Способ оценки эффективности смазочных материалов

Изобретение относится к исследованию трибологических свойств смазочных материалов, используемых в машиностроении. Способ заключается в эксплуатации пары трения в присутствии смазки, пропускании через нее электрического тока при неподвижной паре трения и при установившемся режиме трения, при этом определяют электрическую емкость между верхней и нижней поверхностями пары трения палец-диск в присутствии слоя смазки и по полученным показаниям судят о диэлектрической проницаемости исследуемого материала и ориентации молекул в слое, при этом чем больше коэффициент упорядоченности молекул в ориентированном слое (ближе к единице), а вектор преимущественной ориентации молекул совпадает с вектором электрического поля, создаваемого вследствие измерения емкости, тем диэлектрическая проницаемость смазочного материала выше и выше смазочные свойства испытуемого образца; совместно с измерениями емкости производят измерение толщины пленки с помощью лазерного измерителя; результаты получают при неподвижной паре трения и при установившемся режиме трения, после чего судят об эффективности смазочного материала и о роли трибоактивных компонентов в составе смазочного материала путем сопоставления данных испытания с требуемыми параметрами. Достигается возможность расширения диапазона оцениваемых свойств смазочных материалов.

 

Изобретение относится к способам исследования трибологических свойств смазочных материалов, используемых в машиностроении.

Известен способ определения смазывающей способности масел, заключающийся в том, что эксплуатируют пару трения в присутствии смазки, пропускают через нее электрический ток, снимают статическое напряжение на поверхностях пары трения изменением полярности электрического тока, измеряют постоянный ток при неподвижной паре трения и при установившемся режиме трения в присутствии смазки в контакте, а в качестве параметра используют их отношение [а.с. 1054732 СССР, МКИ3 G01N 3/56. Способ определения смазывающей способности масел / БИ Ковальский, Г.М. Сорокин, А.П. Ефремов. №3468408/25-28 приор. 08.07.1982 Опубл. 15.11.83, бюл. №42].

Известна машина для испытания материалов на трение типа 2168 УМТ, осуществляющая испытания фрикционных, антифрикционных и смазочных материалов на трение и износ (сайт http://www.tochpribor-nw.ru/production/frictiontesting, http://lib.madi.ru/fel/fel1/fel16M509.pdf). Схемы испытаний: диск-палец, диск-колодка. Привод машины - электромеханический с плавным регулированием скорости вращения диска. В процессе работы с помощью пневматического устройства прижимают образец к диску и измеряют силу прижима. При испытаниях измеряют момент трения, силу прижима, температуру, частоту вращения, путь трения (суммарное число оборотов диска).

Недостаток данных способов состоит в том, что результаты испытаний не дают возможности оценить степень молекулярной ориентации в смазочном слое и его эффективную толщину. При этом наличие ориентированных слоев и эффективная толщина смазочного слоя также определяют качество смазочных материалов.

Известна машина трения МТУГ-01, предназначенная для проведения испытаний на трение и износ металлических и неметаллических материалов в условиях применения различных смазочных материалов (сайт http://www.nanotech.ru/pages/about/mtu-1.htm).

Испытания основаны на взаимном перемещении прижатых друг к другу с заданным усилием испытываемых образцов в среде смазочных материалов или без них. В процессе испытания регистрируют момент трения с графическим отображением его изменения, а также температуру испытуемых образцов. Схема контакта: торец вращающегося ролика и неподвижный диск. Момент трения регистрируется тензодатчиком, температура - термопарой.

К недостаткам описанного способа относится недостаточная точность определения смазывающей способности испытуемого материала, так как здесь нет возможности идентифицировать толщину и оценить степень молекулярной ориентации в смазочном слое.

Известна универсальная машина трения СМЦ-2 (сайт http://www.gubkin.ru/faculty/mechanical_engineering/chairs_and_departments/Uchebn_nauch_proizv_centr_po_remontu/experiment/experimentl.php), осуществляющая испытания материалов на трение и изнашивание при качении, качении с проскальзыванием и скольжении по схемам «диск-палец», «диск-диск», «кольцо-кольцо», «диск-колодка», «торец-торец», «цилиндр-цилиндр». Диск (цилиндрический образец) устанавливают на валу привода машины, вращение которого производится электродвигателем через ременную передачу. Нагружение образцов производится через контртело, установленное в колодке и взаимодействующее с диском, а каретка перемещения уравновешивается противовесом, что позволяет проводить испытания при малых нагрузках на пару трения.

К недостаткам машины трения СМЦ-2 следует отнести погрешности измерения, вызванные массивным механизмом нагружения и биением поверхности трения, трением в подшипниках, кроме того, нет возможности идентифицировать эффективную толщину и оценить степень молекулярной ориентации в смазочном слое.

Известно устройство, осуществляющее способ определения коэффициента трения материалов по схеме диск-колодка, содержащее колодку с контртелом и диск, установленный на валу привода. Диск (образец) закрепляют на выходном валу привода, который взаимодействует с двумя диаметрально расположенными колодками с контртелами, натруженными через систему рычагов, образующую замкнутый силовой подвижный контур и взаимодействующую с измерительным устройством. При измерении возникающий при вращении диска момент трения передается на измерительное устройство, по показаниям которого осуществляется определение коэффициента трения. Температура в зоне контакта регистрируется термопарой [патент 2461811 Российская Федерация, МПК G01N 19/02 (2006.01). Устройство для определения коэффициента трения материалов / В.А. Борисенко, С.А. Барышников, В.В. Ерофеев, Н.В. Кравченко, У.В. Парамонова.; заявитель и патентообладатель ФГОУВПО "Челябинская государственная агроинженерная академия" - №2011116403/28; заявл. 25.04.2011; опубл. 20.09.2012, бюл. №26]

К недостаткам способа, осуществляемого данным устройством, также и в вышеописанном способе, следует отнести неспособность оценить степень молекулярной ориентации в смазочном слое и его эффективную толщину. При этом наличие ориентированных слоев и эффективная толщина смазочного слоя определяет качество смазочных материалов.

За прототип принят способ определения смазывающей способности масел, заключающийся в том, что эксплуатируют пару трения в присутствии смазки, пропускают через нее электрический ток, снимают статическое напряжение на поверхностях пары трения изменением полярности электрического тока, измеряют постоянный ток при неподвижной паре трения и при установившемся режиме трения в присутствии смазки в контакте, при этом величину тока измеряют за период от начала испытания до стабилизации его значения при установившемся режиме трения в зависимости от времени трения, нагрузки, скорости скольжения, механических свойств материалов пары трения и температуры масла. Далее строят их графические зависимости и оценивают смазочную способность масла по параметрам: приспосабливаемости, скорости приспосабливаемости масла к данным условиям трения и коэффициенту совместимости масла, приспосабливаемость масла определяют по периоду времени от начала уменьшения тока до его стабилизации, скорость приспосабливаемости - по углу наклона графических зависимостей к оси ординат, коэффициент совместимости масла КС определяют по формуле

где IЗ - заданная величина тока, пропускаемого через пару трения при неподвижности;

IС - величина постоянного тока при его стабилизации в процессе трения [патент 2186386 Российская Федерация, МПК G01N 33/30, G01N 3/56 Способ определения смазывающей способности масел / Б.И. Ковальский, С.И. Васильев, С.Б. Ковальский, Д.Г. Барков; заявитель и патентообладатель Красноярский государственный технический университет - №2001106404/04; заявл. 06.03.2001; опубл. 27.07.2002, бюл. №21].

К недостаткам прототипа относится то что, при таком способе также нельзя оценить степень молекулярной ориентации в смазочном слое и толщину смазочного слоя. При этом наличие ориентированных слоев и эффективная толщина смазочного слоя также определяет качество смазочных материалов

Техническим результатом заявляемого изобретения является расширение диапазона оцениваемых свойств смазочных материалов и, как следствие, повышение качества и полноты их оценки, что, в свою очередь, позволяет разрабатывать наиболее эффективные смазочные средства.

Указанный технический результат достигается тем, что в способе определения смазывающей способности масел эксплуатируют пару трения в присутствии смазки, пропускают через нее электрический ток при неподвижной паре трения и при установившемся режиме трения, согласно изобретению определяют электрическую емкость между верхней и нижней поверхностями пары трения палец-диск в присутствии слоя смазки и по полученным показаниям судят о диэлектрической проницаемости исследуемого материала и ориентации молекул в слое, при этом чем больше коэффициент упорядоченности молекул в ориентированном слое (ближе к единице), а вектор преимущественной ориентации молекул совпадает с вектором электрического поля, создаваемого вследствие измерения емкости, тем диэлектрическая проницаемость смазочного материала выше и выше смазочные свойства испытуемого образца; совместно с измерениями емкости производят измерение толщины пленки с помощью лазерного измерителя; результаты получают при неподвижной паре трения и при установившемся режиме трения, после чего судят об эффективности смазочного материала и о роли трибоактивных компонентов в составе смазочного материала путем сопоставления данных испытания с требуемыми параметрами.

Технический результат, заключающийся в расширение диапазона оцениваемых свойств смазочных материалов, достигается за счет контроля диэлектрической проницаемости смазочного средства и эффективной толщины смазочного слоя.

Заявляемый способ осуществляется следующим образом.

Пару трения подключают по схеме «палец-диск». В неподвижном состоянии в присутствии слоя смазочного материала с помощью измерителя емкости (измеритель RLC-параметров GW 78105G) производят измерение емкости и с помощью лазерного измерителя толщины (лазерный измеритель RAS-TM-10) определяют толщину смазочного слоя. Далее придают вращение диску до заданной угловой скорости, добиваясь установившегося режима трения путем стабилизации частоты вращения, и производят новые измерения емкости, а также одновременно с этим - толщины смазочного слоя. Необходимость одновременного измерения толщины слоя обусловлена тем, чтобы рассчитывать удельные величины сдвиговых деформаций по толщине слоя и контролировать режим граничного трения при работе фрикционной пары, что сделает оценку ориентационных эффектов более достоверной. По полученным показаниям судят о диэлектрической проницаемости исследуемого материала (так как она пропорциональна электрической емкости) и степени ориентации молекул в слое. При этом чем больше коэффициент упорядоченности молекул в ориентированном слое (ближе к единице), а вектор преимущественной ориентации молекул совпадает с вектором электрического поля, создаваемого вследствие измерения емкости, тем диэлектрическая проницаемость смазочного материала выше и выше смазочные свойства испытуемого образца.

Способ определения смазывающей способности масел, заключающийся в эксплуатации пары трения в присутствии смазки, пропускании через нее электрического тока при неподвижной паре трения и при установившемся режиме трения, отличающийся тем, что определяют электрическую емкость между верхней и нижней поверхностями пары трения палец-диск в присутствии слоя смазки и по полученным показаниям судят о диэлектрической проницаемости исследуемого материала и ориентации молекул в слое, при этом чем больше коэффициент упорядоченности молекул в ориентированном слое (ближе к единице), а вектор преимущественной ориентации молекул совпадает с вектором электрического поля, создаваемого вследствие измерения емкости, тем диэлектрическая проницаемость смазочного материала выше и выше смазочные свойства испытуемого образца; совместно с измерениями емкости производят измерение толщины пленки с помощью лазерного измерителя; результаты получают при неподвижной паре трения и при установившемся режиме трения, после чего судят об эффективности смазочного материала и о роли трибоактивных компонентов в составе смазочного материала путем сопоставления данных испытания с требуемыми параметрами.



 

Похожие патенты:

Изобретение относится к исследованию трибологических свойств смазочных материалов, используемых в узлах трения. Способ основан на использовании верхнего и нижнего слоя поверхностей трения в присутствии исследуемого слоя смазки между ними, при этом формируют молекулярную модель пары трения с рандомизированным расположением молекул в смазочном слое с использованием ЭВМ и программы молекулярного моделирования, реализующей методы молекулярной механики, молекулярной динамики и квантовой химии, при этом после размещения двух параллельных слоев поверхностей трения с исследуемым слоем смазки между ними, проводят, используя процедуры минимизации энергии системы, оптимизацию положения молекул в смазочном слое, после чего находят межфазную поверхностную энергию, путем определения разницы энергий системы до взаимодействия смазочного слоя с поверхностью трения и после взаимодействия; затем осуществляют циклический сдвиг верхней поверхности трения относительно нижней, сохраняя параллельность заданное количество раз, повторяя процесс оптимизации положения молекул на каждом шаге сдвига, вследствие чего молекулы в смазочном слое принимают определенное геометрическое расположение в пространстве; после чего с учетом расположения молекул относительно поверхностей трения по известным зависимостям рассчитывают ориентационный коэффициент, а коэффициент упорядоченности молекул в смазочном слое рассчитывают из заданного соотношения, затем с помощью программы молекулярного моделирования рассчитывают потенциальную энергию системы, при этом ориентационный коэффициент, коэффициент упорядоченности молекул в смазочном слое и максимальное значение потенциальной энергии системы коррелируют с напряжением сдвига и, соответственно, силой трения; после чего по полученным данным определяют наиболее эффективное смазочное средство, которое обладает наименьшим напряжением сдвига при наименьшем значении потенциальной энергии системы и наибольших ориентационном коэффициенте и коэффициенте упорядоченности.

Изобретение относится к области испытания материалов на износ и может быть использовано при оценке износостойкости поверхностей и покрытий. Сущность: осуществляют склерометрирование наплавленного покрытия, нанесенного на основной материал с последующим измерением геометрических параметров деформации поверхности покрытия.

Изобретение относится к технике испытания строительных материалов Стенд содержит термостатированную камеру с размещенным в ней узлом создания усилия на испытуемый образец, имеющим обрезиненное колесо, закрепленное в держателе; выводящимися на пульт управления терморегулятором и измерителем глубины образующейся колеи; выполненным с возможностью движения по горизонтальным направляющим штангам посредством привода с электродвигателем испытательным столом.

Изобретение относится к области исследования износостойкости материалов, используемых в стоматологии. Сущность изобретения: замеряют массы, геометрические размеры и шероховатость поверхности образцов эталона и исследуемого материала и помещают их на дно емкости.

Группа изобретений относится к области оптических измерений одновременно нескольких параметров изделий, в частности к устройствам для измерения величины износа и температуры изделий при трении.

Изобретение относится к области исследования механических свойств металлов, в частности их износостойкости, и касается подготовки образцов типа «вкладышей» для испытаний.

Изобретение относится к области трибометрии для исследования процессов трения, износа и трибоЭДС как при сухом трении, так и со смазкой. Машина трения содержит стол с жестким основанием, электродвигатель, неподвижную бабку, в которой в подшипниковой опоре размещен приводной вал, один конец которого через муфту соединен с электродвигателем, а другой - с ведущей головкой с контрэлементом, к которому прижимается торцом образец с помощью механической системы в виде рычагов, при этом образец закреплен в образцедержателе, расположенном на валу в подвижной бабке, и вал, вращающийся вокруг своей оси и перемещающийся вдоль оси для передачи усилия на образец с помощью механической системы в виде рычагов, при этом момент трения уравновешивается маятником, жестко связанным с образцедержателем с определением момента по шкале.

Изобретение относится к технике испытаний на трение и износ материалов и покрытий в условиях атмосферы и в высоком вакууме. Установка содержит форвакуумный насос, измерительный рычаг со вставкой с контртелом, установленным во фланце оправки карданной крестовины, герметично соединенным с гибким сильфоном с неподвижно установленной вакуумной камерой, привод с эксцентриковым валом, связанным тягой с рычагом карданной крестовины, рычаг с грузом, испытываемый образец, закрепленный в крышке неподвижной вакуумной камеры.

Изобретение относится к испытаниям материалов на износ при трении и предназначено для определения износостойкости материалов упрочняющих покрытий рабочих органов сельхозмашин при их абразивном изнашивании в почве в реальных условиях.

Изобретение относится к неразрушающему контролю изделий при определении их механических свойств и предназначено для контроля технического состояния канатов шахтных подъемных установок.

Изобретение относится к исследованию трибологических свойств смазочных материалов, используемых в узлах трения. Способ основан на использовании верхнего и нижнего слоя поверхностей трения в присутствии исследуемого слоя смазки между ними, при этом формируют молекулярную модель пары трения с рандомизированным расположением молекул в смазочном слое с использованием ЭВМ и программы молекулярного моделирования, реализующей методы молекулярной механики, молекулярной динамики и квантовой химии, при этом после размещения двух параллельных слоев поверхностей трения с исследуемым слоем смазки между ними, проводят, используя процедуры минимизации энергии системы, оптимизацию положения молекул в смазочном слое, после чего находят межфазную поверхностную энергию, путем определения разницы энергий системы до взаимодействия смазочного слоя с поверхностью трения и после взаимодействия; затем осуществляют циклический сдвиг верхней поверхности трения относительно нижней, сохраняя параллельность заданное количество раз, повторяя процесс оптимизации положения молекул на каждом шаге сдвига, вследствие чего молекулы в смазочном слое принимают определенное геометрическое расположение в пространстве; после чего с учетом расположения молекул относительно поверхностей трения по известным зависимостям рассчитывают ориентационный коэффициент, а коэффициент упорядоченности молекул в смазочном слое рассчитывают из заданного соотношения, затем с помощью программы молекулярного моделирования рассчитывают потенциальную энергию системы, при этом ориентационный коэффициент, коэффициент упорядоченности молекул в смазочном слое и максимальное значение потенциальной энергии системы коррелируют с напряжением сдвига и, соответственно, силой трения; после чего по полученным данным определяют наиболее эффективное смазочное средство, которое обладает наименьшим напряжением сдвига при наименьшем значении потенциальной энергии системы и наибольших ориентационном коэффициенте и коэффициенте упорядоченности.

Изобретение относится к области автоматического измерения физико-химических параметров жидкостей. Устройство содержит блок регистрации и управления, состоящий из вычислителя с программным обеспечением, включающего в себя алгоритм вычисления численных значений степени засоленности ДЭГ, который соединен передающими кабелями с терминалом ввода и отображения информации, дискретного модуля для управления установкой абсорбционной осушки газа и аналогового модуля для преобразования сигнала, полученного от кондуктометрического датчика, соединенных с вычислителем и блоком питания, измерительный модуль, состоящий из преобразователя сигналов и кондуктометрического датчика, соединенный с преобразователем сигналов специальным кабелем.

Изобретение относится к области испытания материалов с помощью нагрева, в частности к технологии определения температуры вспышки смазочных масел без применения поджога паров, и может быть использовано при оценке эксплуатационных характеристик товарных и работающих смазочных масел.

Изобретение относится к технологии оценки качества жидких смазочных материалов. При осуществлении способа испытывают пробы смазочного материала постоянной массы в присутствии воздуха, при оптимальных температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют ее, определяют параметры термоокислительной стабильности и проводят оценку процесса окисления.

Изобретение относится к области анализа материалов, преимущественно смазочных масел, в частности для оценки влияния масел на поверхности деталей цилиндропоршневой группы и коленчатого вала двигателей внутреннего сгорания в зонах высоких температур.

Изобретение относится к измерительной технике, в частности для определения качества нефтепродуктов, и может быть применено для контроля температурной стойкости и термоокислительной стабильности смазочных материалов.

Изобретение относится к технологии классификации жидких смазочных материалов. При осуществлении способа испытывают пробу смазочного материала в присутствии воздуха с перемешиванием, постоянного объема, минимум, при трех температурах, выбранных в зависимости от базовой основы, назначения и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления.

Изобретение относится к технологии оценки качества жидких смазочных материалов. Предложен способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробы смазочного материала постоянного объема в присутствии воздуха с перемешиванием при оптимальных, как минимум трех, температурах ниже критической, выбранных в зависимости от базовой основы, назначения смазочного материала и группы эксплуатационных свойств в течение времени, характеризующего одинаковую степень окисления.

Изобретение относится к оценке эксплуатационных свойств моторных масел в условиях динамического тонкослойного окисления и может быть использовано в нефтехимической промышленности, в частности в лабораториях при производстве новых видов моторных масел.

Изобретение относится к оценке лакообразующих свойств моторных масел в условиях динамического тонкослойного окисления и может быть использовано в нефтехимической промышленности, в частности в лабораториях при производстве новых видов моторных масел.

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ прогнозирования показателей термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием постоянной массы минимум при трех температурах, выбранных в зависимости от базовой основы, назначения и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления. Причем через равные промежутки времени отбирают пробу окисленного смазочного материала и проводят оценку процесса окисления. Согласно изобретению для оценки процесса окисления определяют оптическую плотность, испаряемость и коэффициент термоокислительной стабильности, строят графические зависимости этих показателей от времени и трех выбранных температур испытания. Определяют время достижения выбранных значений показателей термоокислительной стабильности от минимальной до максимальной величины при каждой температуре. Определяют десятичный логарифм времени достижения выбранных значений показателей термоокислительной стабильности, строят графические зависимости десятичного логарифма времени достижения выбранных значений показателей термоокислительной стабильности от температуры испытания. Прогнозирование этих показателей при других температурах, отличных от принятых, осуществляют по значениям антилогарифмов времени достижения показателей термоокислительной стабильности для этих температур. Технический результат - повышение информативности способа, снижение трудоемкости определения показателей термоокислительной стабильности в широком диапазоне температур за счет возможности их прогнозирования, более точное определение температурной области работоспособности смазочных материалов. 2 табл., 6 ил.

Изобретение относится к исследованию трибологических свойств смазочных материалов, используемых в машиностроении. Способ заключается в эксплуатации пары трения в присутствии смазки, пропускании через нее электрического тока при неподвижной паре трения и при установившемся режиме трения, при этом определяют электрическую емкость между верхней и нижней поверхностями пары трения палец-диск в присутствии слоя смазки и по полученным показаниям судят о диэлектрической проницаемости исследуемого материала и ориентации молекул в слое, при этом чем больше коэффициент упорядоченности молекул в ориентированном слое, а вектор преимущественной ориентации молекул совпадает с вектором электрического поля, создаваемого вследствие измерения емкости, тем диэлектрическая проницаемость смазочного материала выше и выше смазочные свойства испытуемого образца; совместно с измерениями емкости производят измерение толщины пленки с помощью лазерного измерителя; результаты получают при неподвижной паре трения и при установившемся режиме трения, после чего судят об эффективности смазочного материала и о роли трибоактивных компонентов в составе смазочного материала путем сопоставления данных испытания с требуемыми параметрами. Достигается возможность расширения диапазона оцениваемых свойств смазочных материалов.

Наверх