Способ защиты оператора от производственного шума

Изобретение относится к промышленной акустике, в частности к широкополосному шу-моглушению, и может быть использовано во всех отраслях народного хозяйства в качестве средства защиты от шума. Техническим результатом является повышение эффективности шумоглушения за счет повышения коэффициента звукопоглощения путем увеличения поверхностей звукопоглощения при сохранении габаритных размеров помещения. Технический результат достигается тем, что способ защиты оператора от производственного шума заключается в том, что рабочее место оператора оснащают средствами снижения шума, рабочее место оператора располагают между акустическими экранами, а для снижения звуковой вибрации рабочее место оператора оснащают двухкаскадной системой виброзащиты оператора, выполненной в виде пола на упругом основании, каркас выполнен по форме в виде прямоугольного параллелепипеда, при этом конструкцию пола помещения выполняют в виде плавающего пола, которая представляет собой слой звукоизоляционного прокладочного материала, расположенного на плите перекрытия, поверх которого выполняют цементно-песчаную стяжку, а на стяжку укладывают подложку, затем ламинат с плинтусом, при этом акустическое устройство акустического подвесного потолка, размещенного в зоне ферм, оснащают по крайней мере двумя звукопоглощающими секциями, каждая из которых содержит стенки из гофрированного перфорированного материала, между которыми расположены звукопоглощающие элементы, а стенки гофрированного материала выполняют с щелевой перфорацией из нержавеющей стали или оцинкованного листа, при этом каждый из звукопоглощающих элементов выполняют в виде перфорированных пластин, между которыми симметрично располагают слои звукоотражающего материала, а в центре между слоями звукоотражающего материала располагают слои звукопоглощающего материала разной плотности, в два слоя, причем слои звукоотражающего материала выполняют сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, которые располагают соответственно у перфорированных пластин, причем перфорированная пластина выполнена из пластмассовой, капроновой или металлической сетки с мелкой ячейкой, при этом в качестве звукопоглощающего материала используют пористый звукопоглощающий керамический материал, а в качестве материала звукоотражающих слоев применяют материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом, при этом теплозвукоизолирующее ограждение выполняют в виде жесткой и перфорированной стенок, между которыми располагают многослойный звукопоглощающий элемент, который выполняют в виде двух слоев: один из которых, прилегающий к жесткой стенке, является звукопоглощающим, а другой, прилегающий к перфорированной стенке, выполнен с перфорацией из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, при этом в качестве звукоотражающего материала применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом, или звукоизоляционные плиты на базе стеклянного штапельного волокна, или материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом. 8 ил.

 

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению, и может быть использовано во всех отраслях народного хозяйства в качестве средства защиты от шума.

Наиболее близким техническим решением по технической сущности и достигаемому результату является акустическая защита по патенту РФ №2366785, 2007 г. [прототип], как способ акустической защиты оператора, заключающийся в том, что рабочее место оператора оснащают средствами снижения шума.

Недостатком технического решения, принятого в качестве прототипа, является сравнительно невысокая эффективность шумоглушения за счет сравнительно невысокого коэффициента звукопоглощения.

Технический результат - повышение эффективности шумоглушения за счет повышения коэффициента звукопоглощения путем увеличения поверхностей звукопоглощения при сохранении габаритных размеров помещения.

Это достигается тем, что в способе акустической защиты, заключающемся в том, что рабочее место оператора оснащают средствами снижения шума, рабочее место оператора располагают между акустическими экранами и защищают тем самым оператора от прямого звука, который распространяется от виброактивного оборудования, а чтобы повысить эффективность защиты от отраженных звуковых волн над рабочей зоной устанавливают акустический подвесной потолок, размещенный в верхней зоне помещения, и для снижения звуковой вибрации рабочее место оператора оснащают полом на упругом основании, при этом осуществляют двухкаскадную виброзащиту оператора.

На фиг. 1 изображен общий вид устройства для акустической защиты оператора, на фиг. 2 - конструкция пола помещения на упругом основании, на фиг. 3 представлен фронтальный разрез предлагаемого штучного звукопоглотителя, на фиг. 4 - его профильная проекция, на фиг. 5 - вариант конструкция пола помещения на упругом основании, на фиг. 6 изображено акустическое устройство акустического подвесного потолка 5, размещенного в верхней зоне помещения, в зоне ферм 4, на фиг. 7 - схема звукопоглощающего элемента акустического устройства акустического подвесного потолка, на фиг. 8 - схема теплозвукоизолирующих ограждений 2, жестко связанных с колоннами 3.

Способ защиты оператора от производственного шума производственного помещения (фиг. 1) содержит каркас здания, выполненный в виде упругого основания 1, являющегося полом помещения (фиг. 2), теплозвукоизолирующих ограждений 2, жестко связанных с колоннами 3, которые в свою очередь соединены с металлоконструкцией 4, например, в виде фермы. Акустический подвесной потолок 5 размещен в зоне ферм 4 и выполнен в виде установленных с определенным шагом кулисных звукопоглотителей, нижняя часть которых выступает за нижнюю часть ферм 4 в сторону основания 1. На ограждениях 2 закреплены акустические стеновые панели 6. На упругом основании 1 помещения установлено виброакустическое оборудование 7 и 8 с различными спектральными характеристиками уровней звуковой мощности. Рабочее место оператора 15, включающее в себя пульты управления 16 и 17 оборудованием 7 и 8, расположено между акустическими экранами 9 и 11, причем в одном из них, например 9-м, выполнен смотровой звукоизолирующий люк 10 для контроля визуализации наблюдения за технологическим процессом. Каркас здания сверху закрыт звукоизолирующим покрытием 12, выполняющим также функцию кровли, в котором расположены вертикальные 13 и наклонные 14 оконные проемы в виде вакуумных звукоизолирующих стеклопакетов.

Конструкция пола на упругом основании (фиг. 2) содержит установочную плиту 18, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите 19 межэтажного перекрытия с полостями 20 через слои вибродемпфирующего материала 21 и гидроизоляционного материала 22, установленные с зазором относительно несущих стен 23 производственного помещения. Чтобы обеспечить эффективную виброизоляцию установочной плиты 18 по всем направлениям слои вибродемпфирующего материала 21 и гидроизоляционного материала 22 выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен 7 и базовой несущей плите 19 перекрытия. Для повышения эффективности звукоизоляции и звукопоглощения в цехах, находящихся под межэтажным перекрытием, полости 20 заполнены вибродемпфирующим материалом, например вспененным полимером, или полиэтиленом, или полипропиленом.

Конструкция поверхности 1 помещения (пол цеха) может быть выполнена в виде плавающего пола (фиг. 5), которая предусматривает дополнительную шумоизоляцию междуэтажных перекрытий. Эта конструкция представляет собой слой 30 звукоизоляционного прокладочного материала «Пенотерм НПП ЛЭ», расположенного на плите перекрытия 29, поверх которого выполняется цементно-песчаная стяжка 32 через металлическую сетку 31. На стяжку 32 укладывается подложка 33 типа «Порилекс», затем ламинат 34 с плинтусом 35.

ЗАО «Уралпластик», являясь крупнейшим производителем вспененных полимеров в России, специально разработало вибродемпфирующий материал ПЕНОТЕРМ НПП ЛЭ для шумоизоляции междуэтажных перекрытий. Пенотерм НПП ЛЭ - рулонный вибродемпфирующий материал с закрытопористой ячеистой структурой, изготовленный экструзионным методом из полипропилена, с введением вспенивателя, антипиренов, стабилизирующих, пластифицирующих и других технологических добавок, обеспечивающих оптимальный показатель динамического модуля упругости ЕД=0,66 МПа и сохранение всех заложенных характеристик в течение всего срока службы объекта. Упругие свойства скелета материала пенотерм НПП ЛЭ, химическая стойкость и наличие воздуха, заключенного в его порах, обуславливают гашение энергии удара и вибрации, что способствует снижению ударного и воздушного шума. Структура пенополипропилена способна препятствовать воздействию агрессивных сред, механическим нагрузкам и процессу старения.

Основные физико-механические свойства материала пенотерм НПП ЛЭ:

Динамический модуль упругости при нагрузке 2000 Н/кв.м 0,66 МПа
Относительное сжатие при нагрузке 2000 Н/кв.м 11%
Индекс снижения ударного шума в конструкциях "плавающих полов" 20÷22 дБ
Плотность 40 кг/куб. м
Толщина поставляемого ЗАО «Уралпластик» материала 6, 8 и 10 мм

На стяжку 35 может укладываться подложка 34 типа «Шумофф Микс Ф», - это вибропоглощающий материал на основе битума специальной марки, состоящий из 8 слоев, обладающий высокими массой и показателями демпфирования. Данная структура материала позволяет максимально эффективно гасить шум от вибрации панели, на которую смонтирован. Клеевой монтажный слой (KMC) выполнен в виде мастичного слоя на каучуковой основе, который выигрывает у обычного клеевого слоя за счет таких свойств, как: он менее критичен к чистоте обрабатываемой поверхности. Битумные слои выдерживают минусовые температуры и не становятся хрупкими. Между слоями битума есть армирующий слой, позволяющий не разрушиться материалу, даже в случае излома одного из битумных слоев. Перечисленные выше свойства, позволяют работать без теплового пистолета при температурах 15°С, что невозможно для аналогов. Благодаря массе, толщине и многослойности данный материал может эффективно гасить шум на пластиковых и металлических конструкциях толщиной до 3 мм. К таким конструкциям можно отнести в том числе металлические входные двери и лестницы. Выпускается в виде листов размером 370×270.

прочность связи с поверхностью 5 Н/см

На ламинат 34 оборудование 11 может устанавливаться посредством полиуретанового эластомера для виброизоляции - материалы SYLOMER SR австрийской фирмы Getzner Werkstoffe GmbH, которые представляют собой микропористые полиуретановые эластомеры со смешанной ячеистой структурой и специально разработаны для решения задач виброизоляции. Свойства материала позволяют реализовывать полноплоскостные, ленточные или точечные виброизолирующие опоры, что облегчает процесс проектирования. Широкий ряд стандартных марок материала позволяет осуществить оптимальный выбор типа материала в зависимости от нагрузки и площади опор. Материал SYLOMER SR применяется в качестве упругого элемента для виброизоляции инженерного оборудования, фундаментов зданий, рельсовых путей, в конструкциях плавающих полов и др. Характеристики виброопор подбираются в соответствии с условиями применения, видом конструкции и методом строительства.

Отличительные особенности: не подвержен гидролизу, а также воздействию разбавленных щелочей, кислот, растворителей и масел; выдерживает долговременные циклические нагрузки (более 2 млн циклов нагружения); воспринимает значительные перегрузки; при воздействии статической нагрузки материал не теряет своих свойств в течение 30 и более лет.

Размеры:

Толщина: 12,5 мм и 25 мм. Длина рулона: 5 м. Ширина рулона: 1,5 м.

Физические характеристики:

Интервал температур: от -30 до +70°С. Пиковая температура (кратковременно): +120°С.

Конструкция пола на упругом основании работает следующим образом. При установке виброактивного оборудования 7 и 8 на плиту 18 происходит двухкаскадная виброзащита, за счет вибродемпфирующих вкраплений в саму массу плиты 18, а также за счет слоя вибродемпфирующего материала 21, в качестве которого могут быть использованы: иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.

Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглощающего материала, представляющих собою модель резонаторов Гельмгольца, где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети пор шумопоглощающего материала. Причем иглопробивные маты состоят из волокон, имеющих диаметр не ниже предельно допустимого гигиенического значения, не содержат канцерогенных асбестовых и керамических волокон, а в их состав не входят такие вредные связующие, как фенол. Поэтому с уверенностью их можно отнести к классу теплозвукоизоляционных материалов, соответствующих высоким гигиеническим и противопожарным требованиям. Добавим, что стекловолокнистые материалы имеют низкую теплопроводность, не поддаются влиянию пара, масла, воды, обладают высокой температурной стабильностью.

Акустические стеновые панели 6 могут быть выполнены в виде плит из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден».

Штучный звукопоглотитель состоит из жесткого каркаса 1, подвешиваемого за крючья 4 на тросах (см. фиг. 3, 4) либо непосредственно крепящегося к потолку производственного здания. Внутри каркаса расположен звукопоглощающий материал 2, обернутый сетчатой капроновой тканью 3 или стеклотканью. В некоторых случаях поверх стеклоткани 3 к каркасу 1 может быть прикреплен просечно-вытяжной стальной лист (на чертеже не показан). Каркас может быть выполнен по форме в виде прямоугольного параллелепипеда (фиг. 1, фиг. 2) с размерами ребер L×H×B, отношение которых лежит в оптимальном интервале величин L:H:B=2:1:0,5, или куба с размером ребра k×L, где min L=100 мм; k - коэффициент пропорциональности, лежащий в пределах от 1 до 10 с шагом 2.

Внутри каркаса 1 могут быть полости 5, не заполненные звукопоглощающим материалом, причем их расположение может быть выполнено послойно рядами (на чертеже не показано) или в шахматном порядке, как показано на фиг. 1. Каркас 1 подвешивается за крючья 4, как показано на фиг. 1, или крючья могут быть расположены с вершинах куба (на чертеже не показано). При этих схемах подвеса должны соблюдаться оптимальные соотношения размеров: D - от центра каркаса до точки подвеса к потолку и С - расстояние между осями соседних каркасов (фиг. 4), причем отношение этих размеров должно находиться в оптимальном интервале величин: C:D=1:1…4:1.

Заполнение осуществляют звукопоглощающим негорючим материалом (например, винипором, стекловолокном) с защитным слоем 3 из стеклоткани, предотвращающим выпадение звукопоглотителя.

В качестве звукопоглощающего материала может быть применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминия.

В качестве звукопоглощающего материала может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая ваты типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена.

Просечно-вытяжной стальной лист может быть выполнен с коэффициентом перфорации перфорированной поверхности, принимаемым равным или более 0,25.

Штучный звукопоглотитель работает следующим образом.

Звуковые волны, распространяясь в производственном помещении, взаимодействуют с заполненными звукопоглотителем 2 полостями. Звукопоглощение на низких и средних частотах происходит за счет акустического эффекта, построенного по принципу резонаторов Гельмгольца, образованных полостями 5. Различные объемы резонансных полостей служат для подавления звуковых колебаний в требуемом звуковом диапазоне частот, как правило, большие объемы для подавления шума в низкочастотном диапазоне, а малые - в области средних и высоких частот.

Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем 2, приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей 5 увеличивается поверхность звукопоглощения и, как следствие, повышается коэффициент звукопоглощения.

Преимуществом предлагаемого изобретения является его универсальность применения для различных производственных помещений, имеющих самые разнообразные шумовые характеристики. При этом следует отметить относительную легкость настройки штучного звукопоглотителя на требуемый частотный диапазон шумоподавления и его экономически обоснованную эффективность (имеется в виду снижение шума до санитарно-гигиенических норм). Кроме того, выполнение звукопоглотителя из негорючих материалов делает конструкцию пожаробезопасной.

Способ защиты оператора от производственного шума осуществляют следующим образом.

Рабочее место оператора 15 располагают между акустическими экранами 9 и 11 и защищают оператора от прямого звука, который распространяется от виброактивного оборудования 7 и 8. Для того чтобы повысить эффективность защиты от отраженных звуковых волн, над рабочей зоной (рабочим местом) устанавливают акустический подвесной потолок 5, размещенный в верхней зоне помещения (зоне ферм 4). Он снижает уровни звуковых волн, исходящих от оборудования 7 и 8, за счет многократного отражения звуковых волн от кулисных звукопоглотителей. Для снижения звуковой вибрации рабочее место оператора оснащают полом на упругом основании. При установке виброактивного оборудования 7 и 8 на плиту 18 происходит двухкаскадная виброзащита, за счет вибродемпфирующих вкраплений в саму массу плиты 18, а также за счет слоя вибродемпфирующего материала 21, в качестве которого могут быть использованы: иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.

Рабочее место оператора 15 надежно защищено как от акустической нагрузки на оператора, так и от механических факторов производственной среды, таких, например, как витающая в цехе стружка, или движущиеся части оборудования.

Звуковая энергия от оборудования 7 и 8, находящегося в помещении, пройдя через перфорированную стенку акустических стеновых панелей 6, попадает на слои звукопоглощающего материала (который может быть как мягким, например из базальтового или стеклянного волокна, так и жестким, например камня-ракушечника). Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов Гельмгольца, где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Коэффициент перфорации перфорированной стенки принимается равным или более 0,25. Для предотвращения высыпания мягкого звукопоглотителя предусмотрена стеклоткань, например, типа ЭЗ-100, расположенная между звукопоглотителем и перфорированной стенкой. При этом акустический подвесной потолок 5, размещенный в верхней зоне помещения (зоне ферм 4), снижает уровни звуковых волн, исходящих от оборудования 7 и 8, а рабочее место оператора 15, расположенное между акустическими экранами 9 и 11, надежно защищено как от акустической нагрузки на оператора, так и от механических факторов производственной среды, таких, например, как витающая в цехе стружка или движущиеся части оборудования.

На фиг. 6 изображено акустическое устройство акустического подвесного потолка 5, размещенного в верхней зоне помещения, в зоне ферм 4, на фиг. 7 - схема звукопоглощающего элемента акустического устройства акустического подвесного потолка.

Акустическое устройство акустического подвесного потолка (фиг. 6) состоит по крайней мере из двух звукопоглощающих секций 36, каждая из которых содержит стенки из гофрированного перфорированного материала 37, между которыми расположены звукопоглощающие элементы 38. Стенки гофрированного материала 37 выполнены с щелевой перфорацией из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм. Звукопоглощающие секции 24 подвешены, например, на тросах 39 за крючья 40.

Каждый из звукопоглощающих элементов 38 (фиг. 7) выполнен в виде перфорированных 41 и 46 пластин, между которыми симметрично расположены слои 42 и 45 звукоотражающего материала, а в центре между слоями 30 и 33 звукоотражающего материала находятся слои 43 и 44 звукопоглощающего материала разной плотности, расположенные в два слоя, причем слои звукоотражающего материала выполнены сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, которые расположены соответственно у перфорированных 41 и 46 пластин, причем перфорированная пластина может быть выполнена из пластмассовой, например капроновой или металлической сетки с мелкой ячейкой.

В качестве материала звукоотражающих слоев 42, 45 может быть применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминия.

В качестве материала звукоотражающих слоев 42, 45 могут быть применены звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.

В качестве звукопоглощающего материала слоев 43, 44 используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден», или жесткий пористый шумопоглощающий материал, например металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30…45%, или крошка из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм.

В качестве звукопоглощающего материала использован пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3 и состоящий из 100 массовых частей перлита с диаметром частиц 0,5÷2,0 мм, 100÷200 массовых частей одного или нескольких спекающих материалов и 10÷20 массовых частей связующих материалов.

В качестве звукоотражающего материала применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий, или звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.

Акустическое устройство акустического подвесного потолка работает следующим образом.

Звуковая энергия от оборудования, находящегося в помещении, или другого, излучающего интенсивный шум, объекта, пройдя через стенки из гофрированного перфорированного материала и перфорированные пластины 41 и 46 звукопоглощающих элементов попадает на слои 42, 45 звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, которые падают затем на слои 43, 44 мягкого звукопоглощающего материала разной плотности, расположенные в два слоя (например, выполненного из базальтового или стеклянного волокна). В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов Гельмгольца, где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Кроме того, происходит трение воздуха о волокна, поверхность которых также велика. В-третьих, волокна трутся друг о друга и, наконец, происходит рассеяние энергии из-за трения кристаллов самих волокон. Этим объясняется, что на средних и высоких частотах коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0.

Рабочее место оператора оснащают средствами снижения шума, при этом рабочее место располагают между акустическими экранами и защищают тем самым оператора от прямого звука, который распространяется от виброактивного оборудования, а для повышения эффективности защиты от отраженных звуковых волн над рабочей зоной устанавливают акустический подвесной потолок, размещенный в верхней зоне помещения, при этом для снижения звуковой вибрации рабочее место оператора оснащают двухкаскадной системой виброзащиты, выполненной в виде пола на упругом основании, который содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала, установленные с зазором относительно несущих стен производственного помещения, а слои вибродемпфирующего материала и гидроизоляционного материала выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен и базовой несущей плите перекрытия, причем полости заполнены вибродемпфирующим материалом, например вспененным полимером, или полиэтиленом, или полипропиленом. Акустическое устройство акустического подвесного потолка, размещенного в зоне ферм, оснащают по крайней мере двумя звукопоглощающими секциями, каждая из которых содержит стенки из гофрированного перфорированного материала, между которыми расположены звукопоглощающие элементы.

Стенки гофрированного материала выполняют с щелевой перфорацией из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм, при этом звукопоглощающие секции подвешивают на тросах за крючья, а каждый из звукопоглощающих элементов выполняют в виде перфорированных пластин, между которыми симметрично располагают слои звукоотражающего материала.

В центре между слоями звукоотражающего материала располагают слои звукопоглощающего материалов разной плотности, в два слоя, причем слои звукоотражающего материала выполняют сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, которые располагают соответственно у перфорированных пластин, причем перфорированная пластина выполнена из пластмассовой, капроновой или металлической сетки с мелкой ячейкой, при этом в качестве звукопоглощающего материала используют пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3 и состоящий из 100 массовых частей перлита с диаметром частиц 0,5÷2,0 мм, 100÷200 массовых частей одного или нескольких спекающих материалов и 10÷20 массовых частей связующих материалов, а в качестве материала звукоотражающих слоев применяют материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий.

На фиг. 8 представлен вариант схемы теплозвукоизолирующих ограждений 2, жестко связанных с колоннами 3 производственного помещения.

Теплозвукоизолирующее ограждение 2 выполнено в виде жесткой стенки 47 и перфорированной стенки 48, между которыми расположен двухслойный комбинированный звукопоглощающий элемент, причем слой 49, прилегающий к жесткой стенке 47, выполнен звукопоглощающим, а прилегающий к перфорированной стенке 48, слой 50, выполнен с перфорацией 51 из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны.

В качестве звукопоглощающего материала слоя 49 может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена. При этом поверхность волокнистых звукопоглотителей обрабатывается пористыми красками, пропускающими воздух, например, типа Acutex Т или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом,

В качестве материала звукоотражающего слоя 50 применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминия, или применены звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м, или материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом.

Звукопоглощающая (облицовка) работает следующим образом.

Звуковая энергия от оборудования, находящегося в помещении, или другого, излучающего интенсивный шум, объекта, пройдя через перфорированную стенку 48, попадает на слой 50 из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, а часть звуковой энергии проходит через слой 50 из звукоотражающего материала и взаимодействует со слоем 49 из звукопоглощающего материала, где происходит окончательное рассеивание звуковой энергии. Коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0. Выполнение перфорации на звукоотражающим слое способствует более эффективному шумоглушению на средних частотах, так как часть звуковых волн будет проходить через перфорацию 51 и рассеиваться на слое 49 из звукопоглощающего материала.

Способ защиты оператора от производственного шума, заключающийся в том, что рабочее место оператора оснащают средствами снижения шума, рабочее место оператора располагают между акустическими экранами и защищают тем самым оператора от прямого звука, который распространяется от виброактивного оборудования, а для снижения звуковой вибрации рабочее место оператора оснащают двухкаскадной системой виброзащиты оператора, выполненной в виде пола на упругом основании, для защиты от отраженных звуковых волн над рабочей зоной устанавливают штучные звукопоглотители, размещенные в верхней зоне помещения и выполненные из жесткого каркаса, подвешиваемого за крючья на тросах к потолку производственного здания с расположенным внутри каркаса звукопоглощающим материалом, обернутым сетчатой капроновой тканью, а к каркасу прикреплен просечно-вытяжной стальной лист, а каркас выполнен по форме в виде прямоугольного параллелепипеда с размерами ребер L×H×B, отношение которых лежит в оптимальном интервале величин L:H:B = 2:1:0,5, или куба с размером ребра k×L, где min L = 100 мм; k - коэффициент пропорциональности, лежащий в пределах от 1 до 10 с шагом 2, причем при подвесе каркаса выполняются оптимальные соотношения размеров: D - от центра каркаса до точки подвеса к потолку и С - расстояние между осями соседних каркасов, причем отношение этих размеров должно находиться в оптимальном интервале величин: C:D = 1:1…4:1, при этом конструкцию пола помещения выполняют в виде плавающего пола, которая предусматривает дополнительную шумоизоляцию междуэтажных перекрытий и представляет собой слой звукоизоляционного прокладочного материала «пенотерм НПП ЛЭ», расположенного на плите перекрытия, поверх которого выполняют цементно-песчаную стяжку через металлическую сетку, а на стяжку укладывают подложку из материала типа «Порилекс», затем ламинат с плинтусом, причем на ламинат плавающего пола оборудование устанавливают посредством полиуретанового эластомера для виброизоляции - материал SYLOMER SR австрийской фирмы Getzner Werkstoffe GmbH, который представляет собой микропористые полиуретановые эластомеры со смешанной ячеистой структурой, отличающийся тем, что акустическое устройство акустического подвесного потолка, размещенного в зоне ферм, оснащают по крайней мере двумя звукопоглощающими секциями, каждая из которых содержит стенки из гофрированного перфорированного материала, между которыми расположены звукопоглощающие элементы, а стенки гофрированного материала выполняют с щелевой перфорацией из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм, при этом звукопоглощающие секции подвешивают на тросах за крючья, а каждый из звукопоглощающих элементов выполняют в виде перфорированных пластин, между которыми симметрично располагают слои звукоотражающего материала, а в центре между слоями звукоотражающего материала располагают слои звукопоглощающего материала разной плотности, в два слоя, причем слои звукоотражающего материала выполняют сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, которые располагают соответственно у перфорированных пластин, причем перфорированная пластина выполнена из пластмассовой, капроновой или металлической сетки с мелкой ячейкой, при этом в качестве звукопоглощающего материала используют пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3 и состоящий из 100 массовых частей перлита с диаметром частиц 0,5÷2,0 мм, 100÷200 массовых частей одного или нескольких спекающих материалов и 10÷20 массовых частей связующих материалов, а в качестве материала звукоотражающих слоев применяют материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий, при этом теплозвукоизолирующее ограждение выполняют в виде жесткой и перфорированной стенок, между которыми располагают многослойный звукопоглощающий элемент, который выполняют в виде двух слоев: один из которых, прилегающий к жесткой стенке, является звукопоглощающим, а другой, прилегающий к перфорированной стенке, выполнен с перфорацией из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, при этом в качестве звукоотражающего материала применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий, или звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3, или материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом.



 

Похожие патенты:

Изобретение относится к звукоизоляции оборудования со средствами широкополосного шумоглушения и может быть использовано во всех отраслях народного хозяйства в качестве средства защиты от шума.

Изобретение относится к промышленной акустике и может быть использовано для снижения шума привода машин, облицовки производственных помещений и в других звукопоглощающих конструкциях.

Изобретение относится к звукоизоляции оборудования со средствами широкополосного шумоглушения и может быть использовано во всех отраслях народного хозяйства в качестве средства защиты от шума.

Изобретение относится к промышленной акустике. Техническим результатом является повышение эффективности шумоглушения и надежности конструкции в целом.

Изобретение относится к промышленной акустике и может быть использовано для снижения шума привода машин, облицовки производственных помещений и в других звукопоглощающих конструкциях.

Изобретение относится к промышленной акустике, в частности к широкополосному и низкочастотному шумоглушению, и может быть использовано во всех отраслях народного хозяйства при шумоглушении производственного оборудования методом звукопоглощения.

Изобретение относится к акустическим кабинам. Техническим результатом является повышение эффективности работы оператора.

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению, и может быть использовано во всех отраслях народного хозяйства в качестве средства защиты от шума.

Группа изобретений относится к композитной волокнистой панели, в частности для применения в дверных конструкциях иди сэндвич-панелях. Описана композитная волокнистая панель, сердцевина которой содержит от 20 до 70 мас.

Изобретение может быть использовано в производстве наполнителей, добавок к почве для выращивания растений, для утяжеления буровых растворов, защиты от радиоактивного и электромагнитного излучения.

Изобретение относится к промышленной акустике и может быть использовано для снижения шума привода машин, облицовки производственных помещений и в других звукопоглощающих конструкциях.

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению, и может быть использовано во всех отраслях народного хозяйства в качестве средства защиты от шума.

Изобретение относится к промышленной акустике. Техническим результатом является повышение эффективности шумоглушения и надежности конструкции в целом.

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению. Технический результат - повышение эффективности шумоглушения.

Изобретение относится к промышленной акустике и может быть использовано для снижения шума привода машин, облицовки производственных помещений и в других звукопоглощающих конструкциях.

Изобретение относится к промышленной акустике, в частности к широкополосному и низкочастотному шумоглушению, и может быть использовано во всех отраслях народного хозяйства при шумоглушении производственного оборудования методом звукопоглощения.

Изобретение относится к акустическим кабинам. Техническим результатом является повышение эффективности работы оператора.

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению, и может быть использовано во всех отраслях народного хозяйства в качестве средства защиты от шума.

Изобретение относится к звукопоглощающему элементу с резонансными вставками. Техническим результатом является повышение эффективности шумоглушения.

Изобретение относится к промышленной акустике, в частности к широкополосному и низкочастотному шумоглушению, и может быть использовано во всех отраслях народного хозяйства при шумоглушении производственного оборудования методом звукопоглощения.

Изобретение относится к средствам безопасности работы операторов в условиях чрезвычайных ситуаций, в частности при повышенных уровнях шума. Технический результат заключается в повышении эффективности шумоглушения. Комплекс для акустической защиты оператора содержит рабочее место оператора, оснащенное средствами снижения шума. Рабочее место оператора расположено между акустическими экранами, которые защищают оператора от прямого звука, распространяющегося от виброактивного оборудования, а над рабочей зоной установлен акустический подвесной потолок, размещенный в верхней зоне помещения, а для снижения звуковой вибрации рабочее место оператора оснащено полом на упругом основании, осуществляющем двухкаскадную виброзащиту оператора, а также предусмотрен кулисный звукопоглотитель, который состоит из жесткого каркаса, подвешиваемого за крючья на тросах к потолку здания с расположенным внутри каркаса звукопоглощающим материалом, обернутым сетчатой капроновой тканью. В конструкции стеновой шумопоглощающей панели применен звукопоглощающий элемент, содержащий гладкую и перфорированную поверхности, между которыми расположен слой звукопоглощающего материала сложной формы, представляющий собой чередование сплошных участков и пустотелых участков. Пустотелые участки образованы призматическими поверхностями, имеющими в сечении, параллельном плоскости чертежа, форму параллелограмма, внутренние поверхности которого имеют зубчатую структуру. Вершины зубьев обращены внутрь призматических поверхностей, а ребра призматических поверхностей закреплены соответственно на гладкой и перфорированной стенках. Полости пустотелых участков, образованные призматическими поверхностями, заполнены звукопоглотителем, а между гладкой поверхностью и сплошными участками слоя звукопоглощающего материала сложной формы, а также между перфорированной поверхностью и сплошными участками расположены резонансные пластины с резонансными вставками, выполняющими функции горловин резонаторов «Гельмгольца». 2 табл., 8 ил.

Изобретение относится к промышленной акустике, в частности к широкополосному шу-моглушению, и может быть использовано во всех отраслях народного хозяйства в качестве средства защиты от шума. Техническим результатом является повышение эффективности шумоглушения за счет повышения коэффициента звукопоглощения путем увеличения поверхностей звукопоглощения при сохранении габаритных размеров помещения. Технический результат достигается тем, что способ защиты оператора от производственного шума заключается в том, что рабочее место оператора оснащают средствами снижения шума, рабочее место оператора располагают между акустическими экранами, а для снижения звуковой вибрации рабочее место оператора оснащают двухкаскадной системой виброзащиты оператора, выполненной в виде пола на упругом основании, каркас выполнен по форме в виде прямоугольного параллелепипеда, при этом конструкцию пола помещения выполняют в виде плавающего пола, которая представляет собой слой звукоизоляционного прокладочного материала, расположенного на плите перекрытия, поверх которого выполняют цементно-песчаную стяжку, а на стяжку укладывают подложку, затем ламинат с плинтусом, при этом акустическое устройство акустического подвесного потолка, размещенного в зоне ферм, оснащают по крайней мере двумя звукопоглощающими секциями, каждая из которых содержит стенки из гофрированного перфорированного материала, между которыми расположены звукопоглощающие элементы, а стенки гофрированного материала выполняют с щелевой перфорацией из нержавеющей стали или оцинкованного листа, при этом каждый из звукопоглощающих элементов выполняют в виде перфорированных пластин, между которыми симметрично располагают слои звукоотражающего материала, а в центре между слоями звукоотражающего материала располагают слои звукопоглощающего материала разной плотности, в два слоя, причем слои звукоотражающего материала выполняют сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, которые располагают соответственно у перфорированных пластин, причем перфорированная пластина выполнена из пластмассовой, капроновой или металлической сетки с мелкой ячейкой, при этом в качестве звукопоглощающего материала используют пористый звукопоглощающий керамический материал, а в качестве материала звукоотражающих слоев применяют материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом, при этом теплозвукоизолирующее ограждение выполняют в виде жесткой и перфорированной стенок, между которыми располагают многослойный звукопоглощающий элемент, который выполняют в виде двух слоев: один из которых, прилегающий к жесткой стенке, является звукопоглощающим, а другой, прилегающий к перфорированной стенке, выполнен с перфорацией из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, при этом в качестве звукоотражающего материала применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом, или звукоизоляционные плиты на базе стеклянного штапельного волокна, или материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом. 8 ил.

Наверх