура эксплуатации до 90°С; возможность работы в условиях сухого трения; высокая коррозионная стойкость; высокая абразивная стойкость; срок службы не менее 5 лет. 2 ил., 2 табл., 2 пр.

 

Изобретение относится к машиностроению и может применяться в узлах трения, работающих в условиях сухого трения и в химически агрессивных средах. Металлополимерный подшипник скольжения состоит из металлической втулки, на которую нанесен слой антифрикционного полимерного нанокомпозиционного материала. Нанокомпозиционный материал выполнен из сверхвысокомолекулярного полиэтилена (СВМПЭ). В качестве наполнителя используются фторированные многостенные углеродные нанотрубки (МУНТ). Вкладыш подшипника скольжения может быть выполнен из металла или другого полимера. За счет присутствия антифрикционного полимерного нанокомпозиционного материала разработанные металлополимерные подшипники скольжения обладают пониженным коэффициентом трения и высокой износостойкостью и могут работать в условиях сухого трения. Высокие антифрикционные свойства нанокомпозиционного материала достигаются за счет ориентированной структуры СВМПЭ и присутствия фторированных МУНТ.

Известен металлополимерный подшипник скольжения (RU 72285, F16C 33/12, F16C 33/04), изготовленный из пористой втулки, содержащей смазку, и полимерного вкладыша, образующего трибоповерхность.

К недостаткам металлополимерного подшипника можно отнести невозможность его работы в условиях сухого трения.

Известен подшипник скольжения (RU 2207453, F16C 33/04, F16C 17, B22D 19/08), состоящий из втулки, на внутреннюю поверхность которой нанесена антифрикционная полимерная пленка. Крепление антифрикционной полимерной пленки осуществляется за счет кольцевых канавок в виде ласточкиного хвоста на внутренней поверхности втулки.

К недостаткам данного подшипника можно отнести выбранный способ крепления антифрикционной полимерной пленки к втулке. В процессе длительной эксплуатации полимерная пленка теряет свои механические свойства и легко может вырваться из узла крепления.

Известен подшипник качения с керамическими парами трения (RU 2190786, F16C 33/04, F16C 27/02). Подшипник содержит неподвижную наружную обойму и подвижную внутреннюю втулку, в которой плотно закреплена упругая втулка. Разработанный подшипник может работать в абразивосодержащих агрессивных средах в широком диапазоне температур и давлений.

К недостаткам подшипника качения с керамическими парами трения можно отнести их высокую хрупкость.

Известна антифрикционная композиция (RU 2188834, F16C 33/04, C08L 63) на основе тканого армирующего материала из углеродного волокна и термореактивного полимерного связующего, работающая на водяной смазке. Антифрикционная композиция дополнительно содержит полиэдральные многослойные углеродные наноструктуры фуллероидного типа. В качестве полимерного связующего может использоваться фенолформальдегидная смола или хлорсодержащая полиглицидилариленаминовая кислота. Антифрикционная композиция пригодна для изготовления высокоскоростных деталей трения, работающих со скоростью от 0,5 до 15-20 м/с при контактном давлении 5-10 МПа.

К недостаткам антифрикционной композиции можно отнести невозможность ее работы в условиях сухого трения.

Известен самосмазывающийся подшипник скольжения (RU 2222721, F16C 33/04, F16C 17), который состоит из втулки, полученной путем намотки тканого материала, пропитанного полимерным связующим. Средняя часть подшипника пропитана жидкой смазкой, а внутренний слой пропитан связующим с антифрикционным наполнителем. Слои связаны между собой сквозными отверстиями.

К недостаткам самосмазывающегося подшипника скольжения можно отнести опасность расслоения втулки и необходимость поддержания необходимого количества жидкой смазки в средней части подшипника.

Известен металлофторопластовый подшипник скольжения (BY 1392, F16C 33/20), состоящий из втулки, выполненной из алюминиевого сплава, на внутреннею поверхность которой нанесен слой фторопласта. Подшипник может работать в условиях сухого трения, при однократной или сезонной смазке.

К недостаткам металлофторопластового подшипника скольжения можно отнести опасность отслаивания фторопласта от металлической втулки в процессе работы подшипника и недостаточную износостойкость.

Прототипом является изобретение (RU 2535216, C08L 23/06, С08K 3/04, C08J 5/16), заключающееся в антифрикционной полимерной композиции на основе СВМПЭ с терморасширенным графитом в количестве 2 масс. %. Данная антифрикционная композиция может применяться для изготовления подшипников скольжения в подвижных узлах трения.

Недостатком антифрикционной полимерной композиции является недостаточная ее износоустойчивость, так как полимерная матрица, в качестве которой используется СВМПЭ, обладает изотропной структурой, которая не позволяет раскрыть весь потенциал полимера. Переход от изотропной структуры полимера к ориентированной позволяет значительно увеличить износостойкость, снизить коэффициент трения и увеличить механические свойства полимерной матрицы.

Технический результат заключается в формировании антифрикционного полимерного нанокомпозиционного материала на металлической втулке подшипника скольжения, обладающего высокой износостойкостью, способного работать в условиях сухого трения и в химически-агрессивных средах. Вкладыш подшипника скольжения может быть выполнен из металла или другого полимерного материала. Подшипники скольжения обладают следующими характеристиками:

- скорость вращения до 1500 об/мин;

- нагрузка на контакте до 12 МПа;

- температура эксплуатации до 90°С;

- возможность работы в условиях сухого трения;

- высокая коррозионная стойкость;

- высокая абразивная стойкость;

- срок службы не менее 5 лет.

Технический результат достигается за счет формирования металлической втулки с нанесенным на нее ориентированным слоем сверхвысокомолекулярного полиэтилена наполненного фторированными многостенными углеродными нанотрубками, при следующем соотношении компонентов, масс. %:

Наполнитель 0-2
Сверхвысокомолекулярный полиэтилен остальное

При содержании многостенных углеродных нанотрубок более 2% масс. не удается сформировать СВМПЭ с необходимой степенью ориентации. Фторирование наполнителя увеличивает реакционную способность МУНТ с полимерной матрицей.

Введение фторированных МУНТ в СВМПЭ осуществляется методом твердофазного смешения. Формирование антифрикционного полимерного нанокомпозиционного материала осуществляется путем многоступенчатого процесса, состоящего из нескольких стадий: термопрессование, ориентирование, термопрессование. Фиксация антифрикционного полимерного нанокомпозиционного материала осуществляется за счет использования эффекта памяти формы в СВМПЭ.

Изобретение поясняется Фиг. 1, где представлена фотография металлополимерного подшипника скольжения, где 1 - металлический вкладыш подшипника, 2 - слой антифрикционного полимерного нанокомпозиционного материала, выполненного из ориентированного СВМПЭ с добавление фторированных МУНТ, 3 - металлическое кольцо. На Фиг. 2 представлены фотографии металлических втулок с нанесенным антифрикционным слоем на основе ориентированного СВМПЭ.

Пример 1.

В качестве матрицы антифрикционного нанокомпозиционного материала используется СВМПЭ GUR 4120 без добавления МУНТ. Антифрикционный слой был сформирован на металлическом кольце. Вкладыш подшипника скольжения был выполнен из стали AISI304. Металлополимерные подшипники скольжения были испытаны на испытательном подшипниковом стенде. Коэффициенты трения скольжения были исследованы при скорости скольжения 0,696 м/с и контактном давлении, изменяемом в диапазоне 57,3-100 кПа. Результаты испытаний представлены в таблице 1. Интенсивность изнашивания подшипника скольжения была определена при контактном давлении 100 кПа, скорости скольжения 0,696 м/с и времени испытания 60 минут. Толщина h изношенного слоя определена измерением диаметра поверхности трения. Интенсивность изнашивания рассчитана по отношению h к пути трения L за время, равное 60 минут. Для подшипника скольжения с антифрикционным нанокомпозиционным материалом без добавления МУНТ толщина изношенного слоя h=50 мкм, интенсивность изнашивания I=19,9⋅10-8.

Пример 2.

В качестве матрицы антифрикционного нанокомпозиционного материала используется СВМПЭ GUR 4120. В качестве армирующей добавки были использованы фторированные МУНТ диаметром 4-15 нм и длиной более 2 мкм в количестве 2 масс. %. Антифрикционный слой был сформирован на металлическом кольце. Вкладыш подшипника скольжения был выполнен из стали AISI304. Металлополимерные подшипники скольжения были испытаны на испытательном подшипниковом стенде. Коэффициенты трения скольжения были исследованы при скорости скольжения 0,696 м/с и контактном давлении, изменяемом в диапазоне 57,3-100 кПа. Результаты испытаний представлены в таблице 2. Интенсивность изнашивания подшипника скольжения была определена при контактном давлении 100 кПа, скорости скольжения 0,696 м/с и времени испытания 60 минут. Толщина h изношенного слоя определена измерением диаметра поверхности трения. Интенсивность изнашивания рассчитана по отношению h к пути трения L за время, равное 60 минут. Для подшипника скольжения с антифрикционным нанокомпозиционным материалом при добавлении 2 масс. % МУНТ толщина изношенного слоя h=18 мкм, интенсивность изнашивания I=7,17⋅10-8.

Металлополимерный подшипник скольжения, выполненный из металлической втулки с нанесенным на нее ориентированным слоем сверхвысокомолекулярного полиэтилена, наполненного фторированными многостенными углеродными нанотрубками, при следующем соотношении компонентов, масс. %:

Наполнитель 0-2
Сверхвысокомолекулярный полиэтилен остальное



 

Похожие патенты:

Изобретение относится к конструктивному элементу подшипника с внутренней опорной поверхностью, которая имеет алмазное покрытие. Конструктивный элемент подшипника включает в себя основное тело (2) и образованное в основном теле (2) отверстие (3), в котором выполнена внутренняя опорная поверхность.

Изобретение относится к области машиностроения и может быть использовано в энергетике, металлургии, строительстве для обеспечения надежной работы роторных машин, имеющих в своем составе упорный подшипник жидкостного трения (турбины, компрессоры, насосы, центрифуги и т.д.).
Изобретение относится к подшипнику со слоем скольжения и способу его получения. Подшипник со слоем скольжения состоит из формообразующего корпуса, с нанесенным антифрикционным подшипниковым сплавом на основе меди или алюминия и гальваническим слоем скольжения, выполненным из материала, содержащего олово, сурьму и медь.

Изобретение относится к области машиностроения, а именно к производству втулок рычажной тормозной системы рельсового пассажирского или грузового транспорта, в том числе вагонов метрополитена, эксплуатирующихся без использования смазки.
Изобретение относится к подшипнику со слоем скольжения и способу его получения. Подшипник со слоем скольжения состоит из формообразующего корпуса, с нанесенным антифрикционным подшипниковым сплавом на основе меди или алюминия и гальваническим слоем скольжения, который включает в себя матрицу из твердого раствора олова и сурьмы в количестве 0,5…4,5 вес.%, содержащую включения медно-оловянных частиц соединения Cu6Sn5 при общем содержании меди в сплаве 2…25 вес.%.

Изобретение относится к способу восстановления размеров корпуса моторно-осевого подшипника электровоза при помощи электродуговой металлизации. Способ восстановления размеров корпуса моторно-осевого подшипника электровоза электродуговой металлизацией.

Изобретение может быть использовано при изготовлении детали подшипника, например в виде сварного кольца или сегмента кольца, которая подвергается переменным механическим напряжениям, в частности, при качении или качении и скольжении.

Изобретение относится к области машиностроения и может быть использовано в металлургической, строительной, горнорудной промышленностях для обеспечения надежной и долговечной работы оборудования при значительных снижениях затрат на изготовление и эксплуатацию машин.

Изобретение относится к области машиностроения и может быть использовано в энергетике, судостроении, металлургии, для обеспечения долговечной, надежной работы оборудования (турбины, компрессоры, двигательные установки, центрифуги и т.д.).
Изобретение относится к износостойким и антифрикционным покрытиям на рабочих поверхностях узлов трения. Предварительно получают стержень путем прессования и спекания состава, содержащего порошок меди, порошок политетрафторэтилена и хлорид аммония.

Изобретение относится к машиностроению, в частности к деталям машин, и может быть использовано в опорных узлах валов и осей механизмов и машин. Подшипник скольжения содержит укрепленный на цапфе (1) вала (2), установленной в опорном корпусе (3), антифрикционный вкладыш в виде винтовой спирали, нить (4) диаметром которой уложена на цапфе вдоль всей ее длины (L) и зафиксирована своими концами на торцах цапфы (1).

Изобретение относится к машиностроению, в частности к деталям машин, и может быть использовано в опорных узлах валов и осей механизмов и машин. Подшипник содержит укрепленный на цапфе (1) вала (2), установленного в опорном корпусе (3), антифрикционный вкладыш в виде винтовой спирали из нити (4) круглого сечения, уложенной по окружности цапфы вдоль ее длины и зафиксированной своими концами на торцах цапфы.

Изобретение относится к машиностроению, в частности - к деталям машин, и может быть использовано в опорных узлах валов и осей механизмов и машин. Подшипник скольжения содержит укрепленный на цапфе (1) вала (2), установленной в опорном корпусе (3), антифрикционный вкладыш в виде винтовой спирали из нити (4) круглого сечения, диаметром уложенной на цапфе (1) вдоль всей ее длины (L) и зафиксированной своими концами на торцах этой цапфы (1).

Изобретение относится к самосмазывающемуся направляющему устройству для сочленений любого рода. Направляющее устройство в форме металлического кольца (1) для монтажа штифта с трением и со способностью к сочленению и/или скольжению, с отверстием кольца, содержащим поверхность трения и рабочие конструкции (1а), пригодные для выполнения функции запасания смазки в зоне трения.

Изобретение относится к самосмазывающимся шарнирам. Изобретение предпочтительно применяется для всех типов шарниров, требующих действия в отсутствие смазки, то есть с самосмазывающим действием, и действующих под высокими нагрузками в динамическом режиме.

Изобретение относится к области самосмазывающихся соединений, в частности к конструкции оси в шаровом шарнире или опоре, имеющей поступательное или вращательное направление хода.

Изобретение относится к области машиностроения и может быть использовано при изготовлении разъемного вкладыша опорного подшипника скольжения. Изготавливают два металлических полукольца расточкой в сборе под внутренний диаметр опорного подшипника.

Изобретение относится к области машиностроения, а именно к производству втулок рычажной тормозной системы рельсового пассажирского или грузового транспорта, в том числе вагонов метрополитена, эксплуатирующихся без использования смазки.

Изобретение относится к технической области сочленений кольцевого, поворотного или скользящего типа с приспособлениями, пригодными для выполнения функции резервуара для смазки с целью увеличения промежутков времени, в которые необходимо выполнять смазывание.

Изобретение направлено на дальнейшее совершенствование в области подшипников жидкостного трения, а более конкретно, на подшипники, используемые для поддержания с возможностью вращения шейки прокатного валка прокатного стана.

Изобретение относится к конструктивному элементу подшипника с внутренней опорной поверхностью, которая имеет алмазное покрытие. Конструктивный элемент подшипника включает в себя основное тело (2) и образованное в основном теле (2) отверстие (3), в котором выполнена внутренняя опорная поверхность.

Изобретение относится к машиностроению и может применяться в узлах трения, работающих в условиях сухого трения и химически агрессивных средах. Металлополимерный подшипник скольжения состоит из металлической втулки, на которую нанесен слой антифрикционного полимерного нанокомпозиционного материала. Нанокомпозиционный материал выполнен из сверхвысокомолекулярного полиэтилена с ориентированной структурой. В качестве наполнителя использованы фторированные многостенные углеродные нанотрубки в количестве от 0 до 2 масс. . Вкладыш подшипника скольжения может быть выполнен из металла или другого полимера. Металлополимерные подшипники скольжения обладают пониженным коэффициентом трения и высокой износостойкостью и могут работать в условиях сухого трения. Подшипники скольжения обладают следующими характеристиками: скорость вращения до 1500 обмин; нагрузка на контакте до 12 МПа; температура эксплуатации до 90°С; возможность работы в условиях сухого трения; высокая коррозионная стойкость; высокая абразивная стойкость; срок службы не менее 5 лет. 2 ил., 2 табл., 2 пр.

Наверх