Способ лазерной пробивки сквозного отверстия в неметаллической пластине

Изобретение относится к способу лазерной пробивки сквозного отверстия в неметаллической пластине, например, из полупроводниковых, керамических и стеклообразных материалов. Осуществляют разделение лазерного пучка на два и воздействие на обе стороны пластины пучками с равной плотностью энергии. Плотность энергии рассчитывают по соотношению, связывающему удельную энергию сублимации материала Q, коэффициент отражения материала пластины R и показатель поглощения материала χ на длине волны воздействующего лазерного излучения. Сначала лазерным пучком воздействуют на одну поверхность пластины с плотностью энергии, определяемой по следующему соотношению

а воздействие на обе стороны пластины осуществляют с плотностью энергии, отличной от величины плотности энергии предыдущего воздействия. Упомянутую плотность энергии определяют по следующему соотношению где е - основание натурального логарифма; h - толщина пластины, aχh>3,87. Техническим результатом изобретения является снижение энергетических затрат при лазерной пробивке сквозных отверстий в пластинах из неметаллических материалов. 2 ил.

 

Изобретение относится к области технологических процессов и может быть использовано для лазерной пробивки отверстий в пластинах из полупроводниковых, керамических и стеклообразных материалов.

Известен способ лазерной обработки [Лазерная техника и технология. В 7 кн. Кн. 4. Лазерная обработка неметаллических материалов: Учебное пособие для ВУЗов / А.Г. Григорьянц, А.А. Соколов. Под ред. А.Г. Григорьянца. - М.: Высшая школа 1998. - 191 с. ISBN 5-06-001453-3], в частности, используемый для создания отверстий в пластинах, в котором плотность энергии, необходимая для испарения слоя материала толщиной x, равна

где W - плотность энергии лазерного излучения;

x - координата, измеряемая от поверхности вглубь материала;

- плотность материала;

- скрытая теплота испарения единицы массы материала.

Уравнение (1) характеризует стационарный процесс испарения материала под действием лазерного излучения при его поглощении в очень тонком поверхностном слое материала (много меньше толщины испаренного слоя). Уравнение (1) нельзя использовать, когда поглощение лазерного излучения происходит в объеме материала, например в слое материала толщиной в несколько миллиметров. Недостатком данного способа является отсутствие возможности определения оптимального значения плотности энергии лазерного излучения при обработке материалов, обладающих объемным поглощением излучения с длиной волны, на которой происходит обработка материала.

Известен также способ лазерной обработки неметаллических материалов [Сахаров М.В., Коваленко А.Ф., Воробьев А.А., Конюхов М.В., Астраускас Й.И., Никитин И.В., Запонов А.Э., Удинцев Р.Д., Чупятов А.С. Способ обработки неметаллических материалов. Патент на изобретение RU 2486628, МПК H01L 21/42, 27.06.2013], заключающийся в облучении их поверхности лазерными импульсами с плотностью энергии в импульсе, определяемой по соотношению

где е - основание натурального логарифма (е≈2,7183);

Q - удельная энергия сублимации материала, Дж/м3;

χ - показатель поглощения материала пластины на длине волны лазерного излучения, м-1;

R - коэффициент отражения материала.

При такой плотности энергии воздействующего лазерного излучения происходит сублимация поглощающего слоя материала толщиной 1/χ, причем максимальный удельный (на единицу вложенной энергии) унос массы материала составит величину

Для сквозного пробития отверстия в пластине необходимо, чтобы толщина пластины составляла величину 1/χ. Эти условия обеспечивают оптимальный режим обработки при одностороннем воздействии лазерного излучения на неметаллические материалы, обладающие объемным поглощением лазерного излучения. Недостатком способа является то, что он не позволяет проводить пробитие сквозных отверстий в неметаллических пластинах произвольной толщины, обладающих объемным поглощением лазерного излучения, при минимальных энергетических затратах.

Известен также способ лазерной пробивки сквозного отверстия в неметаллической пластине [Коваленко А.Ф. Способ лазерной пробивки сквозного отверстия в неметаллической пластине. Патент РФ №2582849 С1, МПК B23K 26/364, 27.04.2016], включающий обработку поверхности пластины посредством лазерного импульса с длиной волны, обеспечивающей выполнение условия

1,2<χh<3,1,

где h - толщина пластины,

при этом исходный лазерный пучок лазерного излучения разделяют на два пучка и одновременно соосно воздействуют на обе поверхности пластины с равной плотностью энергии, определяемой по соотношению:

Указанный способ выбран в качестве прототипа. Недостатком указанного способа является существенное увеличение энергетических затрат при пробитии отверстий в пластинах большой толщины, когда χh>4. Так как длины волн технологических лазеров имеют определенные значения, а толщины пластин могут быть произвольными, трудно обеспечить режимы обработки, обеспечивающие минимальные затраты энергии.

Техническим результатом изобретения является снижение энергетических затрат при лазерной пробивке сквозных отверстий в пластинах из неметаллических материалов, обладающих объемным поглощением лазерного излучения, например из полупроводниковых, керамических и стеклообразных материалов.

Технический результат достигается тем, что в способе лазерной пробивки сквозного отверстия в неметаллической пластине, включающем разделение лазерного пучка на два, воздействие на обе стороны пластины пучками с равной плотностью энергии, которую рассчитывают по соотношению, связывающему удельную энергию сублимации материала Q, коэффициент отражения материала пластины R и показатель поглощения материала χ на длине волны воздействующего лазерного излучения, сначала лазерным пучком воздействуют на одну поверхность пластины с плотностью энергии, определяемой по следующему соотношению

а воздействие на обе стороны пластины осуществляют с плотностью энергии, отличной от величины плотности энергии предыдущего воздействия, которую определяют по следующему соотношению

где е - основание натурального логарифма;

h - толщина пластины,

aχh>3,87.

На фиг. 1 представлена схема лазерной установки для реализации предложенного способа обработки. Установка содержит импульсный лазер (1), телескопический преобразователь диаметра пучка, состоящий из собирающей линзы (2) и рассеивающей линзы (3), диэлектрическое зеркало (4) с коэффициентом отражения 0,5 на длине волны лазера, осуществляющее разделение на два пучка равной плотности энергии исходного лазерного пучка, и двух диэлектрических зеркал (5, 6) с коэффициентом отражения ~0,99, направляющих лазерное излучение на обе поверхности обрабатываемой пластины (7). При помощи телескопического преобразователя исходный лазерный пучок преобразуется в пучок требуемого диаметра с минимально возможной расходимостью.

Если

где a - коэффициент температуропроводности материала пластины;

RП - радиус пучка лазерного излучения после рассеивающей линзы,

то можно рассматривать задачу об испарении материала в одномерной постановке и пренебречь переносом энергии в материале за счет теплопроводности за время действия лазерного импульса.

Рассмотрим пластину толщиной h, обладающую показателем поглощения на длине волны лазерного излучения χ. Толщина пластины в относительных единицах будет χh. Для реализации предлагаемого способа пробивки сквозных отверстий в пластине вначале из схемы установки для лазерной обработки удаляют диэлектрическое зеркало (4) и воздействуют на одну поверхность пластины с плотностью энергии, определяемой по уравнению (1). При этом толщина испаренного слоя материала составит 1/χ или в относительных единицах χh=1. Оставшаяся не испаренной толщина пластины в относительных единицах будет равна χh-1. Далее возвращают диэлектрическое зеркало (4) в оптическую схему установки и воздействуют на обе поверхности пластины соосно двумя лазерными пучками с плотностью энергии в каждом пучке, определяемой по формуле

Уравнение (6) получают из уравнения (4) заменой начальной толщины пластины в относительных единицах χh на толщину пластины, равную χh-1, после воздействия на одну поверхность пластины лазерного импульса с плотностью энергии, определяемой по уравнению (1). Суммарная плотность энергии, необходимая для пробития сквозного отверстия в пластине при рассматриваемом режиме воздействия, составит

Суммарная плотность энергии, необходимая для пробития сквозного отверстия в пластине по способу, описанному в прототипе, будет равна

Разделив (7) на (8), получим

На фиг. 2 показана зависимость . Видно, что при χh>3,87 отношение становится меньше единицы. Следовательно, энергетические затраты на пробитие сквозного отверстия в пластине по заявляемому способу при χh>3,87 меньше, чем в прототипе. По мере увеличения χh преимущества заявленного способа перед прототипом возрастают. Например, при χh=7 f(χh)=0,69.

Таким образом достигается технический результат, заключающийся в уменьшении энергетических затрат при лазерной пробивке сквозных отверстий в неметаллических пластинах, обладающих объемным поглощением на длине волны лазерного излучения.

Способ лазерной пробивки сквозного отверстия в неметаллической пластине, включающий разделение лазерного пучка на два, воздействие на обе стороны пластины пучками с равной плотностью энергии, которую рассчитывают по соотношению, связывающему удельную энергию сублимации материала Q, коэффициент отражения материала пластины R и показатель поглощения материала χ на длине волны воздействующего лазерного излучения, отличающийся тем, что сначала лазерным пучком воздействуют на одну поверхность пластины с плотностью энергии, определяемой по следующему соотношению

а воздействие на обе стороны пластины осуществляют с плотностью энергии, отличной от величины плотности энергии предыдущего воздействия, которую определяют по следующему соотношению

где е - основание натурального логарифма;

h - толщина пластины,

aχh>3,87.



 

Похожие патенты:

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного излучения с плотностью энергии, зависящей от температуры отжига, начальной температуры пластины, удельной теплоемкости и плотности материала пластины, а также показателя поглощения материала пластины на длине волны лазерного излучения и возвращении назад в пластину при помощи диэлектрического зеркала излучения, вышедшего через ее тыльную поверхность, предварительно рассчитывают условие термопрочности пластины и, при его невыполнении, перед воздействием лазерного импульса нагревают пластину до температуры, зависящей от толщины пластины, механических, теплофизических и оптических свойств материала пластины.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что в способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного излучения с плотностью энергии, зависящей от температуры отжига, начальной температуры пластины, удельной теплоемкости и плотности материала пластины, а также показателя поглощения материала пластины на длине волны лазерного излучения, предварительно рассчитывают критерий термопрочности пластины и при его невыполнении перед воздействием лазерного импульса нагревают пластину до температуры, зависящей от толщины пластины, механических, теплофизических и оптических свойств материала пластины.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Использование: для отжига и легирования пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что поверхность обрабатываемого материала облучают импульсом лазерного излучения, при этом материал предварительно нагревают до температуры, рассчитываемой по соотношению где σПР - предел прочности материала на растяжение, Па; с0 - скорость звука в материале, м/с; К - модуль всестороннего сжатия, Па; α - коэффициент линейного расширения материала, К-1.

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что способ лазерной обработки неметаллических материалов заключается в облучении их поверхности импульсом лазерного излучения, формируют лазерный импульс, плотность энергии которого на облучаемой поверхности пластины определяется по представленному соотношению.

Изобретение может быть использовано для лазерного пробития сквозных отверстий в пластинах из полупроводниковых, керамических и стеклообразных материалов. Способ обработки неметаллических пластин согласно изобретению заключается в облучении их поверхности лазерным импульсом с минимальной расходимостью.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Изобретение относится к области нанотехнологий, в частности к получению наноструктур на поверхности полупроводника. Способ модификации полупроводниковой пленки согласно изобретению заключается в том, что воздействуют на полупроводниковую пленку непрерывным лазерным излучением с энергией кванта превосходящей ширину запрещенной зоны в диапазоне мощности от 5 до 10 Вт, при диаметре лазерного пучка на поверхности пленки от 30 до 100 мкм, так чтобы интенсивность воздействия не превышала 106 Вт/см2, при сканировании поверхности пленки со скоростью от 40 до 160 мкм/с.

Изобретение относится к микроэлектронике, оптической и оптоэлектронной технике. Cпособ получения рельефа на поверхности светоизлучающих кристаллов полупроводниковых светодиодов локальными эрозионными воздействиями на поверхность, при этом в соответствии с изобретением, эрозия производится оптико-термическим действием импульсного лазерного излучения, проникающего в кристалл, с глубиной поглощения в кристалле, близкой к глубине эрозии, и длительностью лазерных импульсов, меньшей времени распространения тепловой волны нагревания кристалла на глубину эрозии, причем энергия импульса лазерного излучения не менее приводящей к процессу поверхностного испарения кристалла.

Изобретение относится к области машиностроения и может быть использовано для упрочнения поверхностей металлических деталей, например пар трения. Способ эрозионно-лучевого упрочнения поверхности металлической детали включает одновременное электроэрозионное нанесение с помощью электрода-инструмента на поверхность детали гранул износостойкого сплава, нанесение микропорошка вязкого материала слоем, толщина которого не превышает размеров упомянутых гранул, и оплавление микропорошка путем лучевого нагрева.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига или легирования полупроводниковых, керамических и стеклообразных материалов.

Изобретение относится к системе печати для формирования трехмерного объекта (варианты) и способу формирования трехмерного объекта. Лазерный источник света генерирует когерентный пучок видимого света посредством стимулированного рамановского рассеяния.

Изобретение относится к области обработки материалов лазерным лучом, а именно к лазерной оптической головке. Лазерная оптическая головка содержит наружный неподвижный корпус (1) и внутренний подвижный корпус (3) с соплом (4).

Изобретение относится к способу лазерного упрочнения полой металлической заготовки. Посредством локального переплава, механической и химической обработкой подготавливают заготовку необходимых размеров в диапазоне (длина×радиус×толщина) от 100×10×2 мм до 1000×1000×12 мм из перлитных, бейнитных или мартенситных закаливающихся сталей марок 30ХГСА, 35ХГСА и пр.

Изобретение относится к сварочному производству и может быть применимо для производства труб с использованием технологии лазерной сварки. Способ подготовки стыка кромок трубной заготовки под лазерную сварку включает подготовку разделки кромок листа, сборку трубной заготовки, размещение между кромками присадочного металлического материала в качестве вставки.

Изобретение относится к лазерному плазмотрону для осаждения композитных алмазных покрытий и может быть использовано в машиностроении, в химической и электронной промышленности, в атомной энергетике.

Изобретение относится к способам сварки продольных швов труб большого диаметра, применяемых преимущественно для строительства магистральных нефтепроводов и газопроводов, а также водоканалов и тепловых сетей.

Изобретение относится к способу гибридной лазерно-дуговой сварки. Формируют сварочную ванну одновременно электрической дугой и лазерным лучом путем расплавления металла присадочного материала в защитной среде, состоящей из инертного и активного компонентов.

Изобретение относится к способу двухлучевой лазерной сварки алюминиевых сплавов и конструкционных сталей и может найти применение в различных отраслях машиностроения, в частности при сварке изделий в камере сварки с инертным газом.

Изобретение относится к способу формирования отверстий в стенке полого объекта (варианты) и системе защиты поверхности во время лазерной обработки. Во время лазерной обработки осуществляют подачу в полость объекта лазерной обработки текучей среды, не обладающей свойствами поглощать лазерное излучение, и направление на стенку объекта лазерной обработки множества лазерных импульсов, сконфигурированных на формирование отверстия в стенке. По меньшей мере один лазерный импульс проходит через отверстие и поступает в полость в то время, как в нее подается текучая среда, и падает одновременно на текучую среду и поверхность, за счет чего предотвращается повреждение задней стенки. 3 н. и 17 з.п. ф-лы, 36 ил.

Изобретение относится к способу лазерной пробивки сквозного отверстия в неметаллической пластине, например, из полупроводниковых, керамических и стеклообразных материалов. Осуществляют разделение лазерного пучка на два и воздействие на обе стороны пластины пучками с равной плотностью энергии. Плотность энергии рассчитывают по соотношению, связывающему удельную энергию сублимации материала Q, коэффициент отражения материала пластины R и показатель поглощения материала χ на длине волны воздействующего лазерного излучения. Сначала лазерным пучком воздействуют на одну поверхность пластины с плотностью энергии, определяемой по следующему соотношению а воздействие на обе стороны пластины осуществляют с плотностью энергии, отличной от величины плотности энергии предыдущего воздействия. Упомянутую плотность энергии определяют по следующему соотношению где е - основание натурального логарифма; h - толщина пластины, aχh>3,87. Техническим результатом изобретения является снижение энергетических затрат при лазерной пробивке сквозных отверстий в пластинах из неметаллических материалов. 2 ил.

Наверх