Прессованный металлосплавный палладий-бариевый катод и способ его получения

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторичноэмиссионных катодов для мощных приборов СВЧ-электроники. Прессованный металлосплавный палладий-бариевый катод выполнен трехслойным из двух сплошных палладиевых лент и размещенной между ними ленты с расположенными между собой на равных расстояниях сквозными отверстиями, формирующими ячейки с порошком интерметаллида Pd5Ba. Способ получения указанного катода включает получение порошка интерметаллида Pd5Ba путем плавки интерметаллида Pd5Ba, его размол в атмосфере инертных газов или СО2. На палладиевую ленту накладывают палладиевую ленту, выполненную с находящимися между собой на равных расстояниях сквозными отверстиями, в упомянутые отверстия палладиевой ленты засыпают порошок интерметаллида Pd5Ba, сверху на палладиевую ленту со сквозными отверстиями помещают такую же как нижняя палладиевую ленту, полученную трехслойную конструкцию прессуют под давлением 10-12 т/см2, после чего отжигают в течение 1-2 ч в инертной атмосфере при температуре 800-900°С и проводят горячую прокатку до заданной толщины. Обеспечивается повышение коэффициента вторичной электронной эмиссии на 20-25%. 2 н.з. ф-лы, 2 ил., 2 табл., 2 пр.

 

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторичноэмиссионных металлосплавных катодов для мощных приборов СВЧ-электроники (ламп бегущей волны, магнетронов и т.п.).

Среди металлосплавных катодов наибольший интерес представляют катоды на основе сплава палладия с барием, поскольку им присуще уникальное свойство - устойчивость к воздействию ионной и электронной бомбардировки.

Известен палладий-бариевый катод, представляющий собою матрицу Pd, в которой распределена интерметаллическая фаза Pd5Ba (см.: А.Н. Пашков, Ю.В. Романова, Р.Н. Попов, О.В. Дубинина, М.Н. Хабачев. Разработка технологии производства катодных сплавов на основе металлов платиновой группы для мощных электровакуумных приборов. Электронная Техника. Серия 1. СВЧ-Техника. 2014, вып. 4 (523). - С. 73-77). Основным недостатком указанного катода является неравномерное распределение фазы Pd5Ba в матрице Pd.

Существует способ получения палладий-бариевых катодов методом аргонно-дуговой плавки с нерасходуемым вольфрамовым электродом (см.: Н.П. Есаулов. Методы электроплавки при разработке спецсплавов для радиоэлектроники. Электрометаллургия. 2011, №4. - С. 30-33). Указанный способ состоит в следующем. Для проведения процесса плавки используется дуговая вакуумная печь (ДВП). Печь включает форвакуумный насос ВН-2, вакуумный агрегат ВА-0,5; вакуумную камеру, водоохлаждаемый медный кристаллизатор, нерасходуемый вольфрамовый электрод, баллон аргона марки А. Перед плавкой порошок Pd компактируют (прессуют), а с поверхности бария удаляют парафин и масло, а также слой оксидов. Очищенный барий помещают непосредственно на дно лунки медного водоохлаждаемого кристаллизатора, а сверху на него загружают металл в компактном виде. Рабочую камеру откачивают, напускают аргон. Подают питание на электрод. Происходит расплавление металлов с образованием сплава.

Основной недостаток настоящего способа - сильно неравномерное распределение фазы интерметаллида в матрице палладия. Данный факт приводит к понижению коэффициента вторичной электронной эмиссии (КВЭЭ) сплава, понижению к.п.д. электровакуумных приборов (ЭВП) на его основе и уменьшению процента выхода годных.

Наиболее близким к предполагаемому способу (прототипом) является способ получения металлосплавного прессованного палладий-бариевого катода, позволяющий добиться более равномерного распределения интерметаллида в матрице (см.: Н.П. Есаулов. Методы электроплавки при разработке спецсплавов для радиоэлектроники. Электрометаллургия. 2011, №4. - С. 30-33). Указанный способ состоит в следующем. Описанным выше методом аргонно-дуговой плавки выплавляется интерметаллид палладия и бария - Pd5Ba. Этот сплав размалывают в атмосфере инертных газов или углекислого газа, смешивают с таким количеством порошка палладия, которое необходимо для получения сплава с заданным составом, прессуют и спекают.

Недостаток настоящего способа - недостаточная однородность распределения интерметаллида в матрице благородного металла, высокая энергоемкость процесса спекания.

Цель настоящего изобретения - получение прессованного металлосплавного катода Pd-Ba с повышение КВЭЭ, повышение к.п.д. и процента выхода годных приборов с использованием данного катода.

Указанная цель достигается тем, что катод получают с помощью трех лент Pd одинаковых линейных размеров (см. Фиг. 1), причем в одной из лент (лента 3) сформированы ячейки (одинаковые сквозные отверстия), находящиеся между собой на равных расстояниях. Лента 3 (с ячейками) накладывается на ленту 1 (сплошная лента, без отверстий) и в ячейки (отверстия) засыпается порошок интерметаллида Pd5Ba. Сверху на ленту 3 накладывается лента 2 и получается трехслойная конструкция (см. Фиг. 2): две сплошные ленты Pd (1 и 2), а между ними - третья (3) - с ячейками, причем ячейки (4) заполнены порошком интерметаллида Pd5Ba. Полученную конструкцию прессуют под давлением 10-12 т/см2 и отжигают в течение 1-2 ч в инертной атмосфере при температуре, 800-900°С. После этого методом горячей прокатки полученный материал прокатывается в фольгу нужной толщины.

Сущность изобретения состоит в следующем.

Интерметаллид Pd5Ba получают отдельно, а равномерного распределения Pd5Ba в матрице Pd добиваются искусственно, - путем формирования в матрице равномерно распределенных ячеек, куда помещается интерметаллид.

Пример 1. Методом аргонно-дуговой плавки получали стехиометрический сплав Pd5Ba (20,51% мас. содержания Ва). Полученный сплав дробили в чугунной ступке для достижения среднего размера частиц 50-100 мкм.

Брали три ленты Pd: лента 1 и лента 2 (см. фиг. 1) - толщиной 200 мкм, а лента 3 - толщиной 300 мкм. В ленте 3 проделывались квадратные отверстия 1,0 мм × 1,0 мм на расстоянии 1,0 мм одно от другого. Лента 3 помещалась на ленту 1. Ячейки в ленте 3 наполнялись доверху порошком Pd5Ba, сверху на ленту 3 накладывалась лента 2 (Pd). Полученную конструкцию прессовали под давлением 10 т/см2, после чего 1 ч отжигали в инертной атмосфере при температуре 900°С. Далее полученный материал прокатывали методом горячей прокатки до ленты толщины 400 мкм.

Из полученной фольги Pd-Ba вырезали образцы. Из разных частей полученного образца было изготовлено восемь катодов для магнетронов.

Для каждого катода измеряли КВЭЭ. Полученные результаты сравнивали с результатами испытаний катодов, полученных по технологии прототипа. Результаты представлены в табл. 1.

Пример 2. Методом аргонно-дуговой плавки получали стехиометрический сплав Pd5Ba (20,51% мас. содержания Ва). Полученный сплав дробили в чугунной ступке для достижения среднего размера частиц 50-100 мкм.

Брали три ленты Pd: лента 1 и лента 2 (см. фиг. 1) - толщиной 200 мкм, а лента 3 - толщиной 300 мкм. В ленте 3 проделывались круглые отверстия диаметром 2,0 на расстоянии 1,0 мм одно от другого. Лента 3 помещалась на ленту 1. Ячейки в ленте 3 наполнялись доверху порошком Pd5Ba, сверху на ленту 3 накладывалась лента 2 (Pd). Полученную конструкцию прессовали под давлением 12 т/см2, после чего 1 час отжигали в инертной атмосфере при температуре 875°С. Далее полученный материал прокатывали методом горячей прокатки до ленты толщины 500 мкм.

Из полученной фольги Pd-Ba вырезали образцы. Из разных частей полученного образца было изготовлено восемь катодов для магнетронов.

Для каждого катода измеряли КВЭЭ. Полученные результаты сравнивали с результатами испытаний катодов и магнетронов, полученных по технологии прототипа. Результаты представлены в табл. 2.

Как видно из табл. 1 и табл. 2, предложенная конструкция катода и способ его изготовления позволяют добиться существенных значений КВЭЭ.

КВЭЭ прессованных металлосплавных катодов, полученных с использованием предлагаемого способа, - на 20-25% выше КВЭЭ катодов, полученных по технологии прототипа.

Ограничения по выбранному значению давления прессования конструкции из трех лент выбраны исходя из того, что как при более низких значениях давления, так и при более высоких качество получаемых лент - низкое.

Ограничения по выбранному значению температуры отжига конструкции из трех лент после прессования выбраны как диапазон температур, в котором получаются катоды наилучшего качества.

1. Прессованный металлосплавный палладий-бариевый катод, содержащий равномерно распределенную фазу интерметаллида Pd5Ba, отличающийся тем, что он выполнен трехслойным из двух сплошных палладиевых лент и размещенной между ними ленты с расположенными между собой на равных расстояниях сквозными отверстиями, формирующими ячейки с порошком интерметаллида Pd5Ba.

2. Способ получения прессованного металлосплавного палладий-бариевого катода, включающий получение порошка интерметаллида Pd5Ba путем плавки интерметаллида Pd5Ba, его размол в атмосфере инертных газов или СО2, отличающийся тем, что на палладиевую ленту накладывают палладиевую ленту, выполненную с находящимися между собой на равных расстояниях сквозными отверстиями, в упомянутые отверстия палладиевой ленты засыпают порошок интерметаллида Pd5Ba, сверху на палладиевую ленту со сквозными отверстиями помещают такую же как нижняя палладиевую ленту, полученную трехслойную конструкцию прессуют под давлением 10-12 т/см2, после чего отжигают в течение 1-2 ч в инертной атмосфере при температуре 800-900°С и проводят горячую прокатку до заданной толщины.



 

Похожие патенты:

Изобретение относится к электронной технике и может быть использовано для получения материала для композиционных термокатодов. Способ включает заполнение пористой матрицы эмиттирующим составом, при этом в качестве пористой матрицы используют ленту карбонильного никеля, а в качестве эмиттирующего состава сплав Sn-Ba, в следующем соотношении компонентов (в мас.%): Ва - 0,1-0,6, Sn - остальное, которые помещают в вакуум, затем нагревают до температуры 400-650°С и этим расплавом заполняют пористую ленту карбонильного никеля, после чего производят охлаждение.

Изобретение относится к электронной технике, в частности к катодам, работающим в режиме автотермоэлектронной эмиссии. Cпособ изготовления композитного катодного материала включает подготовку порошка активного компонента и нанопорошка матричного металла, смешивание и перемешивание порошка активного компонента с нанопорошком матричного металла и последующую обработку полученной смеси, при этом в качестве порошка активного компонента композитного катодного материала используется гидрид металла цериевой группы, в том числе лантана, церия или празеодима, в качестве порошка матричного металла используется нанопорошок иридия, смесь порошков приготавливают в соотношении 1-13% вес.

Изобретение относится к изготовлению металлосплавных катодов для приборов СВЧ-электроники. Способ получения катодного сплава на основе металла платиновой группы и бария включает прессование навески порошка металла платиновой группы, очистку поверхности бария от оксидов, совместную дуговую плавку прессовки и бария в атмосфере аргона с использованием нерасходуемого вольфрамового электрода.

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторично-эмиссионных катодов. Путем плавки получают интерметаллид Рd5Ва, размалывают в атмосфере инертного газа или СО2 с получением порошка, полученный порошок смешивают с порошком палладия и проводят механоактивацию полученной смеси в планетарной или вибромельнице в течение 5-15 минут.

Изобретение относится к электронной технике, а именно к способам изготовления металлопористых катодов для вакуумных электронных приборов. Технический результат - повышение равномерности распределения плотности токоотдачи и долговечности катодов.

Изобретение относится к электронной технике и может быть использовано в электровакуумных приборах, в частности в магнетронах непрерывного или импульсного действия, работающих в широком диапазоне длин волн.

Изобретение относится к электронной технике и может быть использовано при изготовлении электронных пушек с термокатодами для приборов СВЧ. Cпособ определения величины продольного смещения термокатода (Δк), вызванного его нагревом, в приборе СВЧ, включает измерения тока пушки Iизм.

Изобретение относится к электронной технике, а именно к способам реставрации мощных СВЧ-устройств, и может быть использовано для восстановления эксплуатационных характеристик приборов гиротронного типа.
Изобретение относится к электронной технике, а именно, к способу изготовления металлопористого катодов для вакуумных электронных приборов. Возможность изготовления крупногабаритных катодов со сложной формой эмитирующей поверхности, а также повышение срока его службы за счет создания ламинарного электронного потока с минимальными пульсациями, является техническим результатом заявленного изобретения.

Изобретение относится к области плазменной техники, а именно к составу материала для изготовления электродов генераторов низкотемпературной плазмы, содержащему связывающее вещество и растворитель, при этом состав дополнительно содержит оксиды лютеция Lu2O3 и неодима Nd2O3 в соотношении между собой 100:20 мас.% и имеет следующее соотношение: связывающее вещество - 10-70, оксиды лютеция Lu2O3 и неодима Nd2O3 - 80-20, растворитель - остальное.

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторичноэмиссионных катодов для мощных приборов СВЧ-электроники, в частности ламп бегущей волны, магнетронов и т.п.

Изобретение относится к технике радиосвязи, радиолокации и радиоэлектронной борьбы и может быть использовано в авиационной и космической технике. Способ снижения радиолокационной заметности летательных аппаратов, оборудованных газотурбинными двигателями, заключается в том, что перед элементами двигателей, вносящими большой вклад в мощность отраженного излучения, создают плазменное образование, поглощающее зондирующее излучение радиолокационной станции.

Изобретение относится к способам изготовления автоэмиссионных катодов с применением углеродных нанотрубок и может быть использовано для изготовления элементов и приборов вакуумной микро- и наноэлектроники.

Изобретение относится к электронной технике, в частности к конструкции катодно-сеточных узлов с автоэмиссионным катодом из углеродного материала для вакуумных электронных приборов (в том числе к СВЧ приборам) с микросекундным временем готовности.

Изобретение относится к электронной технике, в частности к катодам, работающим в режиме автотермоэлектронной эмиссии. Cпособ изготовления композитного катодного материала включает подготовку порошка активного компонента и нанопорошка матричного металла, смешивание и перемешивание порошка активного компонента с нанопорошком матричного металла и последующую обработку полученной смеси, при этом в качестве порошка активного компонента композитного катодного материала используется гидрид металла цериевой группы, в том числе лантана, церия или празеодима, в качестве порошка матричного металла используется нанопорошок иридия, смесь порошков приготавливают в соотношении 1-13% вес.

Изобретение относится к изготовлению металлосплавных катодов для приборов СВЧ-электроники. Способ получения катодного сплава на основе металла платиновой группы и бария включает прессование навески порошка металла платиновой группы, очистку поверхности бария от оксидов, совместную дуговую плавку прессовки и бария в атмосфере аргона с использованием нерасходуемого вольфрамового электрода.

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторично-эмиссионных катодов. Путем плавки получают интерметаллид Рd5Ва, размалывают в атмосфере инертного газа или СО2 с получением порошка, полученный порошок смешивают с порошком палладия и проводят механоактивацию полученной смеси в планетарной или вибромельнице в течение 5-15 минут.

Изобретение относится к области изготовления диспенсерных катодов на основе скандата бария или других материалов на основе скандата бария, а именно к материалу мишени и мишени для физического осаждения тонких пленок, дисперсному катоду на основе скандата бария и способу его получения и способу получения мишени.

Изобретение относится к катодам электровакуумных приборов, а более конкретно к цилиндрическим термокатодам, преимущественно для магнетронов, и может быть использовано в электронной технике.

Изобретение относится к полупрозрачному фотокатоду (1) для фотодетектора, имеющего повышенную степень поглощения при сохраняющейся степени переноса. Согласно изобретению фотокатод (1) содержит пропускающую дифракционную решетку (30) для дифракции фотонов, расположенную в слое подложки (10), на которую нанесен фотоэмиссионный слой (20).

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторичноэмиссионных катодов для мощных приборов СВЧ-электроники, в частности ламп бегущей волны, магнетронов и т.п.
Наверх