Способ определения вязкости металлических материалов

Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической (ударной) кратковременной нагрузки, и может быть использовано для определения вязкости металлических материалов. Сущность: осуществляют испытания на ударный изгиб призматических образцов с надрезом с записью кривой разрушения путем идентификации на ней характерных точек. На кривой разрушения в координатах «энергоемкость Е - смещение бойка S» выделяют участок между точкой отрыва от прямолинейного хода кривой и точкой разрушения образца, а для аттестации металлических материалов на выделенном участке определяют параметры вязкости КM и n, при этом параметр вязкости КM находят исходя из уравнения

где ЕH и ЕK - энергоемкость разрушения в точках, соответствующих началу и концу выделенного участка кривой , F0 - площадь первоначального поперечного сечения в месте надреза, а параметр вязкости n - исходя из уравнения, описывающего ход зависимости на выделенном участке

Е=A⋅Sn,

где А - коэффициент, зависящий от условий испытаний. Технический результат: возможность выделить участок, соответствующий стадии распространения магистральной трещины, определить на нем параметры вязкости (KM, n), а затем использовать их для аттестации любых металлических материалов при наличии возможности инструментальной записи кривой разрушения. 5 ил.

 

Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической (ударной) кратковременной нагрузки, и может быть использовано для определения вязкости металлических материалов.

При работе деталей машин и конструкций возможны динамические нагрузки, при которых многие даже высокопластичные металлы проявляют склонность к хрупкому разрушению. Опасность разрушения усиливают надрезы - концентраторы напряжений. Для оценки склонности металла к хрупкому разрушению под влиянием этих факторов проводят динамические испытания на ударный изгиб на маятниковых копрах (ГОСТ 9454-78. Металлы. Метод испытания на ударный изгиб при пониженных, комнатной и повышенных температурах. М.: Изд-во стандартов, 19 с.).

При этом стандартный призматический образец с надрезом испытывают путем приложения к нему динамической нагрузки по схеме трехточечного изгиба, а по показаниям копра измеряют работу удара А, Дж, которая при делении на площадь образца в месте надреза дает значение ударной вязкости KCV, МДж/м2 (здесь для образца с V-образным типом надреза). Ударная вязкость из всех характеристик механических свойств наиболее чувствительна к снижению температуры, поэтому испытания на ударную вязкость при пониженных температурах используют для определения порога хладноломкости tXP - температуры или интервала температур, в котором происходит снижение ударной вязкости.

Общим требованием к испытаниям на ударную вязкость является осуществление перехода металла в хрупкое состояние при температурах, легко достижимых в лабораторных условиях (tисп=+100…-100°C). Однако в случае отсутствия явного вязкохрупкого перехода в этом диапазоне температур, например, в случае высоковязких материалов, определить tXP затруднительно.

Высоковязкими материалами считаются те, которые разрушаются вязко и с высокой энергоемкостью в широком диапазоне отрицательных температур испытаний tисп≅-40…-100°C. Примером таких высоковязких материалов являются сверхнизкоуглеродистые стали типа 05Г2МФ, используемые для нефте- и газопроводов нового поколения, высокоэтажном строительстве, судостроении и т.д. Главным требованием к металлу таких конструкций является то, что он должен работать в условиях, далеких от появления хрупкого механизма разрушения, и иметь уровень ударной вязкости KCV≥2,5 МДж/м2 при tисп=-40°C.

Результаты испытаний на ударный изгиб свидетельствуют об очень высоком уровне ударной вязкости таких сталей (KCV≥1,5 МДж/м2 при tисп=-80°C). На сериальных кривых не наблюдается явного вязкохрупкого перехода, полностью хрупкое разрушение наступает только при tисп<-100°C, а образцы полностью не разрушаются вплоть до tисп=-40°C. Согласно приведенному выше стандарту, если в результате испытания образец не разрушился, то показатель качества материала (ударная вязкость) считается не установленным. Таким образом, необходим другой подход для определения уровня вязкости металлических материалов при испытаниях на ударный изгиб.

Известен способ определения вязкости металлических материалов при испытании на ударный изгиб образцов с V-образным надрезом с записью осциллограмм разрушения (ASTM Е2298. Standard test method for instrumented impact testing of metallic materials, 2013. 9 p.).

Согласно этому способу на осциллографической кривой в координатах нагрузка F - смещение S выделяются характерные точки, соответствующие разным стадиям разрушения образца, а затем определяются параметры вязкости для каждой стадии (энергоемкость, напряжение, смещение, доля вязкой составляющей в изломе). Недостатком данного способа определения вязкости является то, что в случае высоковязких материалов недолом образцов приводит к недействительности результатов испытания, а на поверхности излома образцов невозможно выделить область «хрупкого квадрата», соответствующую хрупкому механизму разрушения.

Наиболее близким по технической сущности к предлагаемому методу является способ определения вязкости металлических материалов (патент №2570237. Российская Федерация, МПК G01N3. Способ определения вязкости металлических материалов / Хотинов В.А., Фарбер В.М., Морозова А.Н. Уральский федеральный университет, опубл. 10.12.15).

Способ заключается в выполнении следующих операций:

- нанесение V-образного надреза на боковую поверхность призматического образца;

- ударный изгиб образца с надрезом (приложение динамической нагрузки) с одновременной записью кривой в координатах «нагрузка F - смещение S»;

- определение (выделение) на полученной кривой ниспадающего линейного участка;

- определение характеристик вязкости на выделенной стадии разрушения (напряжения и смещения);

- определение уровня вязкости материала.

Принципиальным моментом известного способа является то, что для интерпретации полученной информации необходим совместный анализ осциллографических кривых с результатами фрактографических исследований, то есть идентификация на поверхности разрушения области, соответствующей ниспадающему линейному участку. Кроме того, для высоковязкого состояния образца такой участок на осциллографической кривой разрушения может полностью отсутствовать, что не дает возможность оценить запас вязкости материала.

В настоящее время использование для ударных испытаний копров, оснащенных осциллографической записью диаграммы ударного разрушения в координатах «энергоемкость E - прогиб S», дает возможность провести оценку различных стадий разрушения. При этом регистрируемый на всех стадиях прогиб образца S связан с наложением двух одновременно протекающих процессов - изгибом образца при его макропластической деформации и раскрытием магистральной трещины. В зависимости от ряда факторов вклад каждого из этих процессов может быть разным и определяется, в частности, механизмом разрушения: в случае хрупкого разрушения доля первого процесса мала, тогда как при вязком - существенна и должна учитываться.

Техническая задача, решаемая данным изобретением, заключается в определении вязкости металлических материалов при испытании на ударный изгиб образца с надрезом путем выделения на кривой разрушения в координатах «энергоемкость E - смещение S» участка, соответствующего распространению магистральной трещины, и определения на этом участке характеристик вязкости для аттестации вязкости любых, в том числе недоломанных, образцов металлических материалов.

Поставленная задача решается способом, при котором после охлаждения образца с надрезом до температуры испытания и приложения к образцу ударной изгибающей нагрузки с одновременной записью кривой разрушения в координатах «энергоемкость E - смещение S» на полученной кривой участок, соответствующий стадии распространения магистральной трещины в образце, выделяют следующим образом: начало участка соответствует отклонению кривой от линейного хода изменения энергоемкости при смещении (или максимуму на кривой в координатах «нагрузка F - смещение S»), конец участка соответствует энергоемкости при разрушении (неполном разрушении в случае высоковязкого материала).

На выделенном участке определяют следующие параметры вязкости исследуемого материала:

1. Энергоемкость начала (ЕН, Дж) и окончания (ЕК, Дж) данной стадии разрушения, а параметр вязкости KM, МДж/м2, рассчитывают по формуле:

где F0 - площадь первоначального поперечного сечения образца в месте надреза, мм2.

2. Параметр вязкости n находят исходя из уравнения, описывающего ход зависимости на выделенном участке

где A - коэффициент, зависящий от условий испытаний (температуры испытания, вида надреза, энергоемкости бойка и др.).

Изобретение иллюстрируется следующими чертежами.

На фиг. 1 приведены сглаженные кривые ударного нагружения высоковязкого материала - стали 05Г2СФ, в координатах «нагрузка F - смещение S» (а) и в координатах «энергоемкость E - смещение S» при разных температурах испытания.

Испытание на ударный изгиб стандартных образцов Шарпи размером 10×10×55 мм как с V-образным надрезом, так и без него, проводилось на копре с падающим грузом INSTRON CEAST 9350 в диапазоне температур испытаний tисп=+20…-100°C с записью кривых ударного нагружения. Частота съема измерений с датчиков по нагрузке и смещению составляла 0,001 мс на точку. Обработка кривой в координатах «нагрузка F - смещение S» заключалась в ее сглаживании путем инструментальной фильтрации массива измеренных данных с целью уменьшения влияния факторов, вносимых упругим взаимодействием системы «опоры-образец-молот», а также в последующем инструментальном интегрировании для ее перестройки в координаты «энергоемкость E - смещение S».

На фиг. 2 показаны сглаженная кривая ударного нагружения образца стали 05Г2СФ при температуре испытания -60°C в координатах «нагрузка F - смещение S» и «энергоемкость E - смещение S» с графическим выделением на приведенной кривой участка, соответствующего стадии распространения магистральной трещины, и определением на выделенном участке энергоемкости начала (ЕН) и окончания (ЕК) данной стадии разрушения.

На фиг. 3 показаны выделенные по описанному способу участки на кривых ударного нагружения образца стали 05Г2СФ в координатах «энергоемкость E - смещение S» с результатами регрессионного анализа для определения параметра вязкости n.

На фиг. 4 представлены зависимости ударной вязкости KCV и KM, определенных для различных групп конструкционных сталей (32Г2Р, 20X13, 09Г2С, 05Г2СФ и др.), в том числе высоковязких, по кривым ударного нагружения при различных температурах испытаний. Прямая корреляция значений KCV и KM хорошо описывается линейной функцией с доверительной вероятностью R2=0,97.

На фиг. 5 представлены зависимость ударной вязкости KCV и параметра вязкости n на примере стали 05Г2СФ при различных температурах испытаний. Прямая корреляция значений KCV и n хорошо описывается линейной функцией с доверительной вероятностью R2=0,97.

Полученные результаты свидетельствуют о том, что на кривой разрушения образца с надрезом в координатах «энергоемкость E - смещение S» всегда можно по предлагаемому способу выделить участок, соответствующий стадии распространения магистральной трещины, определить на нем параметры вязкости (KM, n), а затем использовать их для аттестации любых металлических материалов при наличии возможности инструментальной записи кривой разрушения.

Способ определения вязкости металлических материалов при испытаниях на ударный изгиб призматических образцов с надрезом с записью кривой разрушения путем идентификации на ней характерных точек, отличающийся тем, что на кривой разрушения в координатах «энергоемкость Е - смещение бойка S» выделяют участок между точкой отрыва от прямолинейного хода кривой и точкой разрушения образца, а для аттестации металлических материалов на выделенном участке определяют параметры вязкости КM и n, при этом параметр вязкости КM находят исходя из уравнения

где ЕH и ЕK - энергоемкость разрушения в точках, соответствующих началу и концу выделенного участка кривой , F0 - площадь первоначального поперечного сечения в месте надреза, а параметр вязкости n - исходя из уравнения, описывающего ход зависимости на выделенном участке

Е=A⋅Sn,

где А - коэффициент, зависящий от условий испытаний (температуры испытания, вида надреза, энергоемкости бойка и др.).



 

Похожие патенты:

Изобретение относится к испытательной технике, в частности к устройствам для испытаний на ударные воздействия различных приборов и оборудования. Стенд состоит из силового каркаса в виде прямоугольной рамы на ножках с продольными направляющими для установки через амортизаторы подпружиненной платформы, выполненной в виде резонансной плиты, поперечная собственная частота которой соответствует частоте перехода на требуемом ударном спектре ускорений, и рамы для крепления маятника с бойком, состоящим из стержня с профилированным торцом и резьбой, для установки и фиксации дополнительных грузов.

Изобретение относится к области научно-исследовательских методов, применяемых при выявлении причин разрушения изделий, а также используемых при изучении свойств твердых тел и механизмов их разрушения, и может быть использовано в химической, нефтехимической, энергетической, машиностроительной и металлургической промышленности, на объектах транспорта для контроля качества и оценки работоспособности материалов, при прогнозировании эксплуатационной надежности изготовленных из них деталей и узлов машин производственного назначения.

Изобретение относится к определению механических свойств металла, а именно к способам разделения ударной вязкости на работу зарождения и работу распространения трещины при испытании на ударный изгиб, и может быть использовано в металлургии, машиностроении и других отраслях народного хозяйства.

Изобретение относится к измерительной технике, в частности к способам определения параметров удара о преграду зерен алмазно-абразивных порошков, имеющих неправильные геометрические формы.

Изобретение относится к области материаловедения, в частности к способам комплексной оценки физико-механических свойств высоковязких конструкционных сталей, и может быть использовано для экспресс-анализа состояния трещиностойкости материала и прогнозирования трещиностойкости материала стали.

Изобретение относится к машиностроению и предназначено для взврывозащиты технологического оборудования, в частности защиты аппаратов от разрушения при взрыве горючей смеси разрывной мембраной.

Изобретение относится к области строительства и может быть использовано при испытании конструкций и отдельных элементов зданий и сооружений, работающих на изгиб с кручением при статическом и кратковременном динамическом воздействии с определением точной деформационной модели конструкции, например балок или плит.

Изобретение относится к области строительства и может быть использовано при испытании конструкций и отдельных элементов зданий и сооружений, работающих на изгиб с кручением при статическом и кратковременном динамическом воздействии с определением точной деформационной модели конструкции, например балок или плит.

Изобретение относится к устройствам для проведения испытаний по определению устойчивости разнообразных материалов и изделий к удару. Приспособление для определения устойчивости материала к удару содержит станину, направляющую, ударный элемент с механизмом приведения его в движение, при этом направляющая выполнена в виде трубы, продольно закрепленной на штативе с возможностью поворота, в полости трубы расположен ударный элемент, выполненный составным из наборных пластин и сменного бойка.

Изобретение относится к машиностроению и предназначено для взврывозащиты технологического оборудования, в частности защиты аппаратов от разрушения при взрыве горючей смеси разрывной мембраной.

Изобретения относятся к исследованию материалов путем определения их физических свойств и могут быть использованы для статического и динамического сжатия образцов горных пород и определения совокупности физических величин, характеризующих начальную стадию процесса их разрушения, например спектра упругих колебаний от образования микротрещин. Сущность: осуществляют размещение на наковальне образца, воздействие на него падающим грузом с известной начальной энергией, прием импульсов акустических сигналов, возникающих при разрушении образца. Образец по направлению падающего груза предварительно сжимают статическим усилием. Начальную энергию падающего груза увеличивают от нулевого значения до возникновения в образце микротрещин, что фиксируют по частотному спектру импульсов акустических сигналов. Образец сжимают статическим усилием во всем диапазоне его устойчивости к разрушению. Устройство содержит станину, направляющую в виде трубы с возможностью поворота, ударный элемент с механизмом приведения его в движение, расположенный в полости трубы. Станина выполнена в виде стакана с окнами для установки образца и радиальным отверстием, в котором закреплена трубка с внутренней резьбой, куда вкручен винт с рукояткой. Стакан связан резьбовым соединением с трубой, в конец которой со стороны резьбового соединения вставлена пробка с возможностью ограниченного продольного перемещения. В стакане между окон и радиальным отверстием размещен поршень. Между поршнем и дном стакана и в трубку подано пластичное вещество. Имеются датчик давления пластичного вещества и система определения совокупности физических величин, характеризующих процесс разрушения горной породы, например спектра упругих колебаний от возникающих микротрещин. Технический результат: возможность воздействия на горную породу совокупностью статических и динамических нагрузок до возникновения микротрещин и фиксации их появления по спектру упругих колебаний, а также в повышении эффективности устройства за счет расширения его возможностей на статическое сжатие горной породы, прием и обработку упругих колебаний. 2 н.п. ф-лы, 2 ил.

Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической кратковременной нагрузки, и может быть использовано для определения вязкости металлических материалов. Сущность: осуществляют испытания на ударный изгиб призматических образцов с надрезом с записью кривой разрушения путем идентификации на ней характерных точек. На кривой разрушения в координатах «энергоемкость Е - смещение бойка S» выделяют участок между точкой отрыва от прямолинейного хода кривой и точкой разрушения образца, а для аттестации металлических материалов на выделенном участке определяют параметры вязкости КM и n, при этом параметр вязкости КM находят исходя из уравнения где ЕH и ЕK - энергоемкость разрушения в точках, соответствующих началу и концу выделенного участка кривой, F0 - площадь первоначального поперечного сечения в месте надреза, а параметр вязкости n - исходя из уравнения, описывающего ход зависимости на выделенном участкеЕA⋅Sn,где А - коэффициент, зависящий от условий испытаний. Технический результат: возможность выделить участок, соответствующий стадии распространения магистральной трещины, определить на нем параметры вязкости, а затем использовать их для аттестации любых металлических материалов при наличии возможности инструментальной записи кривой разрушения. 5 ил.

Наверх