Способ формирования диаграммы направленности приемной линейной антенной решетки

Изобретение относится к антенной технике. Способ включает вычисление сигнала F0 по формуле: . Дополнительно вычисляют два сигнала F1 и F2 по формулам: , и определяют параметр а: . Выходной сигнал V0 приемной антенной решетки формируют в зависимости от параметра а, в соответствии с выражением: Технический результат заключается в снижении уровня боковых лепестков при сохранении ширины основного лепестка диаграммы направленности приемной антенной решетки. 10 ил.

 

Область применения

Изобретение относится к антенной технике и может быть использовано в радиолокации, связи и т.д.

Уровень техники

Известен способ формирования диаграммы направленности антенны [Справочник по радиолокации. Под ред. М. Сколника. Нью-Йорк, 1970. Пер. с англ. (в четырех томах). Под общей ред. К.Н. Трофимова. Том 2. Радиолокационные антенные устройства. Под ред. П.И. Дудника. М.: "Сов. Радио", 1977. С. 74-92], заключающийся в задании амплитудного распределения поля по апертуре антенны с целью снижения уровня боковых лепестков.

Недостатком этого способа является расширение основного лепестка диаграммы направленности приемной антенной решетки по сравнению с равномерным амплитудным распределением поля по апертуре антенны.

Известен способ снижения уровня боковых лепестков диаграммы направленности линейной антенной решетки из N элементов, выбранный нами за прототип [Активные фазированные антенные решетки. Под ред. Д.И. Воскресенского и А.И. Канащенкова. М.: "Радиотехника", 2004. С. 110-112], который включает следующие операции: прием комплексных сигналов sn с выходов каждого n-го элемента решетки, соответственно, их взвешивание, например, косинус-квадратным окном cn=wnsn

,

и формирование выходного сигнала F0 решетки по формуле

.

В общем случае форма взвешивающего окна может быть различной, но со спаданием к краям апертуры антенны [Рабинер Л., Гоулд Б. Теория и применение цифровой обработки сигналов. М.: "Мир", 1978. С. 103-106].

Недостатком этого способа является расширение основного лепестка диаграммы направленности приемной антенной решетки по сравнению с равномерным амплитудным распределением поля по апертуре антенны (прямоугольное взвешивающее окно), что является платой за снижение уровня боковых лепестков.

Сущность изобретения

Основной технической задачей, решаемой заявленным изобретением, является снижение уровня боковых лепестков при сохранении ширины основного лепестка диаграммы направленности приемной антенной решетки.

Поставленная задача достигается тем, что в способе приема сигнала линейной антенной решеткой, основанном на приеме N комплексных сигналов sn, формировании N комплексных амплитуд cn=wnsn и вычислении сигнала по формуле:

взвешивающее окно wn задается прямоугольным wn=1, согласно предложенному решению, дополнительно вычисляются два сигнала F1 и F2 и параметр а по формулам:

а выходной сигнал V0 приемной антенной решетки формируют в зависимости от параметра а соответствии с выражением:

Предложенный способ основан на том факте, что диаграмма направленности антенны связана с амплитудно-фазовым распределением поля по ее апертуре парой преобразований Фурье. Этот факт позволяет интерпретировать диаграмму направленности как аппаратную функцию прибора, оценивающего спектр пространственных частот падающего на раскрыв антенны поля, что дает право применять параметрические методы спектральных оценок для формирования диаграммы. Так как прямой доступ к комплексным амплитудам поля в апертуре антенны практически имеется только в антенных решетках, то предлагаемый способ подходит лишь для антенных решеток, причем только приемных, поскольку параметрическое управление выходным сигналом решетки не позволяет применить заявляемый способ для передающей решетки.

Краткое описание чертежей

На фиг. 1 представлен линейный фильтр с конечной импульсной характеристикой, на фиг. 2 - положение лучей в пространстве, на фиг. 3 - иллюстрация работы способа, на фиг. 4 - диаграмма направленности для N=128 идентичных элементов, на фиг. 5 - диаграмма направленности прототипа, на фиг. 6-8 диаграммы направленности при различных фазовых ошибках, на фиг. 9 - десять графиков диаграмм направленности для фазовой ошибки 10 градусов, рассчитанных для случайных выборок фазовых и амплитудных ошибок, на фиг. 10 - фрагмент фиг. 9 в окрестности главного лепестка диаграммы направленности.

Осуществление изобретения

Рассмотрим предлагаемый способ формирования диаграммы направленности приемной линейной антенной решетки из N элементов с шагом ∆L - λ/2, где X - длина волны падающего поля.

В качестве параметрического метода оценки спектра взята трехточечная процедура Spatially Variant Apodization (SVA), суть которой заключается в следующем [Патент US 6 298 363].

Над реализацией cn, n=0, …, N-1, случайного процесса дискретного времени tn=nT выполняется преобразование Фурье

Далее N отсчетов Fk поступают на линейный параметрический фильтр подавления боковых лепестков (фиг. 1), сигнал Vk на выходе которого формируется по правилу

Процедура SVA реализуется линейным фильтром с конечной импульсной характеристикой, но с переменными коэффициентами, зависящими от текущего входного сигнала, который определяется тремя отсчетами Fk-1, Fk и Fk+1. Такой фильтр осуществляет свертку входного сигнала с переменной импульсной характеристикой, управляемой параметром а в соответствии с выражением (5). При этом аппаратная функция, определяющая спектральное разрешение, имеет низкий уровень боковых лепестков и минимальную ширину основного лепестка, соответствующую прямоугольному окну взвешивания текущих данных оцениваемого процесса.

Каждому этапу свертки, определяемому индексом k, соответствует угловое положение антенны с азимутом arcsin(kλ/L), где L=NΔL=Nλ/2 - размер апертуры решетки; а отсчетам Fk-1 Fk и Fk+1 сопоставляются значения комплексной амплитуды сигналов F1, F0 и F2, принятых по трем лучам антенны соответственно, которые сформированы (например) с помощью трех диаграммообразующих схем (ДОС).

При этом направление луча, по которому принят сигнал F0, совпадает с линией визира антенны (с линией, перпендикулярной линии раскрыва антенны), а два других луча, по которым приняты сигналы F1 и F2, отклонены на углы, зависящие от соотношения длины волны λ падающего поля и размера L апертуры решетки в соответствии с выражениями (фиг. 2).

Рассмотрим предложенный способ для практического применения.

При падении на приемную антенную решетку (с шагом ΔL=λ/2) плоской волны (фиг. 3) комплексные амплитуды сигналов с идентичных антенных элементов определяются как

где: λ - длина волны падающего поля; β - угол отворота антенны относительно линии постоянной фазы падающего поля; wn=1 - коэффициент передачи антенного элемента с номером n.

Положим, что диаграмма направленности элементарного антенного элемента решетки ограничена передней полусферой (т.е. излучение «назад» блокировано экраном), и решетка имеет один главный лепесток диаграммы направленности. Тогда углы отворота достаточно задать отрезком -90°≤β≤90°, а зависимость , вычисленная по (1), (2), (3) и (6), определяет форму диаграммы направленности приемной антенны.

Как показано на фиг. 4, максимальный уровень боковых лепестков диаграммы направленности антенной решетки, состоящей из 128 идентичных элементов, составляет около - 48 дБ. При этом уровень боковых с ростом угла отворота уменьшается со скоростью 18 дБ/октаву (фиг. 4). Шаг вращения по углу здесь и далее составляет 0,1° (1800 отсчетов на диаграмму).

Уровень боковых лепестков диаграммы направленности антенной решетки прототипа, состоящей из 128 идентичных элементов, составляет около -13 дБ (фиг. 5), при этом уровень боковых ростом угла отворота уменьшается со скоростью 6 дБ/октаву.

Отметим, что ширина главного лепестка диаграммы направленности для способа прототипа и предлагаемого способа одинакова (другими словами, уменьшение уровня боковых лепестков в предлагаемом способе не влечет за собой расширение главного лепестка диаграммы направленности).

Диаграммы направленности, показанные на фиг. 4 и фиг. 5, определены для случая, когда антенные элементы решетки идентичны. Так как в реальности коэффициенты передачи wn антенных элементов не могут быть одинаковыми, то имеется неточность их настройки по фазе и амплитуде относительно друг друга.

Для реального антенного элемента определим его коэффициент передачи как

где: ΔAn - амплитудная ошибка; Δϕn - фазовая ошибка.

Зададим уровень фазовой ошибки тремя типовыми интервалами ±2,5°, ±5,0° и ±10,0°. Амплитудную ошибку примем случайной величиной с нулевым средним и среднеквадратическим значением 0,06, что соответствует отклонению множителя ошибки (7) от единицы на 201g(1+0,06)≈0,5 дБ и согласуется с современным состоянием цифровых (дискретных) фазовращателей [Digital Phase Shifter, http://www.analog.com/ru/products/rf-microwave/phase-shifters-vector-modulators/digital-phase-shifter.html].

Для реальной антенной решетки уровень боковых лепестков не превышает -30 дБ для интервала фазовой ошибки ±10°; при этом для рассматриваемого случая (128 элементов, амплитудная ошибка 0,5 дБ) нет особого смысла настраивать антенные элементы точнее 5° (фиг. 6-8).

Для десяти реализаций диаграмм направленности при фазовой ошибке в интервале ±10° уровень боковых лепестков не превышает -30 дБ (фиг. 9-10). При этом ширина основного лепестка по первым нулям равна 1,8°, что совпадает с шириной для способа прототипа с прямоугольным взвешивающим окном и теоретическим значением 2arcsin 2/N=2arcsin 2/128≈1,8°.

Таким образом, предложенное решение позволяет улучшить диаграмму направленности реальной антенной решетки на прием, сохраняя исходное разрешение по углу (не расширяя главного лепестка диаграммы направленности) и значительно уменьшая уровень боковых лепестков. Заметим, что степень уменьшения уровня боковых зависит от соотношения размеров апертуры антенны и длины волны падающего поля (т.е. от количества антенных элементов, расположенных с шагом половины длины волны поля). Для 128-элементной решетки реально достижим уровень боковых лепестков не хуже -30 дБ.

Способ формирования диаграммы направленности приемной антенной решетки, образованной совокупностью N идентичных антенных элементов, включающий формирование комплексных отсчетов сn выходных сигналов антенных элементов, вычисление сигнала F0 по формуле:

,

отличающийся тем, что дополнительно вычисляют два сигнала F1 и F2 по формулам:

, ,

где ,

и определяют параметр а:

,

а выходной сигнал V0 приемной антенной решетки формируют в зависимости от параметра а, в соответствии с выражением:



 

Похожие патенты:

Изобретение относится к антенной технике и предназначено для калибровки приемно-передающих активных фазированных антенных решеток (ФАР). Способ калибровки активной ФАР, в котором для калибровки приемных каналов приемно-передающих модулей на их входы подают контрольный сигнал, на основе сравнения амплитуд и фаз выходных сигналов приемных каналов калибруемых модулей с амплитудой и фазой выходного сигнала приемного канала опорного приемно-передающего модуля формируют корректирующие сигналы, которые используют для регулировки комплексных коэффициентов передачи приемных каналов калибруемых приемно-передающих модулей.

Изобретение относится к радиотехнике и может быть использовано в различных устройствах, требующих получения радиоимпульсов с высокой импульсной мощностью, например в системах дальней космической связи и радиолокации.

Изобретение относится к антенно-фидерным устройствам, а именно к антеннам, предназначенным для излучения и приема волн двух ортогональных поляризаций. Результат достигается тем, что в турникетной антенне, содержащей два крестообразно расположенных вибратора, к зазору в средней точке которых присоединены входные коаксиальные кабели, плечи вибраторов выполнены из металлического листа в виде равнобедренных прямоугольных треугольников, расположенных в одной плоскости, с вершинами прямого угла в центре антенны.

Изобретение относится к антенной технике и может использоваться для калибровки приемных активных фазированных антенных решеток (АФАР), применяемых в радиолокационных станциях дальнего обнаружения.

Изобретение относится к области радиотехники СВЧ- и КВЧ-диапазонов. Модуль проходной фазированной антенной решетки (ФАР) содержит основание модуля в виде печатной платы и элементы ФАР, соединенные с основанием модуля.

Изобретение относится к радиотехнике, может быть использовано в радиолокации, а также в системах радиоэлектронного подавления. Устройство содержит систему формирования когерентной сетки частот (1), излучающие элементы (2), управляемые фазовращатели (3), систему управления фазовращателями (4), импульсные модуляторы (5), импульсный генератор (6), управляемые линии задержки (7), систему управления задержкой импульса (8), опорный генератор (9) и синхронизатор систем управления линиями задержки и управляемыми фазовращателями (10).

Изобретение относится к устройству для мультистатических измерений сверхвысокочастотных (СВЧ) сигналов с антенным устройством, которое содержит несколько антенных кластеров, и к способу выполнения устройства.

Изобретение относится к антенной технике и может быть использовано в радиотехнических системах связи при передаче широкополосных сигналов в условиях ведения радиоразведки, а также для обеспечения электромагнитной совместимости радиоэлектронных средств и электромагнитной экологии.

Изобретение относится к антенной технике и, в частности, к конструированию цифровых кольцевых антенных решеток (ЦКАР). Цифровая кольцевая антенная решетка содержит печатные антенные излучатели, полосковые и микрополосковые линии передачи, линии питания и управления, антенна выполнена в виде круглой формы, где установлены печатные антенные излучатели, основание выполнено в виде составного металлического многогранника, аппроксимирующего тороид, на лицевой стороне основания расположены печатные излучатели антенные (тип антенны - Вивальди), соединенные высокочастотными разъемами с цифровыми приемопередающими модулями, расположенными на противоположной стороне основания, модули системы питания, модули функционального управления и обработки информации, модуль синтезатора сигналов и разветвителя частоты, которые установлены на составное металлическое основание через теплопроводящую прокладку и прижимаемые резьбовыми фиксаторами.

Изобретение относится к фазированной антенной решетке, более конкретно - к фазированной антенной решетке с адаптируемой поляризацией для мобильного устройства. Монолитно-интегрированный антенный модуль миллиметрового диапазона содержит множество антенных элементов, радиочастотную интегральную схему (RFIC) и цепь питания.
Изобретение относится к радиолокационным станциям с последовательным сканированием пространства неподвижными фазированными антеннами решетками, разнонаправленными в пространстве по секторам, и может быть использовано для обнаружения, измерения координат и определения свойств космических и воздушных объектов. Достигаемый технический результат – обнаружение воздушных и космических объектов, уменьшение габаритных размеров приемопередающего модуля, уменьшение энергопотребления, отсутствие зависимости от погодных условий, уменьшение стоимости. Указанный результат достигается за счет того, что круговое электромагнитное сканирование пространства осуществляют на необходимой высоте и дальности двумя и более неподвижными фазированными антенными решетками, разнонаправленными в пространстве по секторам и последовательно согласованными сверхвысокочастотной нагрузкой с одним приемопередающим каналом.
Изобретение относится к области радиоэлектроники и может быть использовано для усиления мощности радиочастотного сигнала, в приемо-передающем СВЧ-модуле активной фазированной антенной решетки, в частности радиолокационной станции, работающей в импульсном режиме. Для усиления мощности радиочастотного сигнала подают радиочастотный сигнал на вход передающего тракта, включающего по меньшей мере предварительный и выходной усилители мощности, содержащие транзисторы, работающие в режиме глубокого насыщения. Предварительно формируют калибровочную таблицу, отражающую зависимость между мощностью на выходе приемо-передающего канала и соответствующим напряжением питания каждого из упомянутых усилителей мощности. Напряжение питания выходного усилителя мощности выбирают из условия получения заданной мощности на выходе приемо-передающего канала, а напряжение питания предварительного усилителя мощности выбирают из условия получения максимального значения КПД выходного усилителя мощности. Затем на выходе приемо-передающего канала получают радиочастотный сигнал заданной мощности путем подачи на каждый из упомянутых усилителей мощности соответствующего напряжения питания, выбираемого в соответствии с упомянутой калибровочной таблицей. Технический результат заключается в уменьшении энергопотребления и тепловых потерь. 1 з.п. ф-лы, 5 ил.
Изобретение относится к проектированию и синтезу многолучевых самофокусирующихся адаптивных антенных решеток (МЛ СФААР). Способ позволяет выполнить синтез МЛ СФААР, обеспечивающей максимизацию отношения сигнал/помеха+шум (ОСПШ) на выходе антенной решетки (АР) в условии взаимной корреляции сигналов источников излучения при изменении параметров сигнально-помеховой обстановки (СПО). Способ синтеза многолучевой самофокусирующейся адаптивной антенной решетки (МЛ СФААР) с использованием параметрической модели сигналов источников включает задание исходных данных по количеству антенных элементов (АЭ) МЛ СФААР, их характеристикам, положению в пространстве и типу диаграммообразующей схемы (ДОС), с последующим построением адаптивного процессора (АП) МЛ СФААР, вычисляющего вектор весовых коэффициентов ДОС МЛ СФААР, при этом построение АП МЛ СФААР выполняется с применением параметрической модели сигналов ИИ на основе критерия оптимальности, определяющего величину ошибки аппроксимации принимаемых сигналов ИИ указанной моделью. 2 з.п. ф-лы, 5 ил.

Изобретение относится к антенной технике. Регулируемое фазовращающее устройство антенной решетки для передачи сигнала между общим входным портом и несколькими портами, содержащее проводниковую камеру, разветвленную сеть фидеров, диэлектрический элемент и рычаг тяги. При этом вдоль первого края проводниковой камеры установлены порты ввода и вывода, а вдоль второго края – рычаг тяги, оснащенный диэлектрическим элементом. Разветвленная сеть фидеров содержит металлические прямоугольные части камеры трансформатора различной ширины, используемые для уменьшения отражения сигнала, проходящего по сети, и посредством фидерных узлов и частей соединяет порты ввода и вывода. Диэлектрический элемент содержит секции трансформатора, предназначенные для уменьшения отраженного сигнала, проходящего по сети. При этом на обоих концах диэлектрических элементов, смежных с частями разветвленной сети фидеров, расположенных по второму краю данного устройства, а также соединенных с первым узлом, исходящим из выходного порта, имеются секции трансформатора. Остальная часть диэлектрических элементов имеет секции трансформатора лишь с одного конца, наслаивающегося на разветвленную сеть фидеров. 2 н. и 19 з.п. ф-лы, 11 ил.

Изобретение относится к радиолокации. Способ основан на изменении фазового распределения в апертуре антенной системы с электронным управлением лучом (АС с ЭУЛ) путем электронного управления фазовым сдвигом СВЧ-сигнала в каждом ее излучателе и формировании зоны электронного сканирования с телесным углом, равным ±θ, где θ - угол отклонения луча АС с ЭУЛ от нормали к ее апертуре, размещении АС с ЭУЛ на поворотном устройстве, обеспечивающем ее вращение вокруг своей оси на угол β, изменяемый от 0° до 360°, суммировании зон электронного и механического сканирования. Устанавливают АС с ЭУЛ на двухкоординатное поворотное устройство, имеющее независимые внешний и внутренний узлы поворота, таким образом, чтобы нормаль к ее апертуре совпала с осью вращения внешнего узла двухкоординатного поворотного устройства, обеспечивающего ее вращение на угол β, изменяющийся от 0 до 360°, где β - угол поворота АС с ЭУЛ относительно оси вращения внешнего узла поворота двухкоординатного поворотного устройства, изменяют внутренним узлом поворота двухкоординатного поворотного устройства угол α между осью вращения внешнего узла поворота двухкоординатного поворотного устройства и нормалью к апертуре АС с ЭУЛ до значений ±α. Осуществляют вращение апертуры АС с ЭУЛ внешним узлом поворота двухкоординатного поворотного устройства, изменяя угол β. Производят изменение фазового распределения в апертуре АС с ЭУЛ с учетом углов α и β, осуществляя электронное сканирование лучом в зоне сканирования АС с ЭУЛ, но уже относительно данного положения нормали к апертуре АС с ЭУЛ. Путем независимого поворота АС с ЭУЛ вокруг осей вращения внутреннего и внешнего узлов поворота двухкоординатного поворотного устройства в пределах по α до ±α и по β от 0° до 360° осуществляют перемещение нормали к апертуре АС с ЭУЛ в произвольное направление внутри конического телесного угла размером ±α, формируя тем самым зону механического перемещения нормали к апертуре АС с ЭУЛ. Технический результат заключается в расширении зоны сканирования. 3 ил.

Изобретение относится к технике СВЧ, в частности к активным фазированным антенным решеткам (АФАР) Х-диапазона, расположенным в носовой части самолета или вертолета. Изобретение может быть применено при разработке перспективных бортовых (самолетных и вертолетных) РЛС X-диапазона с широкоугольным электрическим сканированием в азимутальной плоскости, а также использовано при разработке АФАР для других РЛС с широкоугольным электрическим сканированием в азимутальной плоскости, работающих в Х-, Ku-, K-, Kа-диапазонах. Техническим результатом является возможность расширения сектора электрического сканирования углов сканирования при уменьшении в два раза числа используемых приемопередающих модулей (ППМ), уменьшении стоимости и массы АФАР. Предлагаемая АФАР состоит из двух АФАР, каждая из которых состоит из излучающего полотна в виде N излучателей, образующих плоский излучающий раскрыв с размером Lx*Ly, и Nм ППМ, подсоединенных по схеме каждый ППМ с каждым излучателем и обеспечивающих электрическое сканирование в азимутальной плоскости в секторе углов ±ϕск и в угломестной плоскости в секторе углов ±θск, так что суммарное число излучателей в обеих АФАР равно 2N, а число ППМ Nм=N. 6 з.п. ф-лы, 12 ил.
Наверх