Способ контроля выхода сцинтилляций и фотолюминесценции порошкообразных сцинтилляторов и люминофоров

Изобретение относится к способам контроля характеристик порошкообразных сцинтилляторов и люминофоров, полученных одним из известных способов, например, методами со-осаждения, твердофазного синтеза и др., и применяемых в качестве самостоятельного материала. Способ контроля выхода сцинтилляций и фотолюминесценции порошкообразных сцинтилляторов и люминофоров содержит этапы, на которых возбуждение сцинтилляций производится с помощью облучения поверхности измеряемого образца альфа-излучением, при этом возникающие под действием альфа-частиц фотоны сцинтилляций регистрируются оптоэлектронной системой с поверхности порошкообразных сцинтилляторов и люминофоров, облучаемой альфа-частицами. Технический результат – упрощение пробоподготовки, повышение производительности и повышение точности измерений. 7 ил., 1 табл.

 

Изобретение относится к способам контроля характеристик порошкообразных сцинтилляторов и люминофоров, полученных одним из известных способов, например, методами со-осаждения, твердофазного синтеза и др., и применяемых в качестве самостоятельного материала, в качестве предварительно синтезированного сырья для выращивания сцинтилляционных неорганических монокристаллов или в качестве сырья для керамики, для использования в детекторах ионизирующих излучений в медицине, досмотровой технике, научных исследованиях и др., осветительных приборах и других светоизлучающих изделиях.

Аппаратура для медицинской диагностики, экологического мониторинга, неразрушающего контроля, систем безопасности основывается на ряде физических методов, использующих регистрацию ионизирующего излучения. Для реализации этих ядерно-физических методов широко используются сцинтилляционные детекторы [Radiation detection and measurement. Glenn F. Knoll. Third edition. John Wiley & Sons Inc. New York, Chichester, Weinheim, Brisbane, Toronto, Singapore, 2000, 816 pp.]. Выход сцинтилляций (световыход) является одной из наиболее важных характеристик сцинтилляционного детектора, высокое значение этого параметра - это необходимое условие эффективности диагностического оборудования и снижения дозы, получаемой пациентом, а также повышения производительности любых измерений с использованием ионизирующих излучений. В качестве детекторных элементов часто используются сцинтилляционные монокристаллы, либо сцинтилляционные керамики на их основе, от выхода сцинтилляций используемого сцинтилляционного материала зависит выход сцинтилляций детектора.

Неорганические люминофоры в виде порошков, покрытий, экранов и т.д., предназначенные для работы при возбуждении ионизирующим и оптическим излучением, также имеют широкий диапазон практического применения - люминесцентные и светодиодные осветительные приборы, катод-люминофоры, рентгеновские экраны и т.д. [Luminescent Materials. G. Blasse, B.C. Grabmaier. Springer-Verlag. Berlin, Heidelberg, 1994, 223 pp.]. Bo всех перечисленных примерах выход фото- либо радиолюминесценции является ключевой эксплуатационной характеристикой материала.

Поэтому точный, надежный и производительный способ контроля выхода сцинтилляций, радио- и фотолюминесценции является важным звеном в процессах разработки и производства сцинтилляторов и люминофоров.

Широко известен способ контроля световыхода сцинтилляционных детекторов путем сравнения амплитудных спектров, измеренных тестируемым и эталонным детектором. На фотоприемник, например вакуумный фотоэлектронный умножитель (ФЭУ), поочередно устанавливаются тестируемый и эталонный детектор, и в непосредственной близости от них располагается источник ионизирующего излучения; спектры источника накапливаются в многоканальном амплитудном анализаторе. Если в спектрах есть выраженные линии, например пик полного поглощения 662 кэВ от гамма-источника Cs-137, то отношение положения пика в каналах анализатора в спектре эталонного детектора к таковому в спектре тестируемого детектора равно отношению их световыходов. Один из вариантов такого способа описан в [А.Я. Берловский и В.Я. Заславская. Способ измерения световыхода сцинтилляционных детекторов. Патент СССР 392771. Опубл. 25.09.74] и отличается тем, что для исключения влияния неоднородности чувствительности фотокатода ФЭУ измерения производятся с использованием только части его поверхности, ограниченной установленной между детектором и ФЭУ диафрагмой. Данный способ принят нами за прототип.

Данный способ хорошо работает со сцинтилляционными материалами и детекторами, обладающими высокой оптической прозрачностью к собственному излучению, в которых внутреннее рассеяние и поглощение света сцинтилляций минимальны и не вносят дополнительной ошибки в результат измерений. Для реализации способа в сравниваемых спектрах должны присутствовать выраженные линии или другие особенности, положение которых в каналах (или в шкале энергий) может быть достоверно определено. В противном случае, результат измерения световыхода будет существенно зависеть от геометрических размеров сравниваемых сцинтилляционных детекторов, определяющих различия в оптическом пути, проходимом в детекторе фотонами сцинтилляций. Спектры, снятые для непрозрачных материалов в геометрии «на просвет», представляют собой спадающую экспоненту, и в них невозможно выделить характеристические особенности кривой, положение которых могло бы быть надежно установлено в шкале энергий.

Известен способ сравнения яркости свечения люминофоров при возбуждении оптическим или рентгеновским излучением с использованием селенового фотоэлемента или фотометра [Казанкин О.Н., Марковский Л.Я. Неорганические люминофоры. - Л.: Химия, 1975. - 173 с.]. Измерения проводятся в токовом, а не импульсном, режиме, т.е. измеряются и сравниваются фототоки, величина которых определяется, помимо эффективности преобразования энергии (или числа фотонов) возбуждающего излучения в энергию (или число фотонов) люминесценции (т.е. собственно энергетическим или квантовым выходом люминесценции люминофора), также длиной поглощения возбуждающего излучения в материале люминофора, оптической прозрачностью и толщиной исследуемого слоя материала. Данный способ принят за второй прототип.

Предлагаемое изобретение позволяет исключить влияние на результат измерения выхода сцинтилляций и выхода фотолюминесценции оптической прозрачности и толщины образца исследуемого сцинтилляционного материала, за счет чего обеспечивает возможность исследования проб порошкообразного сцинтиллятора или люминофора, заведомо характеризующихся низкой оптической прозрачностью.

Техническая задача, которую решает данное изобретение, заключается в создании способа контроля сцинтилляционных материалов и люминофоров, который может применяться на различных стадиях в процессах разработки и производства. По сравнению с известными ранее способами, в частности, способами, описанными в прототипах, предложенный способ позволяет проводить измерения большего количества различных физических форм материалов, включая порошкообразную форму, предусматривает более простую пробоподготовку и более высокую производительность при высокой точности измерений, и может быть использован на более ранних стадиях технологического процесса. Это позволяет более эффективно осуществлять контроль свойств получаемых материалов в процессах их разработки и производства, что позволяет получать материалы, обладающие более высокими и более прогнозируемыми потребительскими свойствами по сравнению с материалами, контроль характеристик которых осуществляется описанным в прототипе способом. Указанные преимущества повышают качество материалов, расширяют диапазон их применения, повышают производительность труда при их производстве.

Для решения поставленной задачи контроль выхода сцинтилляций (световыхода) и выхода люминесценции порошкообразных сцинтилляторов и люминофоров осуществляется посредством облучения поверхности порошкообразных сцинтилляторов и люминофоров альфа-частицами стандартных радиоизотопных источников с энергией альфа-частиц от примерно 4 МэВ до 8 МэВ, например, источником 241Am с энергиями альфа-частиц 5,44 и 5,49 МэВ. Регистрация оптических фотонов сцинтилляций производится в геометрии, когда источник ионизирующего излучения и фотоприемник (например, вакуумный или твердотельный фотоэлектронный умножитель) установлены по одну и ту же сторону от облучаемой поверхности (геометрия «на отражение»). Поскольку глубина проникновения альфа-частиц в исследуемые материалы проб не превышает несколько десятков микрометров, предлагаемый способ существенно снижает влияние толщины и оптической прозрачности исследуемого образца на результат измерений по сравнению с известными способами, когда радиоизотопный источник и фотоприемник расположены с различных сторон плоскости исследуемого образца (геометрия «на пропускание»), либо когда измерение яркости люминофоров осуществляется в режиме измерения фототока, когда результат измерения оказывается зависимым от длины поглощения возбуждающего излучения в материале люминофора, оптической прозрачности и толщины исследуемого слоя материала.

Подготовка порошковой пробы может быть проведена различными способами: использование насыпной пробы, приготовление композита с полимерным связующим, прессование порошка с последующим спеканием. Из перечисленных вариантов оптимальным полагается приготовление композита на основе неорганического порошка измеряемой пробы и органического клея, например оптического фотополимеризуемого клея. Также предложенный способ подходит для измерений объемных материалов, таких как монокристаллы, оптические керамики и стекла.

Выход сцинтилляций образцов относительно друг друга определяется как отношение положений пиков на шкале каналов амплитудного анализатора; абсолютный выход сцинтилляций определяется относительно калибровочного образца сцинтиллятора, по возможности близкого по свойствам к измеряемым порошковым составам, световыход которого измерен по стандартной методике, например монокристалла YAG:Ce (Y3Al5O12:Ce).

Практическая реализация изобретения иллюстрируется нижеприведенными примерами.

Пример 1.

На стеклянную подложку укладывают лист полиэтиленовой пленки толщиной 0,02-0,05 мм, сверху помещают алюминиевое кольцо с внутренним/внешним диаметром 12/14 мм и толщиной 1 мм, внутрь кольца насыпают порошок пробы так, что слой порошка располагался вровень с верхней плоскостью кольца. В центр слоя порошка с помощью шприца помещают каплю оптического клея с ультрафиолетовым отверждением (Norland 61 или аналогичный) объемом 0,10-0,12 см3; заготовку помещают в полную темноту на время не менее 2 часов. После полного впитывания клея сверху заготовки укладывают второй лист полиэтиленовой пленки толщиной 0,02-0,05 мм и накрывают стеклом. Верхнее и нижнее стекла на короткое время сдавливают между собой для удаления излишков клея. Заготовку помещают под источник УФ-излучения с длиной волны максимума высвечивания 360-370 нм, с общей мощностью не менее 30 Вт. Проводят засветку заготовки в течение 4 минут с каждой из сторон (суммарно 8 минут); с заготовки удаляют стекла. Далее заготовку выдерживают в течение 48 часов при комнатной температуре; затем с образца удаляют полиэтиленовую пленку (описаны процедуры полимеризации для клея Norland 61, для других марок режимы полимеризации могут отличаться). Излишки клея удаляют с алюминиевого кольца скальпелем.

После указанных процедур образец готов к измерениям. Используемая геометрия измерений «на отражение» для механически связанных проб приведена на Фиг. 1. Используется источник альфа-частиц 241Am с энергией альфа-частиц ~5,5 МэВ (2). Для уменьшения потерь света сцинтилляций проба и источник крепятся на тонком проволочном каркасе, вся конструкция накрывается тефлоновым светоотражателем (3). Используется типичный сцинтилляционный спектрометр в составе: ФЭУ (5) марки PHILIPS XP2020 с диапазоном спектральной чувствительности 290-650 нм и диаметром фотокатода (4) 44 мм, высоковольтный источник, спектрометрический усилитель, многоканальный амплитудный анализатор.

На Фиг. 2 приведены амплитудные спектры, записанные с порошковой непрозрачной пробы (образец 6) в стандартной геометрии «на просвет» и в геометрии «на отражение», реализуемой в предлагаемом способе. Можно видеть, что спектр, снятый в геометрии «на просвет», является монотонно спадающим и не содержит особенностей, которые могли бы быть использованы для определения выхода сцинтилляций из пробы. Спектр, снятый в геометрии «на отражение», содержит локальный максимум, положение которого на шкале энергий (№ канала) может быть надежно определено.

Измерения световыхода образцов проводятся относительно эталонного монокристалла YAG:Ce размерами ∅12×1 мм. Также положение пика от альфа-частиц в спектрах монокристалла YAG:Ce используется для контроля стабильности измерительного стенда. Для обработки спектров - определения положения пиков и погрешностей их определения проб и монокристалла YAG:Ce - используется программный пакет ROOT v.5.26 (https://root.cern.ch/). Примеры обработки накопленных за время накопления 600 с спектров приведены на Фиг. 3-5. В таблице 1 приведены значения положений пиков в шкале энергий и вычисленные значения выходов сцинтилляций.

Пример 2.

Подготовка проб к измерениям может проводиться другим способом, обеспечивающим механическую связку порошка в пробе, например способом предварительного компактирования и последующего спекания. Возможно также использование насыпной несвязанной пробы, насыпаемой в чашку Петри диаметром 10-20 мм слоем 0,5-1 мм. В этом случае фотоприемник (ФЭУ) и источник возбуждения 241Am располагаются над чашкой с пробой. Использование насыпной несвязанной пробы является менее предпочтительным, так как приводит к постепенному загрязнению измерительной установки.

Пример 3.

На Фиг. 6 приведены положения пиков альфа-частиц (горизонтальная шкала РЛ) четырех порошкообразных проб YAG:Ce, термическую обработку которых провели при различной температуре, вследствие чего они обладают различной интенсивностью фото- и радиолюминесценции (Таблица 1, образцы 4-7). Термообработку образца 4 провели при минимальной температуре (1000°C), а образца 7 - при максимальной температуре (1500°C). Положения пиков измерялись, как описано выше, для калибровки также использовался монокристалл YAG:Ce (образец 8). Можно видеть, что по мере повышения температуры термообработки световыход образцов растет.

Выход фотолюминесценции этих же образцов YAG:Ce был измерен нами прямым методом при оптическом возбуждении светоизлучающим диодом с длиной волны 440 нм. При измерениях с оптическим возбуждением также была выбрана геометрия «на отражение», в которой свет люминесценции с поверхности образца собирается оптической системой и по световоду посылается в широкодиапазонный спектрометр модели SDH производства Solar Laser Systems. Отдельно с помощью белого диффузного отражателя измерялся спектр свечения светодиода. Спектр фотолюминесценции образца 7 с присутствующим на нем пиком возбуждающего излучения приведен на Фиг. 7.

Выход фотолюминесценции определялся по амплитуде пика в максимуме фотолюминесценции; предварительно из спектров (аналогичных представленному на Фиг. 7) вычиталась базовая линия и нормированный на максимум спектр свечения светодиода. На Фиг. 6 по вертикальной оси отложены полученные положения пиков фотолюминесценции при возбуждении светоизлучающим диодом 440 нм (ФЛ) четырех порошкообразных проб YAG:Ce. Видна четкая корреляция положения пиков альфа-частиц 241Am и фотолюминесценции, что свидетельствует о применимости предложенного способа для контроля выхода фотолюминесценции порошкообразных люминофоров.

Таким образом, предложенный способ подходит для измерений величин световыхода сцинтилляций и выхода фотолюминесценции порошковых проб, а также может быть использован для сравнения этих величин с величинами для монокристаллических материалов.

Ниже приводятся Таблица 1 и Фиг. 1-7.

Таблица 1 - положения пиков и значения световыходов для измеренных образцов.

Фиг. 1 - Схема измерения выхода сцинтилляций при облучении альфа-источником, где 1 - проба; 2 - альфа-источник; 3 - светоотражатель; 4 - фотокатод; 5 – ФЭУ.

Фиг. 2 - Амплитудный спектр образца непрозрачной порошковой пробы, снятой в геометрии «на отражение» и «на просвет».

Фиг. 3 - Амплитудный спектр монокристалла YAG:Ce (образец 1). Пик альфа-частиц в канале 235,9±0.08.

Фиг. 4 - Амплитудный спектр порошкообразного образца GGAG:Ce (образец 2). Пик альфа-частиц в канале 563,1±14.26.

Фиг. 5 - Амплитудный спектр порошкообразного образца GGAG:Ce (образец 3). Пик альфа-частиц в канале 421,1±4.08.

Фиг. 6 - Положения пиков альфа-частиц 241Am (горизонтальная шкала РЛ) и фотолюминесценции при возбуждении 440 нм (ФЛ) четырех порошкообразных проб YAG:Ce (образцы 4-7).

Фиг. 7 - Спектр фотолюминесценции образца с присутствующим на нем пиком возбуждающего излучения, измеренный спектрометром SDH.

Способ контроля выхода сцинтилляций и фотолюминесценции порошкообразных сцинтилляторов и люминофоров, отличающийся тем, что возбуждение сцинтилляций производится с помощью облучения поверхности измеряемого образца альфа-излучением, при этом возникающие под действием альфа-частиц фотоны сцинтилляций регистрируются оптоэлектронной системой с поверхности порошкообразных сцинтилляторов и люминофоров, облучаемой альфа-частицами.



 

Похожие патенты:

Изобретение относится к сенсорному устройству для обнаружения сигналов излучения. Для обеспечения высокой целостности сигналов и сохранения способности к четырехсторонней стыковке сенсорное устройство содержит сенсорную матрицу, содержащую множество детекторов, сенсорный элемент для преобразования принятых сигналов излучения в множество соответствующих электрических сигналов, элемент интерпозера, простирающийся поперечно между первой боковой стороной и второй боковой стороной, и элемент интегральной схемы.

Изобретение относится к сцинтилляционным неорганическим оксидным монокристаллам со структурой граната, предназначенным для датчиков ионизирующего излучения в задачах медицинской диагностики, экологического мониторинга, неразрушающего контроля и разведке полезных ископаемых, экспериментальной физике, устройствах для измерения в космосе.

Изобретение относится к средствам получения рентгеновских изображений путем конвертирования рентгеновского излучения в оптический диапазон и последующего преобразования в электрические сигналы.

Группа изобретений относится к области радиологической визуализации, области эмиссионной томографической визуализации, области детекторов излучения и связанным областям.

Изобретение относится к области регистрации наносекундных импульсов мягкого рентгеновского излучения (МРИ) с получением информации о спектре излучения. Технический результат – расширение эксплуатационных возможностей сцинтилляционного детектора, повышение технологичности конструкции, сборки и обслуживания сцинтилляционного детектора.

Группа изобретений относится к формированию временных меток обнаруженных квантов излучения и находит применение в области физики частиц с высокой энергией. Устройство содержит пиксельную матрицу оптического детектора, блок срабатывания метки времени и блок синхронизации.

Группа изобретений относится к медицинской визуализации, а именно к позитронно-эмиссионной томографии (ПЭТ). Система ПЭТ содержит память, сконфигурированную с возможностью непрерывной записи обнаруживаемых совпадающих пар событий, обнаруживаемых ПЭТ-детекторами, опору субъекта для поддержки субъекта и перемещения в режиме непрерывного движения через поле видения ПЭТ-детекторов, группирующий блок для группировки записанных совпадающих пар в каждый из множества пространственно ограниченных виртуальных кадров на основании времяпролетной информации, при этом обнаруженные события некоторых из обнаруженных совпадающих пар событий расположены в двух разных виртуальных кадрах, и группирующий блок распределяет совпадающую пару событий одному из двух виртуальных кадров, и блок реконструкции сгруппированных совпадающих пар каждого виртуального кадра в изображение кадра и объединения изображений кадров в общее удлиненное изображение.

Изобретение относится к области атомной физики и может быть использовано для регистрации ионизирующих излучений. Сущность изобретения заключается в том, что способ регистрации импульсного ионизирующего излучения дополнительно содержит этапы, на которых в качестве чувствительного элемента применяют пластину из диэлектрика с высокой энергетической ценой образования свободных носителей заряда ΔЕ, например стекла KU1 (ΔЕ~150 эВ), первый контакт, находящийся на стороне пластины, ориентированной навстречу ионизирующему излучению, заземляют, а возникающий на противоположной стороне пластины отклик отрицательного напряжения по коаксиальному кабелю транслируют к регистрирующей аппаратуре, например осциллографу, при этом один конец центрального проводника коаксиального кабеля соединяют со вторым контактом чувствительного элемента и первым выводом нагрузочного сопротивления, второй конец центрального проводника коаксиального кабеля соединяют с регистрирующей аппаратурой, а оплетку коаксиального кабеля и второй вывод нагрузочного сопротивления заземляют.

Группа изобретений относится к керамическим фосвич-детекторам со сплавленными оптическими элементами. Сцинтиллятор содержит большое количество композиций граната в едином блоке, имеющих структурную формулу (1): M1aM2bM3cM4dO12, в которой O представляет собой кислород, М1, М2, М3 и М4 представляет собой первый, второй, третий и четвертый металл, которые отличаются друг от друга, причем сумма a+b+c+d составляет около 8, где «а» имеет значение от 2 до 3,5, «b» - от 0 до 5, «c» - от 0 до 5, «d» - от 0 до 1, где «b» и «c», «b» и «d» или «c» и «d» не могут быть оба равны нулю одновременно, в которой М1 представляет собой редкоземельный элемент, включая гадолиний, иттрий, лютеций или их комбинацию, М2 представляет собой алюминий или бор, М3 представляет собой галлий, а M4 представляет собой ко-допант; где две композиции, имеющие одинаковые структурные формулы, не расположены рядом друг с другом и где единый блок лишен оптических поверхностей раздела между различными композициями.

Изобретение относится к области радиационной безопасности. Дозиметр поисковый содержит блок операционный, состоящий из детекторов гамма- и нейтронного излучений и блока обработки информации, блок индикации, состоящий из блока световой и звуковой сигнализации и дисплея, выносной блок вибрационной сигнализации, причем блок вибрационной сигнализации может стыковаться с блоком индикации с помощью контактного разъемного соединения, при этом блоки операционный и индикации представляют собой индивидуальные ударопрочные корпуса, которые при работе дозиметра без удлинительной штанги стыкуются между собой с помощью дополнительного контактного разъемного соединения, а при работе дозиметра с удлинительной телескопической штангой с проводной линией связи внутри, блок операционный стыкуется с ней в верхней ее части с помощью контактного разъемного соединения, а блок индикации с помощью контактного разъемного соединения стыкуется с ней в нижней ее части возле ручки, образуя при этом проводную электрическую связь между выходом блока обработки информации и входом блока индикации.

Изобретение относится к сцинтилляционным неорганическим оксидным монокристаллам со структурой граната, предназначенным для датчиков ионизирующего излучения в задачах медицинской диагностики, экологического мониторинга, неразрушающего контроля и разведке полезных ископаемых, экспериментальной физике, устройствах для измерения в космосе.

Изобретение относится к сцинтилляционным неорганическим оксидным монокристаллам со структурой граната, предназначенным для датчиков ионизирующего излучения в задачах медицинской диагностики, экологического мониторинга, неразрушающего контроля и разведке полезных ископаемых, экспериментальной физике, устройствах для измерения в космосе.

Изобретение относится к средствам получения рентгеновских изображений путем конвертирования рентгеновского излучения в оптический диапазон и последующего преобразования в электрические сигналы.

Изобретение относится к средствам получения рентгеновских изображений путем конвертирования рентгеновского излучения в оптический диапазон и последующего преобразования в электрические сигналы.

Группа изобретений относится к области радиологической визуализации, области эмиссионной томографической визуализации, области детекторов излучения и связанным областям.

Группа изобретений относится к области радиологической визуализации, области эмиссионной томографической визуализации, области детекторов излучения и связанным областям.

Изобретение относится к области регистрации наносекундных импульсов мягкого рентгеновского излучения (МРИ) с получением информации о спектре излучения. Технический результат – расширение эксплуатационных возможностей сцинтилляционного детектора, повышение технологичности конструкции, сборки и обслуживания сцинтилляционного детектора.

Изобретение относится к области регистрации наносекундных импульсов мягкого рентгеновского излучения (МРИ) с получением информации о спектре излучения. Технический результат – расширение эксплуатационных возможностей сцинтилляционного детектора, повышение технологичности конструкции, сборки и обслуживания сцинтилляционного детектора.

Изобретение относится к области беспилотных аппаратов и комплексам наблюдения для них. Комплекс наблюдения содержит беспилотный аппарат и мобильный пульт контроля и управления.

Группа изобретений относится к керамическим фосвич-детекторам со сплавленными оптическими элементами. Сцинтиллятор содержит большое количество композиций граната в едином блоке, имеющих структурную формулу (1): M1aM2bM3cM4dO12, в которой O представляет собой кислород, М1, М2, М3 и М4 представляет собой первый, второй, третий и четвертый металл, которые отличаются друг от друга, причем сумма a+b+c+d составляет около 8, где «а» имеет значение от 2 до 3,5, «b» - от 0 до 5, «c» - от 0 до 5, «d» - от 0 до 1, где «b» и «c», «b» и «d» или «c» и «d» не могут быть оба равны нулю одновременно, в которой М1 представляет собой редкоземельный элемент, включая гадолиний, иттрий, лютеций или их комбинацию, М2 представляет собой алюминий или бор, М3 представляет собой галлий, а M4 представляет собой ко-допант; где две композиции, имеющие одинаковые структурные формулы, не расположены рядом друг с другом и где единый блок лишен оптических поверхностей раздела между различными композициями.

Изобретение относится к способам определения технического состояния двигателей, машин и механизмов по характеристикам металлических частиц износа, обнаруженных в смазочных маслах, топливах и специальных жидкостях.

Изобретение относится к способам контроля характеристик порошкообразных сцинтилляторов и люминофоров, полученных одним из известных способов, например, методами со-осаждения, твердофазного синтеза и др., и применяемых в качестве самостоятельного материала. Способ контроля выхода сцинтилляций и фотолюминесценции порошкообразных сцинтилляторов и люминофоров содержит этапы, на которых возбуждение сцинтилляций производится с помощью облучения поверхности измеряемого образца альфа-излучением, при этом возникающие под действием альфа-частиц фотоны сцинтилляций регистрируются оптоэлектронной системой с поверхности порошкообразных сцинтилляторов и люминофоров, облучаемой альфа-частицами. Технический результат – упрощение пробоподготовки, повышение производительности и повышение точности измерений. 7 ил., 1 табл.

Наверх