Светодиодная лампа общего назначения с литым корпусом-радиатором

Изобретение относится к светотехнике, а именно к конструкции светодиодных ламп общего назначения. Техническим результатом заявленного решения является улучшение отвода тепла от светодиодов и источника питания, повышение технологичности и световой эффективности лампы. Светодиодная лампа содержит корпус-радиатор 1, покрытый диэлектрической теплопроводной пластмассой; плату со светодиодами; рассеиватель 5, накрывающий светодиоды; источник питания; и цоколь 7. Корпус-радиатор 1 включает два комбинированных алюминиевых профиля 8, внутренняя и внешняя поверхность которых покрыта диэлектрической теплопроводной пластмассой, внешняя стенка имеет удлиненные концы 11 и плоский участок поверхности, снабженный теплоотводящими ребрами 12 охлаждения, при этом теплоотводящие ребра первой части корпуса-радиатора ориентированы навстречу теплоотводящим ребрам второй части корпуса-радиатора и смонтированы с зазором 13; плата светодиодов установлена на плоских участках поверхности каждого алюминиевого профиля; а удлиненные концы 11 внешней стенки каждого алюминиевого профиля соединены с цоколем 7 при помощи диэлектрической теплопроводящей пластмассы, из материала которой выполнена ниша 14 для размещения источника питания, отделенная от алюминиевого профиля воздушным промежутком 15. 7 з.п. ф-лы, 5 ил.

 

Область техники

Изобретение относится к светотехнике, а именно к конструкции светодиодных ламп общего назначения.

Уровень техники

Светодиодные лампы общего назначения имеют, как правило, следующие основные узлы и элементы: осесимметричную выпуклую светорассеивающую оболочку, плату со светодиодами, осесимметричный радиатор для конвективного теплообмена, встроенный источник питания и цоколь для соединения с сетью электропитания. Различные дополнительные элементы, которыми может быть снабжена лампа, повышают эффективность работы узлов и элементов.

Одной из важнейших проблем является обеспечение рабочего температурного поля светодиодов и источника питания. Причем самостоятельной проблемой становится их взаимное термическое влияние. В любом случае проблема отвода излишков тепла решается с помощью конвекционного теплообмена между поверхностью радиатора и атмосферным воздухом. Чем более мощные светодиоды используются, тем актуальнее вопрос, как быстро отвести выделяемое тепло к поверхности конвективного теплообмена.

Известна светодиодная лампа, содержащая корпус-радиатор, выполненный из электроизоляционного материала, имеющий поверхность конвекционного теплообмена с атмосферным воздухом; рассеиватель света, закрепленный на корпусе-радиаторе; светодиоды, смонтированные на плате; теплопроводящий элемент, установленный с возможностью теплообмена с платой светодиодов и с корпусом-радиатором; источник питания светодиодов; и цоколь (TW 201405067, МПК F21V 3/04, опубликован 01.02.2014).

Недостатком известного решения является наличие замкнутой полости внутри радиатора, в которой расположен источник питания, являющийся также и источником тепла. При этом на внешней поверхности стенки полости установлена плата светодиодов, которая также является источником тепла, охлаждению которого препятствует светорассеиватель, образующий воздушный теплоизолятор. Оба источника тепла: светодиоды и источник питания - оказывают друг на друга негативное влияние, причем слабым звеном оказывается источник питания, рабочая температура для которого существенно ниже, чем для светодиодов.

Известны другие решения, например, CN 203477931 U, JP 539258782 В2, CN 203500894 U, CN 203731137 U, общим для которых является размещение в замкнутом объеме источника питания, подвергающегося тепловому воздействию светодиодов.

Описанное в TW 201405067 решение выбрано в качестве прототипа, так как является наиболее близким к заявленному решению по количеству совпадающих признаков.

Техническим результатом заявленного решения является повышение технологичности и световой эффективности лампы.

Раскрытие изобретения

Заявленное изобретение характеризуется следующей совокупностью признаков:

Светодиодная лампа общего назначения, содержащая литой корпус-радиатор, выполненный из диэлектрического теплопроводного материала; рассеиватель света, закрепленный на корпусе-радиаторе; светодиоды, смонтированные на плате; теплопроводящий элемент из металла с высокой теплопроводностью, установленный с возможностью теплообмена с платой светодиодов и с корпусом-радиатором; источник питания светодиодов; и цоколь, отличающаяся тем, что теплопроводящий элемент выполнен в виде изогнутой профилированной полосы, покрытой со всех сторон слоем диэлектрического теплопроводного материала, который со всех сторон имеет поверхность конвективного теплообмена с атмосферным воздухом.

Специалисту должно быть понятно, что литой корпус-радиатор при любых конструктивных вариантах выполнения светодиодной лампы должен включать как минимум теплопроводящий элемент. Варианты выполнения могут иметь плату светодиодов, нишу в корпусе-радиаторе или дополнительную плату для источника питания, цоколь или поверхность для его установки.

Под выражением «конвективный теплообмен» в заявленном решении понимается процесс переноса тепла от поверхности теплопроводного корпуса-радиатора к движущейся газовой среде, в данном случае к атмосферному воздуху.

Назначение теплопроводящего элемента заключается в быстром отводе излишков тепла от светодиодов к конвекционной поверхности радиатора. Возможно, что теплопроводность материала корпуса-радиатора достигнет теплопроводности металла, тогда изготовление теплопроводящего элемента возможно из материала корпуса-радиатора.

В заявленном решении предусмотрено использование печатной платы светодиодов на диэлектрической или металлической основе.

В зависимости от используемой основы печатной платы выбран оптимальный вариант теплопроводящего элемента. В общем случае теплопроводящий элемент представляет собой изогнутую профилированную полосу разной степени протяженности, выполненную из алюминия, меди или их сплавов, и покрытую со всех сторон диэлектрическим материалом корпуса-радиатора в процессе формирования его в литьевой форме. По существу, покрытый диэлектрическим материалом теплопроводящий элемент служит также пространственным каркасом корпуса-радиатора.

Концы изогнутого теплопроводящего элемента могут иметь дополнительные участки сгиба, форма которых определяется конструктивными особенностями лампы. Область между концами изогнутого теплопроводящего элемента заполнена атмосферным воздухом и остается постоянно открытой для конвективного теплообмена с поверхности диэлектрического слоя, покрывающего теплопроводящий элемент. Таким образом, без изменения габаритов лампы может быть практически удвоена поверхность охлаждения и созданы условия для отвода тепла от платы светодиодов по кратчайшему расстоянию к поверхности конвективного теплообмена, расположенной между концами изогнутого теплопроводящего элемента. Для повышения эффективности охлаждения поверхность конвективного теплообмена может быть рельефной. Форма рельефа выбрана с учетом потребностей теплообмена. Некоторые варианты представлены на графических материалах к описанию.

В простейшем случае металлическая полоса материала теплопроводящего элемента может иметь прямоугольный профиль и одинаковую ширину по всей длине. При этом, кроме операции гибки, полоса материала теплопроводящего элемента не требует дополнительной металлообработки.

Возможен более сложный вариант теплопроводящего элемента, когда на его плоском участке, предназначенном для размещения платы светодиодов, выполнен более широкий участок, который формируется при выполнении операции вырубки из заготовки полосы подходящей ширины. Последующая операция гибки ленты выполняется на том же оборудовании, что и вырубка.

Использование профилированной полосы для теплопроводящего элемента имеет ряд преимуществ, позволяющих создавать равномерный световой поток с широким углом рассеивания. Для этой цели особенно пригодны треугольный и трапециевидный профиль полосы, на плоских гранях которой закреплены диэлектрические платы на гибкой основе, выполненные в виде светодиодной ленты с липким слоем. Для повышения эффективности нижняя поверхность профиля может иметь волнистую форму, увеличивающую поверхность теплообмена со слоем диэлектрического материала корпуса-радиатора.

При использовании светодиодов повышенной мощности источник питания может быть расположен на дополнительной печатной плате, установленной продольно оси лампы с возможностью механического и электрического соединения с платой светодиодов, а также с цоколем без использования монтажных проводов. При этом на плате источника питания могут быть установлены дополнительные светодиоды для корректировки цветности или улучшения светотехнических характеристик светового потока.

Вариантом компоновки источника питания в лампе может быть его размещение в полости, выполненной в корпусе-радиаторе на некотором расстоянии от теплопроводящего элемента и имеющей поверхность конвективного теплообмена.

Краткое описание чертежей

Заявленное решение иллюстрируется следующими графическими материалами:

на фиг. 1 изображен общий вид одного из вариантов светодиодной лампы,

на фиг. 2 показано сечение лампы, изображенной на фиг. 1 и имеющей теплопроводящий элемент с прямоугольным профилем;

на фиг. 3 - поперечное сечение варианта лампы с продольно установленной платой с источником питания и светодиодами;

на фиг. 4 - поперечное сечение варианта лампы с выпуклым участком размещения платы светодиодов на гибкой основе;

на фиг. 5 - показан вариант лампы, в котором применен источник питания с навесными компонентами, расположенный в специально сформированной при литье герметичной полости.

Светодиодная лампа общего назначения содержит литой корпус-радиатор 1, выполненный из диэлектрического материала, имеющий поверхность 2 конвективного теплообмена с атмосферным воздухом; рассеиватель 3, закрепленный на корпусе-радиаторе 1; светодиоды 4, смонтированные на плате 5; теплопроводящий элемент 6, установленный с возможностью теплообмена с платой 5 и с корпусом-радиатором 1, источник питания (не показан), размещенный в цоколе 7. Теплопроводящий элемент 6 со всех сторон покрыт слоем диэлектрического материала 8, из которого также отлит корпус-радиатор. Создание покрытия 8 теплопроводящего элемента 6 и заливка корпуса-радиатора 1 происходит одновременно в литьевой форме. При этом все поверхности конвективного теплообмена формируются в литьевой форме и дополнительной обработке не подлежат. Исключением может быть нанесение дополнительного электроизоляционного покрытия на уже сформированную поверхность конвективного теплообмена.

Примеры осуществления

Первый из простых вариантов выполнения заявленного решения представлен на фиг. 1 и фиг. 2, в котором на плоском участке теплопроводящего элемента 6 прямоугольного профиля смонтированы светодиоды 4, а на одном из его удаленных концов собран источник питания (не показан), размещенный в цоколе 7. Покрытие укомплектованного таким образом теплопроводящего элемента 6 слоем 9 диэлектрического материала, формирование корпуса-радиатора 1 и его соединение с цоколем 7 выполняются одновременно, путем заливки диэлектрического материала в жидкой фазе в литьевую форму. После отверждения диэлектрического материала на корпусе-радиаторе 1 закрепляют рассеиватель 3. В результате отверждения слоя 9 диэлектрического материала, покрывающего теплопроводящий элемент 6, образуется незаполненная диэлектрическим материалом область 9, доступная для свободного проникновения атмосферного воздуха, участвующего в процессе конвективного теплообмена с поверхностью слоя 9, являющейся продолжением поверхности корпуса-радиатора 1.

На фиг. 3 представлен вариант лампы, который отличается от варианта, показанного на фиг. 2 тем, что источник питания (не показан) смонтирован на дополнительной плате 10, снабженной дополнительными светодиодами 11 и установленной продольно оси лампы с возможностью теплообмена с теплопроводящим элементом 6. При этом слой 8 диэлектрического материала, покрывающий теплопроводящий элемент 6, также покрывает дополнительную плату 11 вместе с элементами источника питания. Процесс покрытия слоем 9 и соединения частей лампы не отличается от раскрытого в предыдущем абзаце.

Вариант лампы, представленный на фиг. 4, отличается выпуклой формой участка размещения гибкой платы светодиодов на теплопроводящем элементе 6, что позволяет получить широкую апертуру угла освещения.

На фиг. 5 показан вариант лампы, в которой применен источник питания с навесными компонентами, располагающийся в специально сформированной герметично закрытой полости 12.

Возможность промышленного применения

Технологии изготовления элементов светодиодной лампы широко известны, хорошо освоены и обеспечены высокопроизводительными машинами, разной степени автоматизации.

1. Светодиодная лампа общего назначения, содержащая литой корпус-радиатор, выполненный из диэлектрического теплопроводного материала; рассеиватель света, закрепленный на корпусе-радиаторе; светодиоды, смонтированные на плате; теплопроводящий элемент из металла с высокой теплопроводностью, установленный с возможностью теплообмена с платой светодиодов и с корпусом-радиатором; источник питания светодиодов; и цоколь, отличающаяся тем, что теплопроводящий элемент выполнен в виде изогнутой профилированной полосы, покрытой со всех сторон слоем диэлектрического теплопроводного материала, который со всех сторон имеет поверхность конвективного теплообмена с атмосферным воздухом.

2. Светодиодная лампа общего назначения по пункту 1, отличающаяся тем, что диэлектрическим материалом корпуса-радиатора залит, по меньшей мере, теплопроводящий элемент.

3. Светодиодная лампа общего назначения по пункту 1, отличающаяся тем, что материалом корпуса-радиатора залиты теплопроводящий элемент, плата светодиодов и/или источник питания, и/или полость цоколя.

4. Светодиодная лампа общего назначения по пункту 1, отличающаяся тем, что теплопроводящий элемент выполнен из полосы прямоугольного профиля, имеющей участки разной ширины.

5. Светодиодная лампа общего назначения по пункту 1, отличающаяся тем, что плата светодиодов установлена на участке поверхности теплопроводящего элемента, а источник питания смонтирован на дополнительной печатной плате, установленной продольно оси лампы с возможностью теплообмена с теплопроводящим элементом.

6. Светодиодная лампа общего назначения по пункту 5, отличающаяся тем, что дополнительная плата с источником питания снабжена светодиодами.

7. Светодиодная лампа общего назначения по пункту 1, отличающаяся тем, что профиль теплопроводящего элемента образован отрезками прямой и/или линией второго порядка, а светодиоды смонтированы на печатной плате с гибкой основой.

8. Светодиодная лампа общего назначения по пункту 1, отличающаяся тем, что источник питания размещен в полости, выполненной в корпусе-радиаторе и отделенной от источника питания воздушным промежутком.



 

Похожие патенты:

Изобретение относится к области светотехники. Техническим результатом является упрощение конструкции и способа сборки.

Раскрыто осветительное устройство (100), содержащее подложку (10), имеющую основное тело (12) и первый и второй выступы (14, 16), простирающиеся параллельно от упомянутого основного тела, причем первый выступ содержит первую основную поверхность (142) и противоположную вторую основную поверхность (144), при том второй выступ содержит третью основную поверхность (162) и противоположную четвертую основную поверхность (164), причем первая основная поверхность и третья основная поверхность находятся на одной и той же стороне подложки, при этом упомянутая подложка несет по меньшей мере один твердотельный осветительный элемент (20) по меньшей мере на одной из первой основной поверхности и четвертой основной поверхности; и теплорассеивающий элемент (30), имеющий первый участок (32), находящийся в тепловой связи со второй основной поверхностью, и имеющий второй участок (33), находящийся в тепловой связи с третьей основной поверхностью.

Изобретение относится к области светотехники. Техническим результатом является увеличение срока службы и повышение эффективности освещения.

Изобретение относится к устройствам монтажа встроенного светильника и может быть использовано в строительстве. Технической задачей предлагаемого технического решения является упрощение конструкции, повышение защищенности, снижение цены.

Изобретение относится к области светотехники, а именно к узлу светодиодной лампы. Техническим результатом является расширение арсенала технических средств.

Изобретение относится к приспособлениям, предназначенным для крепления источников света, в частности свечей, в книге во время чтения. Техническим результатом является возможность нестационарного и компактного использования свечи при любом использовании.

Настоящее изобретение обеспечивает способ выполнения универсальной светодиодной лампочки, светодиодную лампочку, имеющую конструкцию стопорного кольца, и лампу, выполненную согласно способу.

Изобретение относится к области светотехники и, в частности, раскрывает способ выполнения универсальной светодиодной лампочки, светодиодную лампочку со стопорным кольцом с фланцем и лампу.

Изобретение относится к области световых устройств и может быть использовано в конструкциях световых устройств, имеющих теплоотвод для отвода тепла от опорного элемента электроники светового устройства.

Настоящее изобретение обеспечивает способ выполнения универсальной светодиодной лампочки (102), светодиодную лампочку (102) линзового типа со стопорным кольцом и лампу.

Изобретение относится к области светотехники и может быть использовано в осветительном устройстве и способе его изготовления. Техническим результатом является упрощение осветительного устройства и способа его изготовления. Осветительное устройство содержит колбу (100), светогенерирующий блок (120), ножку (130), выполненную с возможностью поддерживать светогенерирующий блок внутри колбы, а также механическую крепежную деталь (110), выполненную с возможностью крепления светогенерирующего блока на ножке. Механическая крепежная деталь содержит по меньшей мере один выступ (115), а светогенерирующий блок содержит по меньшей мере одно отверстие (126), приспособленное стыковаться с указанным по меньшей мере одним выступом так, чтобы закрепить светогенерирующий блок на механической крепежной детали. 2 н. и 13.з.п. ф-лы, 35 ил.

Изобретение относится к светотехнике, а именно к конструкции светодиодных ламп общего назначения. Техническим результатом заявленного решения является улучшение отвода тепла от светодиодов и источника питания, повышение технологичности и световой эффективности лампы. Светодиодная лампа содержит корпус-радиатор 1, покрытый диэлектрической теплопроводной пластмассой; плату со светодиодами; рассеиватель 5, накрывающий светодиоды; источник питания; и цоколь 7. Корпус-радиатор 1 включает два комбинированных алюминиевых профиля 8, внутренняя и внешняя поверхность которых покрыта диэлектрической теплопроводной пластмассой, внешняя стенка имеет удлиненные концы 11 и плоский участок поверхности, снабженный теплоотводящими ребрами 12 охлаждения, при этом теплоотводящие ребра первой части корпуса-радиатора ориентированы навстречу теплоотводящим ребрам второй части корпуса-радиатора и смонтированы с зазором 13; плата светодиодов установлена на плоских участках поверхности каждого алюминиевого профиля; а удлиненные концы 11 внешней стенки каждого алюминиевого профиля соединены с цоколем 7 при помощи диэлектрической теплопроводящей пластмассы, из материала которой выполнена ниша 14 для размещения источника питания, отделенная от алюминиевого профиля воздушным промежутком 15. 7 з.п. ф-лы, 5 ил.

Наверх