Экспериментальная установка (стенд) для изучения многофакторной зависимости коэффициента демпфирования сваи при взаимодействии с грунтом

Изобретение относится к области вибрационной техники, а именно к конструкциям свайных фундаментов зданий и сооружений гражданского и промышленного назначения. Экспериментальная установка состоит из лотка, грунтового массива и моделируемой сваи. Вибрируемый на вибростенде металлический лоток с грунтом и забитой в него сваей, верхняя часть которой соединена с металлическим наголовником, в котором жестко, симметрично и радиально под углом 180° закреплены две горизонтальные шпильки и одна вертикальная шпилька, ориентированная вдоль продольной оси сваи, с перемещающимися по резьбе шпилек грузами - гирями. Технический результат: возможность изучения особенностей демпфирования сваи при ее взаимодействии с грунтом. 2 ил.

 

Настоящее изобретение относится к области вибрационной техники, а именно к конструкциям свайных фундаментов зданий и сооружений гражданского и промышленного назначения.

Известна и широко применяется вибро-вдавливающая установка, погружающая сваю за счет комбинированного воздействия на нее вибрации и статической нагрузки и состоящая из двух рам. На задней раме находится электрогенератор, работающий от тракторного двигателя, и двухбарабанная лебедка, на передней раме направляющая стрела с вибропогружателем и блочки, через которые проходит к вибропогружателю вдавливающий канат от лебедки. На сваю действует вибрация, создаваемая низкочастотным погружателем с подрессорной плитой (С.С. Атаев, Н.Н. Данилов, Б.В. Прыткин и др. «Технология строительного производства»: Учебник для вузов. – М.: Стройиздат, 1984. - Рис. VIII. 8, б стр. 176).

Недостатком данного технического решения является невозможность определения коэффициента демпфирования β для сваи и грунта.

Наиболее близким к заявленному техническому решению является вибропогружатель сваи, представляющий собой электромеханическую машину вибрационного действия, подвешенную к мачте сваепогружающей установки и соединенную наголовником со сваей (см. С.С. Атаев, Н.Н. Данилов, Б.В. Прыткин и др. «Технология строительного производства»: Учебник для вузов. - М.: Стройиздат, 1984. - Рис. VIII. 6, a, б стр. 174).

Недостатком данного технического решения является вынуждающее вибрационно-силовое действие вибропогружателя, направленного непосредственно на сваю, задающее характеристики вибрации сваи и исключающее инструментальный анализ особенностей ее демпфирования.

Задачей, на решение которой направлено заявляемое изобретение, является определение демпфирующих характеристик свай при взаимодействии с грунтом.

Поставленная задача решается за счет того, что экспериментальная установка (стенд) для изучения многофакторной зависимости коэффициента демпфирования сваи при взаимодействии с грунтом содержит вибрируемый на вибростенде металлический лоток с грунтом и забитой в него сваей, верхняя часть которой соединена с металлическим наголовником, в котором жестко, симметрично и радиально под углом 180° закреплены две горизонтальные шпильки и одна вертикальная шпилька, ориентированная вдоль продольной оси сваи, с перемещающимися по резьбе шпилек грузами-гирями.

Техническим результатом, достигаемым приведенной совокупностью признаков, является возможность изучения особенностей демпфирования сваи при ее взаимодействии с грунтом за счет втягивания сваи в вынужденную вибрацию через вибрирующий грунт, в результате чего появляется возможность определения коэффициента демпфирования β сваи грунтом.

На фиг. 1 представлен общий вид устройства поясняющего сущность заявляемого изобретения.

Экспериментальная установка (стенд) для изучения многофакторной зависимости коэффициента демпфирования сваи при ее взаимодействии с грунтом включает модельную сваю 1, забитую в грунт 2, находящийся в металлическом лотке 3 на опорах 4 с основанием 5, закрепленном на опорном столе 6 вибростенда 7. Причем на верхней части сваи 1, изготовленной из конструкционного материала, например из железобетона, жестко закреплен шпилькой 8 металлический наголовник 9 с отверстиями. В верхнем отверстии крепится вертикальная резьбовая шпилька 10 с грузами 11. В боковые симметричные отверстия завинчиваются горизонтальные шпильки 12 с грузами (гирями) 13, перемещающимися по резьбе в горизонтальной плоскости. Положения грузов 11 и 13 на шпильках 10 и 12 фиксируются гайками 14, датчики ускорений 15, соединенные с измерительной системой вибростенда, жестко крепятся на наголовнике 9 сваи 1 и на опорном столе 6 вибростенда 7.

Работает устройство следующим образом. Модельная свая 1 забивается в грунтовый массив 2. Грунт 2 помещен в металлический лоток 3, установленный на опорах 4 с основанием 5, закрепленным на опорном столе 6 вибростенда 7. В верхней части сваи 1, находящейся в грунтовом массиве 2, жестко закреплен шпилькой 8 металлический наголовник 9 с отверстиями. В верхнее отверстие помещается и крепится, например, с помощью резьбового соединения вертикальная шпилька 10 с грузами 11, обеспечивающими необходимую вертикальную нагрузку сваи 1. В боковые симметричные отверстия завинчивается горизонтальная шпилька 12 с грузами (гирями) 13, которые могут перемещаться по резьбе в горизонтальной плоскости. Положение грузов 11 и 13 на шпильках 10 и 12 фиксируются гайками 14. На наголовнике сваи, а также на опорном столе вибростенда жестко крепятся датчики ускорений 15, соединенные с измерительной системой вибростенда.

При работе вибростенда 7 свая 1 втягивается в колебательный процесс через грунтовый массив 2. Изменяя частоту ω колебаний опорного стола 6 вибростенда 7 и замеряя при помощи датчиков относительную амплитуду колебаний А сваи, можно построить ее амплитудно-частотную характеристику А(ω) в районе резонансной частоты ωрез (Фиг. 2), задаваемой величиной массы груза 13 (М) и его состоянием (L) от точки закрепления шпильки 12 в металлическом оголовке 9. При этом резонансная частота ωрез колебаний груза 13 массой М на консольной балке длиной L приближенно определяется по формуле [1]:

Коэффициент потерь η на частоте колебаний ωрез определяется по формуле [2]:

где ω2 и ω1 представляют собственные частоты резонансных амплитуд, определенных на уровне Ао=Apeз/n, отсюда, n=2(1/2).

Перемещением грузов 13 обеспечивается изменение ωрез и построение зависимости коэффициента потерь от частоты вынужденных колебаний ω. Изменением массы грузов 11 обеспечивается построение зависимости коэффициента потерь от нагрузки сваи 1. Изменением амплитуды колебаний вибростенда обеспечивается построение зависимости коэффициента потерь от амплитуд колебаний грунтового массива.

Таким образом, в предлагаемой экспериментальной установке втягивание сваи в колебательный процесс осуществляется через колеблющийся грунтовой массив, что соответствует реальному сейсмическому явлению.

За счет смешения грузов по горизонтальным шпилькам изменяется резонансная частота колебаний сваи, за счет чего обеспечивается возможность определения зависимости коэффициента демпфирования сваи от частоты внешнего воздействия.

Симметричное расположение грузов на шпильках обеспечивает вертикальное перемещение сваи, поскольку горизонтальные центробежные силы взаимно компенсируются. Несимметричное расположение грузов на шпильках вызывает не только вертикальные, но и горизонтальные колебания, что обеспечивает двухкомпонентный анализ указанной зависимости.

Изменение массы груза, закрепляемого на вертикальной шпильке, позволяет варьировать вертикальную нагрузку на сваю. Система управления вибростенда обеспечивает проведение испытаний сваи при различных амплитудах и частотах колебаний стенда.

Критериями подобия при моделировании сваи служат следующие зависимости: mω2/k (критерий подобия по частоте); mk/с2 (критерий подобия по сопротивлению), где m - приведенная масса сваи, k - приведенная жесткость сваи в грунте, с - коэффициент сопротивления, ω - частота колебаний сваи.

Предлагаемая экспериментальная установка позволяет определить зависимость коэффициента демпфирования при взаимодействии сваи с грунтом от частоты внешнего воздействия, амплитуды колебаний, типа, плотности, влажности и температуры грунта, вертикальной и горизонтальной нагрузки на сваю, а также материала сваи (коэффициента трения).

Экспериментальная установка (стенд) для изучения многофакторной зависимости коэффициента демпфирования сваи при взаимодействии с грунтом, состоящая из лотка, грунтового массива и моделируемой сваи, отличающаяся тем, что вибрируемый на вибростенде металлический лоток с грунтом и забитой в него сваей, верхняя часть которой соединена с металлическим наголовником, в котором жестко, симметрично и радиально под углом 180° закреплены две горизонтальные шпильки и одна вертикальная шпилька, ориентированная вдоль продольной оси сваи, с перемещающимися по резьбе шпилек грузами - гирями.



 

Похожие патенты:

Изобретение относится к испытательной технике, к исследованию образцов и изделий на прочность при циклическом нагружении. Центробежная установка содержит корпус, установленную на нем платформу с приводом вращения, расположенные на ней дополнительные платформы по количеству циклов нагружения по одной из осей образца, размещенные последовательно одна на другой и снабженные приводами вращения, захват для образца, закрепленный на дополнительной платформе для размещения захвата, согласно изобретению установка снабжена дополнительным приводом вращения, соединенным с захватом для образца и закрепленным радиально оси вращения на платформе для размещения захвата.

Изобретение относится к геометрическим формам образцов для испытания материалов. Сборная конструкция образца (10) для испытаний содержит множество слоев, выполненных из армированного волокном полимерного материала, совместно образующих слоистый материал постоянной толщины.

Изобретение относится к испытательной технике, в частности к стендам, и может быть использовано в авиационной испытательной технике для испытаний элементов беспилотного вертолета с соосными винтами.

Изобретение относится к области испытательной техники, в частности области исследования динамических характеристик низкомодульных полимерных материалов. Установка для определения динамических характеристик низкомодульных полимерных материалов содержит основание, на котором жестко закреплены составные образцы, каждый из которых выполнен в виде пластины из высокодобротного материала с закрепленным на ней исследуемым материалом, возбудитель колебаний в составном образце и система измерений колебаний.

Изобретение относится к испытательной технике, а именно к установкам для испытания на усталость. Установка содержит основание, пассивный захват образца, установленный на основании, активный захват образца, одним концом связанный с активным захватом и установленный соосно с ним рычаг, электромагнитный возбудитель колебаний и измерительное устройство, фиксатор, выполненный с возможностью периодического соединения рычага с основанием, захваты установлены с возможностью фиксированного поворота вокруг своей оси, связь рычага с активным захватом выполнена в виде разъемного соединения, а возбудитель колебаний и измерительное устройство выполнены в виде двух П-образных магнитных систем, закрепленных на другом конце рычага одна симметрично другой относительно его оси и двух катушек, закрепленных на основании, каждая из которых выполнена с возможностью взаимодействия с соответствующей П-образной магнитной системой.

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд содержит корпус, установленные на нем захваты образца, механизм нагружения, включающий две гибкие тяги, кинематически связанные с захватами, натяжной механизм тяг, платформу, привод вращения, установленный на платформе, возбудитель колебаний нагрузки в форме треугольника, установленного на валу привода вращения и расположенного между тягами, и привод перемещения платформы вдоль оси вала.

Изобретение относится к неразрушающим методам и средствам дефектоскопии технически сложных элементов конструкции. Сущность: элемент конструкции, к которому есть доступ, нагружают переменной механической нагрузкой и вызывают его перемещения.

Изобретение относится к области усталостных испытаний металлических материалов для определения их циклической долговечности. Сущность: осуществляют определение размера зерна стали в зависимости от режима технологической обработки и на основании выявленной корреляции (уравнения) между циклической долговечностью в диапазоне 105-106 циклов и размером величины зерна стали, определяют ожидаемую ее циклическую долговечность.

Изобретение относится к области измерительной техники и может быть использовано при исследовании процессов разрушения материалов с образованием трещин. Сущность: измеряют начальную длину трещины.

Изобретение относится к области исследования прочностных свойств твердых материалов и может быть использовано для определения усталостной прочности конструкционных материалов, работающих в условиях циклического нагружения.

Изобретение относится к испытательному оборудованию. Стенд содержит основание, на котором посредством по крайней мере трех виброизоляторов закреплена переборка, представляющая собой одномассовую колебательную систему массой и жесткостью соответственно m2 и c2.

Изобретение относится к испытательному оборудованию и может быть использовано для испытаний систем виброизоляций. Стенд содержит основание, на котором посредством по крайней мере трех виброизоляторов закреплена переборка, представляющая собой одномассовую колебательную систему массой и жесткостью соответственно m2 и c2, в качестве генератора гармонических колебаний использован эксцентриковый вибратор, расположенный на переборке.

Изобретение относится к области машиностроения и может быть использовано для измерения резонансной частоты колебаний конструкции испытательных стендов, имитирующих инерционность объекта управления и упругость крепления привода в изделии и предназначенных для контроля динамических характеристик системы привод-объект управления.

Изобретение относится к вибрационной технике. Вибратор содержит корпус и пьезоэлемент.

Изобретение относится к измерительной технике, а именно к устройствам для измерения параметров датчиков ускорений в низкочастотном диапазоне. Стенд состоит из основания, выполненного с возможностью регулирования горизонтальности, подвижной системы в виде качающегося блока, установленного между двух вертикальных стоек, соединенных с основанием, и электронного блока, включающего датчик угла качания, многоканальный усилитель, АЦП и систему цифровой связи.

Изобретение относится к испытательной технике и может быть использовано для вибрационных испытаний различных изделий. .

Изобретение относится к способам испытания элементов конструкции на вибростенде и может быть использовано при усталостных испытаниях или при сравнительной диагностике элементов конструкции.

Изобретение относится к испытательной технике и может быть использовано для тестирования конструкций, в частности венца фюзеляжа с продольной и окружной кривизной.

Изобретение относится к устройству тестирования венца (10) фюзеляжа, например, летательного аппарата с продольной и окружной кривизной, содержащему набор средств (80) приложения сил к венцу фюзеляжа.

Изобретение относится к испытательной технике и может быть использовано для испытаний резьбовых соединений и механизированного инструмента для затяжки резьб. .

Изобретение относится к метрологии. Cтенд для акустических испытаний шумопоглощающих панелей содержит испытательную камеру, стены которой облицованы исследуемой шумопоглощающей облицовкой в виде шумопоглощающих панелей. Источник шума расположен на плавающем полу, под которым устанавливается вибродемпфирующая панель, а точки измерения фиксируют на измерительной поверхности S, м2, представляющей собой сферическую поверхность. Уровень звуковой мощности Lp определяют по результатам измерений среднего уровня звукового давления Lcp на измерительной поверхности S, м2, за которую принята площадь полусферы: , где S=2πr2; r - расстояние от центра источника до точек измерений; S0=1 м2, а корректированный уровень звуковой мощности LpA: , где LAcp - средний уровень звука на измерительной поверхности. Величину снижения уровня звукового давления ΔL в отраженном звуковом поле образца комбинированной шумопоглощающей облицовки с резонансными элементами рассчитывают по известной формуле. Технический результат - расширение технологических возможностей испытаний объектов. 1 з.п. ф-лы, 3 ил.
Наверх