Способ получения нанокапсул метронидазола в каррагинане

Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины и описывает способ получения нанокапсул метронидазола в оболочке из каррагинана. Способ характеризуется тем, что в суспензию каррагинана в петролейном эфире в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют порошок метронидазола, затем добавляют 10 мл хлороформа, полученную суспензию нанокапсул отфильтровывают и сушат, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:1, 1:3, 5:1 или 1:5. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул. 1 ил., 4 пр.

 

Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. 2092155 МПК A61K 047/02, A61K 009/16, опубликован 10.10.1997, Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2095055 МПК A61K 9/52, A61K 9/16, A61K 9/10 Российская Федерация, опубликован 10.11.1997, предложен способ получения твердых непористых микросфер, включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от -15 до -50°C, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.

Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.

В пат. 2076765 МПК B01D 9/02 Российская Федерация, опубликован 10.04.1997, предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.

Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.

В пат. 2139046 МПК A61K 9/50, A61K 49/00, A61K 51/00 Российская Федерация, опубликован 10.10.1999, предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и возможно, терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. Подвергнутую сушке вымораживанием смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.

Недостатками предложенного способа являются сложность и длительность процесса, использования высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.

В статье «Разраработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности», Российский химический журнал, 2001, т. XLV, №5-6, с. 125-135, описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием n-ксилилена включает следующие основные стадии: испарение димера n-ксилилена (170°С), термическое разложение его в пиролизной печи (650°C при остаточном давлении 0,5 мм рт.ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°С, остаточное давление 0,1 мм рт.ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-n-ксилилен высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.

Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.

В статье «Разработка микро- и наносистем доставки лекарственных средств», Российский химический журнал, 2008, t.LII, №1, с. 48-57 представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ - апротинин, либо нативный, либо с защищенным активным центром был микрокапсулирован при его введении в состав водной фазы. Сплющенная форма лиофилизованных частиц свидетельствует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина рН водной фазы являлась определяющим при получении прочных микрокапсул с высоким выходом.

Недостатком предложенного способа получения микрокапсул является сложность процесса, а отсюда плавающий выход целевых капсул.

В пат. WO/2010/076360 ES МПК B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12, опубликован 08.07.2010, предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастицы существенно сфероидальной морфологи.

Недостатком предложенного способа является сложность и длительность процесса.

В пат. WO/2010/119041 ЕР МПК A23L 1/00, опубликован 21.10.2010, предложен способ получения микрошариков, содержащих активный компонент, инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения, и последующее отверждение микрошариков в растворе анионный полисахарид с рН 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале, сывороточный протеин является тепло-денатурирующим, хотя и другие методы денатурации также применимы, например, денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°С до 80°С, надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, продкет подлежит фильтрации, которая осуществляется через множество фильтров с постепенным снижением размера пор. В идеале, фильтр тонкой очистки имеет субмикронных размеров поры, например, от 0,1 до 0,9 микрон. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 микрон.

Недостатком предложенного способа является применение центрифугирования для отделения от технологической жидкости, длительность процесса, а также применение данного способа не в фармацевтической промышленности.

В пат. WO/2011/150138 US ΜΠΚ C11D 3/37; B01J 3/08; C11D 17/00, опубликован 01.12.2011, описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.

Недостатками данного способа являются сложность исполнения и длительность процесса.

В пат. WO/2011/160733 ЕР МПК B01J 13/16, опубликован 29.12.2011, описан способ получения микрокапсул, которые содержат оболочки и ядра нерастворимых в воде материалов. Водный раствор защитного коллоида и раствор смеси по меньшей мере двух структурно различных бифункциональных диизоцианатов (А) и (В) нерастворимых в воде собираются вместе до образования эмульсии, затем добавляется к смеси бифункциональных аминов и нагревается до температуры не менее 60°С до формирования микрокапсул.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.

Наиболее близким методом является способ, предложенный в пат. 2134967 ΜΠΚ Α01Ν 53/00, Α01Ν 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4: 1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул метронидазола в каррагинане, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул метронидазола, отличающимся тем, что в качестве оболочки нанокапсул используется каррагинан, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - хлороформа.

Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул метронидазола каррагинана, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - хлороформа.

Результатом предлагаемого метода являются получение нанокапсул метронидазола, в каррагинане при 25°С в течение 15 минут. Выход нанокапсул составляет 100%.

ПРИМЕР 1 Получение нанокапсул метронидазола в каррагинане, соотношение ядро: оболочка 1:3

В суспензию 1,5 г каррагинана в петролейном эфире и 0,01 г препарата Е472 с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и, как оксокислота, - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием в качестве поверхностно-активного вещества, небольшими порциями добавляют 0,5 г порошка метронидазола. Затем по каплям добавляют 10 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 2 г белого порошка. Выход составил 100%.

ПРИМЕР 2 Получение нанокапсул метронидазола в каррагинане, соотношение ядро:оболочка 1:1

В суспензию 1,5 г каррагинана в петролейном эфире и 0,01 г препарата в качестве поверхностно-активного вещества добавляют 1,5 г порошка метронидазола. Затем по каплям добавляют 10 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 3 г белого порошка. Выход составил 100%.

ПРИМЕР 3 Получение нанокапсул метронидазола в каррагинане, соотношение ядро:оболочка 1:5

В суспензию 1,5 г каррагинана в петролейном эфире и 0,01 г препарата в качестве поверхностно-активного вещества добавляют 0,3 г порошка метронидазола. Затем по каплям добавляют 10 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 1,8 г белого порошка. Выход составил 100%.

ПРИМЕР 4 Получение нанокапсул метронидазола в каррагинане, соотношение ядро:оболочка 5:1

В суспензию 0,5 г каррагинана в петролейном эфире и 0,01 г препарата Е472 с в качестве поверхностно-активного вещества добавляют 2,5 г порошка метронидазола. Затем по каплям добавляют 10 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 3 г белого порошка. Выход составил 100%.

ПРИМЕР 5 Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном bASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length: Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.

Метронидазол (лат. Metronidazolum, действующее вещество: 1-(b-оксиэтил)-2-метил-5-нитроимидазол) - противопротозойный и противомикробный препарат. Метронидазол входит в перечень жизненно необходимых и важнейших лекарственных препаратов.

Способ получения нанокапсул метронидазола в каррагинане, характеризующийся тем, что в суспензию каррагинана в петролейном эфире в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют порошок метронидазола, затем добавляют 10 мл хлороформа, полученную суспензию нанокапсул отфильтровывают и сушат, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:1, 1:3, 5:1 или 1:5.



 

Похожие патенты:

Группа изобретений относится к области медицины и ветеринарии, а именно к способу получения полимер-композитного состава, состоящего из наночастиц меди в матрице гиперразветвленного полиэфирполиола третьей генерации на основе 2,2-дигидроксиметилпропановой кислоты с 32 гидроксильными группами, включающему стадии предорганизации ионов меди(II) в составе сульфата меди в матрице указанного полиэфирполиола в мольном соотношении CuSO4:полиэфирполиол на первой стадии 1:16, выдерживания смеси при постоянном интенсивном перемешивании в течение 3 ч и восстановления реакционной смеси CuSO4-полиэфирополиол 5%-ным водным раствором гидразин гидрата при рН 10 и перемешивании в течение 4 ч до появления устойчивой коричневой окраски; а также к полимер-композитному составу, полученному данным способом, который обладает антимикотической активностью против культур рода Candida, Aspergillus и Penicillium с возможностью подавлять активность протеиназ Candida albicans.

Изобретение может быть использовано при изготовлении металлооксидных солнечных элементов, сенсоров, систем запасания энергии, катализаторов. Для получения мезопористой наноструктурированной пленки металлооксида методом электростатического напыления напыляемый материал помещают в контейнер с выпускным отверстием.
Использование: для получения фотолюминесцентных наночастиц, или квантовых точек (КТ), сверхмалого размера. Сущность изобретения заключается в том, что в способе коллоидного синтеза фотолюминесцентных наночастиц сверхмалого размера структуры ядро/оболочка, включающем синтез ядер фотолюминесцентных наночастиц путем инжекции компонентов ядра в среду органических растворителей, очистку ядер из реакционной смеси и последующее наращивание эпитаксиальной оболочки фотолюминесцентных наночастиц в среде органических растворителей, проводят сверхбыструю, не более чем за 5 секунд, остановку реакции синтеза ядер наночастиц на ранних стадиях роста, а перед наращиванием эпитаксиальной оболочки наночастиц проводят очистку ядер наночастиц эксклюзионной хроматографией.

Изобретение относится к области гальванотехники и может быть использовано для платинирования титановых анодов. Способ включает обезжиривание титана, его промывку проточной водой, активацию в растворе кислоты, платинирование в электролите, содержащем цис-диаминодинитроплатину и серную или сульфаминовую кислоту, термическую обработку платинированного титана в инертной атмосфере при температуре 500°C, при этом перед обезжириванием титан подвергают пескоструйной обработке, активацию титана проводят в растворе борфтористоводородной кислоты, а в электролит дополнительно вводят пиридин-3-сульфоновую кислоту и электролиз ведут на реверсивном токе при периодической смене полярности анода и катода.

Изобретение может быть использовано в качестве абсолютно черного тела в измерительной технике, теплотехнике и теплофизике. Светопоглощающий материал, полученный без вспомогательных подложек методом CVD, содержит пучки мало- и многостенных углеродных нанотрубок с латеральными отложениями в виде хаотично ориентированных фрагментов графена с размером до 10 нм, обладает способностью к формованию в ленты толщиной не менее 2 мм и плотностью 0,4 г/см3 с коэффициентом светопоглощения около 99,9%.

Изобретение относится к способу получения катализаторов гидроочистки углеводородного сырья на основе аморфных металлических наночастиц относится к области нефтепереработки и может быть использован для очистки от серосодержащих и азотсодержащих соединений дизельного топлива и дизельно-масляных фракций.

Использование: для получения композитного материала, содержащего полимер на основе акриламида или метакриламида и углеродных нанотрубок. Сущность изобретения заключется в том, что способ получения композитного материала на основе полимера и углеродных нанотрубок включает следующие этапы: обработка в ультразвуке раствора, содержащего акриламид или метакриламид, воду или кислоту, диметилсульфоксид с растворенными в нем фторированными углеродными нанотрубками; разбавление водой обработанного раствора с последующим центрифугирование разбавленного раствора; осаждение композитного материала на основе полимера и углеродных нанотрубок из раствора в ампулах; разбавление композитного материала на основе полимера и углеродных нанотрубок с последующей обработкой водного раствора в ультразвуковой ванне; фильтрование обработанного водного раствора композитного материала на основе полимера и углеродных нанотрубок, промывка и сушка.

Изобретение относится к области полупроводниковых материалов с модифицированными электрическими свойствами. Способ получения низкотемпературного термоэлетрика на основе сплава Bi88Sb12 с добавками гадолиния включает помещение навески сплава Bi88Sb12 и металлического гадолиния в количестве 0,01-0,1 ат.% в стеклянную ампулу, из которой откачивают воздух до 10-3 мм рт.
Изобретение относится к нанотехнологии и может быть использовано при изготовлении армирующих добавок для композиционных материалов и функциональных покрытий. Углерод-катализаторный композит измельчают до крупности -44 мкм и репульпируют в воде при соотношении Т : Ж = 1:3 при интенсивном перемешивании со скоростью вращения мешалки 200-1000 об/мин.

Изобретение относится к области гетерогенного катализа, а именно к катализатору и способу получения ацетальдегида в ходе газофазного неокислительного дегидрирования этанола, и может быть использовано на предприятиях химической и фармацевтической промышленности для получения ацетальдегида.

Изобретение относится к медицине, в частности к способу получения нанокапсул витаминов группы В в каррагинане. Способ получения нанокапсул характеризуется тем, что в качестве оболочки используется каррагинан, а в качестве ядра - витамины группы В при массовом соотношении ядро:оболочка 1:3 или 1:1.
Изобретение относится к медицине, в частности к способу получения нанокапсул иодида калия. Способ получения характеризуется тем, что в качестве оболочки нанокапсул используется каррагинан.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул антисептика-стимулятора Дорогова 2 фракция (АСД) в оболочке из альгината натрия.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул антисептика-стимулятора Дорогова 2 фракция (АСД) в оболочке из хитозана.
Изобретение относится в области нанотехнологии, медицины, пищевой промышленности, а именно к способу получения нанокапсул, где оболочка нанокапсул представляет собой каррагинан, а ядро нанокапсул представляет собой смесь витамина А, витамина Е и витамина К, характеризующемуся тем, что смесь указанных витаминов прибавляют в суспензию каррагинана в толуоле в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества, затем перемешивают при 1300 об/мин, после приливают 10 мл хлороформа, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка составляет 1:1, или 1:3, или 3:1, или 1:5.

Изобретение относится к медицине, в частности к использованию наноалмазов в качестве лекарственных средств, генерирующих свободные радикалы, в частности для лечения опухолей.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул L-аргинина в натрий карбоксиметилцеллюлозе. Способ характеризуется тем, что L-аргинин медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в метаноле в присутствии 0,01 препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, затем приливают 10 мл петролейного эфира, полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро/оболочка составляет 1:1 или 1:3 или 5:1.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул АЕКола в оболочке из ксантановой камеди. Способ характеризуется тем, что АЕКол прибавляют в суспензию ксантановой камеди в бензоле в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества, затем перемешивают при 1300 об/мин, после приливают 10 мл четыреххлористого углерода, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка составляет 1:1, или 1:3, или 3:1, или 1:5.

Изобретение относится в области нанотехнологии. Описан способ получения нанокапсул кверцетина или дигидрокверцетина в оболочке из каррагинана.

Изобретение относится в области нанотехнологии. Описан способ получения нанокапсул кверцетина или дигидрокверцетина в оболочке из каррагинана.

Изобретение относится к области медицины, в частности к фармакологии, и раскрывает гемостатическое, ранозаживляющее и остеопластическое средство. Указанное средство характеризуется тем, что содержит не более трех волокнистых резорбируемых полимеров природного и/или синтетического происхождения, гетерофазные фосфаты кальция, представляющие собой соединения с молярным соотношением Са : PO4 от 1,0 до 2,0, а также лекарственные вещества в объеме не более 4% весовых единиц в суммарном исчислении, выбираемые из группы: антибиотики, антисептики, иммуномодуляторы, стимуляторы репаративных процессов, причем массовое соотношение волокнистых полимеров к гетерофазным фосфатам кальция составляет (1-10):(1-99).

Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины и описывает способ получения нанокапсул метронидазола в оболочке из каррагинана. Способ характеризуется тем, что в суспензию каррагинана в петролейном эфире в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют порошок метронидазола, затем добавляют 10 мл хлороформа, полученную суспензию нанокапсул отфильтровывают и сушат, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:1, 1:3, 5:1 или 1:5. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул. 1 ил., 4 пр.

Наверх